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Appendix A Preliminary

Appendix A.1 Federated learning

Let us consider a general FL system consisting of one server and N clients. Let Di denote the local database held by the

client Ci, where i ∈ {1, 2, . . . , N}. At the server, the goal is to learn a model over data that resides at the N associated

clients. An active client, participating in the local training, needs to find a vector w of an AI model to minimize a certain

loss function. Formally, the server aggregates the weights received from the N clients as

w =

N∑
i=1

piwi, (A1)

where wi is the parameter vector trained at the i-th client, w is the parameter vector after aggregating at the server, and

N is the number of clients. In addition, we consider the standard aggregation rule that pi =
|Di|
|D| ⩾ 0 with

∑N
i=1 pi = 1,

and |D| =
∑N

i=1 |Di| denotes the total size of all data samples. Such an optimization problem can be formulated as

w∗ = argmin
w

N∑
i=1

piFi(w,Di), (A2)

where Fi(·) is the local loss function of the i-th client. Generally, the local loss function Fi(·) is given by local empirical

risks. The training process of such an FL system usually contains the following four steps:

• Local training: All active clients locally compute training gradients or parameters and send locally trained ML

parameters to the server;

• Model aggregating: The server performs secure aggregation over the uploaded parameters from N clients without

learning local information;

• Parameters broadcasting: The server broadcasts the aggregated parameters to the N clients;

• Model updating: All clients update their respective models with the aggregated parameters and test the performance

of the updated models.

In the FL process, the N clients with the same data structure will collaboratively learn an ML model with the help of a

cloud server. After a sufficient number of local training and update exchanges between the server and its associated clients,

the solution to the optimization problem (A2) is able to converge to that of the global optimal learning model.

Appendix A.2 Differentially private FL

(ϵ, δ)-DP provides a strong criterion for privacy preservation of distributed data processing systems [1,2]. Here, ϵ > 0 is the

distinguishable bound of all outputs on neighboring datasets Di,D′
i in a database, and δ represents the event that the ratio

of the probabilities for two adjacent datasets Di,D′
i cannot be bounded by eϵ after adding a privacy-preserving mechanism.

With an arbitrarily given δ, a privacy-preserving mechanism with a larger ϵ gives a clearer distinguishability of neighboring

datasets and hence a higher risk of privacy violation. Now, we will formally define DP as follows.
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Definition 1. ((ϵ, δ)-DP [1]): A randomized mechanism M : X → R with domain X and range R satisfies (ϵ, δ)-DP, if

for all measurable sets S ⊆ R and for any two adjacent databases Di,D′
i ∈ X ,

Pr[M(Di) ∈ S] ⩽ eϵPr[M(D′
i) ∈ S] + δ. (A3)

For numerical data, a Gaussian mechanism defined in [1] can be used to guarantee (ϵ, δ)-DP. The conventional deep

learning models attain DP guarantees via two alterations to the training process: the clipping of per-sample gradients, and

the addition of Gaussian noise to gradients, as known as DP-SGD. The work [3] first applied DP in the FL system, denoted

as DP-FL, which is the main counterpart of this paper. In the following algorithm, we show the main steps of the DP-FL

procedure.

Algorithm A1 Local Differentially Private Federated Learning System through Additive noise (DP-FL)

Require: The initial global model w(0), the maximum number of the communication round T , the random additive noise

N(0, σ2);

Ensure: The trained global model wf ;

1: Set the communication round index t = 0;

2: while t ⩽ T do

3: for Each client i in C do

4: Train the local model w
(t)
i ;

5: Clip the local gradient during the training process as g
(t)
i = g

(t)
i /max

(
1,

||g(t)
i ||
C

)
;

6: Add noise and upload models g
(t)
i = g

(t)
i + n

(t)
i ;

7: end for

8: Aggregate all received local models as: w(t+1) = 1
N

∑
i∈N w

(t)
i ;

9: Increase the communication round index t = t+ 1;

10: end while

Appendix A.3 Membership inference attack

Although the individual dataset Di of the i-th client is kept locally in FL, the intermediate parameter wi needs to be shared

with the curious server, which may reveal the clients’ private information as demonstrated by membership inference attacks.

For example, authors in [4] proposed a shadow learning technique-based membership inference attack method, which can

determine if a given data record was in the model’s training dataset via black-box access to this model. As reported in [4,5],

the proposed membership attack can achieve a nearly 73% and 58% accuracy on CIFAR-10 [6] and MNIST 1) dataset,

respectively. To prevent such an attack, [3,7] perturbed the trained model with additive noises to achieve DP and obtained

a degradation in attacking rate with an irreparable sacrifice on learning performance. For example, a 15% (58%), and 5%

(53%) reduction is obtained when ϵ = 4.

Appendix B Algorithms

Appendix B.1 Algorithm B1: Conditional-GAN based data augmentation

The generator G and discriminator D is trained with the following loss function:

min
G

max
D

V (G(z, y),D ((x, y),G(z, y))) , (B1)

where z is a random vector, and V (·, ·) is a distance measurement between distributions parameterized by G and D. In this

paper, we use Jensen-Shannon divergence with the formula:

V (G(z, y),D ((x, y),G(z, y))) = Ex∼p(x)[logD(x, y)]

+ Ez∼p(z)[log(1− D(G(z, y)))].
(B2)

Via this loss, we can generate the required data samples in the conditioned labels.

The procedure of the proposed conditional-GAN-based data augmentation has been presented in Algorithm B1. At

the beginning of this algorithm, each client will receive the required number of training datasets. First, each client trains

the generator G based on the conditional-GAN based on its unique training dataset Di. Then, each client calculates the

ratio for each class, i.e., qm, ∀m ∈ M. Afterward, each client generates qm ∗ n data samples from the trained G. We can

notice that this algorithm aims to generate a dataset D̃i containing n samples as well as the same class ratio as the training

dataset Di for each client.

Appendix B.2 Algorithm B2: Local Differentially Private Federated Learning System

through Generative Data

1) http://yann.lecun.com/exdb/mnist
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Algorithm B1 Conditional-GAN based Data Augmentation

Require: The ith client’s training dataset Di, ∀i ∈ C, the number of generated data samples n and n
|Di|

∈ Z+;

Ensure: The ith client’s generated dataset D̃i, ∀i ∈ C;
1: Train the generator g based on the conditional-GAN with the input dataset Di;

2: Calculate the ratio for each class, i.e., qm, ∀m ∈ M;

3: for m from 1 to M do

4: Generate qm ∗ n data samples from the trained G;

5: end for

6: Combine all classes of the generated data and obtain the dataset D̃i;

Algorithm B2 Local Differentially Private Federated Learning System through Generative Data (DP-GenFL)

Require: The LDP requirement for the ith client (ϵi, δi), ∀i ∈ C, the initial global model w(0), the maximum number of

the communication round T ;

Ensure: The trained global model wf ;

1: Set the communication round index t = 0;

2: while t ⩽ T do

3: for Each client i in C do

4: Generate the synthetic data D̃i using Algorithm B1;

5: Combine D̃i and Di with ratios γ and 1− γ, respectively, to generate D̂i as the local training dataset;

6: Set the additive noise STD σi for the DP-FL;

7: Train the local model w
(t)
i with the sampled synthetic data D̂i;

8: if The sample used is the real data then

9: Train this sample using the DP-FL (Algorithm A1) mechanism;

10: else

11: Train this sample using the GD mechanism;

12: end if

13: Calculate the accuracy of the validation dataset V(t)
i ;

14: Upload the local model w
(t)
i and the validation accuracy V(t)

i to the server;

15: end for

16: Aggregate all received local models as: w(t+1) = 1
N

∑
i∈N w

(t)
i ;

17: Calculate the global validation accuracy as: V(t+1) = 1
N

∑
i∈N V(t)

i ;

18: if w(t+1) satisfies the requirement (up to the DP budget) or t = T − 1 then

19: Set wf = w(t+1);

20: else

21: Increase the communication round index t = t+ 1;

22: end if

23: end while
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Appendix C Differential privacy analysis

Research in differentially private ML models tracks a relaxed variant of DP, known as Rényi-DP (RDP) [8] that has already

been widely adopted, such as Opacus in Facebook and TensorFlow privacy in Google. Hence, we will adopt the RDP

technique in this paper, and then formally define RDP as follows.

Definition 2. ((α, ϵ)-RDP): Given a real number α ∈ (1,+∞), and privacy parameter ϵ, a randomized mechanism M
satisfies (α, ϵ)-RDP for any two adjacent datasets D, D′ ∈ X , we have

Dα
[
M(D)||M(D′)

]
:=

1

α− 1
logE

[(
M(D)

M(D′)

)α]
⩽ ϵ, (C1)

where the expectation is taken over the output of M(D).

We can note that RDP is a generalization of (ϵ, δ)-DP that adopts Rényi divergence as a distance metric between two

distributions. It can be shown that pure (ϵ, δ)-DP is equivalent to (∞, ϵ)-RDP, and, further, that if a model M satisfies

(α, δ)-RDP, then M also satisfies (ϵ+
log 1

δ
α−1

, δ)-DP for any δ ∈ (0, 1).

Next, we show the main proof. Based on Theorem 21 in [2, 9] and the proposed algorithm, we have

ϵ = TτAα +
log

(
1
δ

)
+ log(α) + (α− 1) log

(
1− 1

α

)
α− 1

, (C2)

where Aα denotes the Rényi distance between two distributions, given by

Aα = Dα((1− q)µ0 + q(1− γ)µ1, µ0) + qγDα(ν1, ν0), (C3)

where ν0 and ν1 are the sample distribution generated by G(x) and G(x′), respectively, γ is the ratio of fake samples. Due

to Jensen’s inequality, we have if a function f(x) is convex, f(E(x)) ⩽ E(f(x)). Hence, we can obtain

Dα(ν1, ν0) =
1

α− 1
log

∫ +∞

−∞
ν0(z)

(
ν0(z)

ν1(z)

)α−1

dz

⩽
1

α− 1

∫ +∞

−∞
ν0(z) log

(
ν0(z)

ν1(z)

)α−1

dz

=

∫ +∞

−∞
ν0(z) log

(
ν0(z)

ν1(z)

)
dz = DKL(ν0, ν1).

(C4)

Following the lemma 4 in [10,11], we have

max{DKL(ν0, ν1), DKL(ν1, ν0)} ⩽ ΓF,G

(
τk,ξ +

2∆

m

)
, (C5)

where ΓF,G ≜ supν1,ν2∈G ∥ log(ρν1/ρν2 )∥F,1, G is the possible generators, F is the possible discriminators, ρν1 and ρν2
denote the density functions, τk,ξ = 2(infν∈G dF (µ, ν) + τopt + Cξ/

√
k), τopt is the optimization error, Cξ = 16

√
2πpL +

2∆
√

2 log(1/ξ), k is the number of sampled training samples used in training, m is the number of training datasets in GAN

training and ∆ is the upper bound of ∥f(x)∥∞, f ∈ F . Therefore, we have

Theorem 1 (ϵ-LDP). The privacy level of ϵ-LDP for each client can be expressed as

ϵ ⩽ Dα((1− q)µ0 + q(1− β)µ1, µ0)︸ ︷︷ ︸
Due to DP-FL

+ qγΓF,G

(
τk,ξ +

2∆

m

)
︸ ︷︷ ︸
Due to generative samples

.
(C6)

Remark 1. From Eq. (C6), the privacy level consists of two parts, i.e., the random perturbation on the uploaded models,

and the generative fake samples. In addition, we provide a general expression of Dα((1− q)µ0 + q(1− γ)µ1, µ0) here, the

exact expression usually needs integral approximation, which can be found in Section 3.3 of [8].

Appendix D Proof of Theorem 2

Appendix D.1 Assumptions

In this section, we present our theoretical results on the guarantees of the DP-GenFL algorithm considering non-convex

settings. Before that, we first mention three customary assumptions required for non-convex settings.

Assumption 1. We make assumptions on the global loss function F (·) defined by F (·) ≜
∑N

i=1 piFi(·), and the i-th local

loss function Fi(·) as follows:

1) Fi(w) is ρ-Lipschitz smooth, i.e., ∥∇Fi(w)−∇Fi(w
′)∥ ⩽ ρ∥w−w′∥, for any w, w′, where ρ is a constant determined

by the practical loss function;

2) For any i and w, E{∥∇Fi(w)−∇F (w)∥} ⩽ εi, where εi is the divergence metric.

3) For any i and w, the stochastic gradients of i(w,Di) and Fi(w,D′
i) have the bounded variances, respectively, i.e.,

E{∥∇Fi(w,Di)−∇Fi(w)∥} ⩽ σ̃R/
√

|Di|, (D1)

E{∥∇Fi(w,D′
i)−∇Fi(w)∥} ⩽ σ̃S/

√
|D′

i|, (D2)

where σ̃R ⩾ σ̃S > 0 and when the loss of conditional-GAN is 0, we have σ̃R = σ̃S .
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Appendix D.2 Bounded variance for the generated data

Lemma 1 (Bounded variance for generated data). For the fake samples generated in Algorithm B1, we can bound the

generated data as

E
{∥∥∥∇Fi

(
w, D̂i

)
−∇F (w)

∥∥∥} ⩽ εi + σ̃R

√
(1− γ)

Din
+ σ̃S

√
γ

Din
. (D3)

Proof. Based on Algorithm B1, the generated data can be expressed as D̂i = fsample(Di, 1 − γ)
⋃

fsample(D̃i, γ), where

fsample is the sample function and γ is the sample ratio. Therefore, we have

E
{∥∥∥∇Fi

(
w, D̂i

)
−∇F (w)

∥∥∥} = E
{∥∥∥(1− γ)∇Fi (w,Di) + γ∇Fi

(
w, D̃i

)
−∇F (w)

∥∥∥}
= E

{∥∥∥(1− γ)∇Fi (w,Di)− (1− γ)∇F (w) + γ∇Fi

(
w, D̃i

)
− γ∇F (w)

∥∥∥}
(a)
⩽ (1− γ)E {∥∇Fi (w,Di)−∇F (w)∥}+ γE

{∥∥∥∇Fi

(
w, D̃i

)
−∇F (w)

∥∥∥}
(b)
⩽ εi + (1− γ)E {∥∇Fi (w,Di)−∇Fi(w)∥}+ γE

{∥∥∥∇Fi

(
w, D̃i

)
−∇Fi(w)

∥∥∥}
(c)
⩽ εi + σ̃R

√
(1− γ)

Din
+ σ̃S

√
γ

Din
,

(D4)

where Din is the number of training dataset, i.e., Din = |D̂i|, step (a) applies the triangle inequality, step (b) and (c)

are due to the second and third assumptions in Assumption 1, respectively.

Appendix D.3 Convergence bound of the proposed algorithm

Theorem 2 (Convergence bound). The convergence loss for the proposed DP-GenFL (Algorithm B2) can be can given

as

1

NTτ

T−1∑
t=0

N∑
i=1

τ−1∑
ℓ=0

∥∥∥∇Fi

(
w

(t,ℓ)
i

)∥∥∥2 ⩽
2
(
F
(
w(0)

)
− F (w⋆)

)
η(1− η2ρ2τ2)

+
τ(1 + ρητ)

1− η2ρ2τ2

N∑
i=1

τ−1∑
ℓ=0

εi + σ̃R

√
(1− γ)

Din
+ σ̃S

√
γ

Din

2

.

(D5)

Proof. First, using the ρ-Lipschitz smooth, we have

E
{
F
(
w(t+1)

)
− F

(
w(t)

)}
⩽ ∇F

(
w(t)

)⊤ (
w(t+1) −w(t)

)
︸ ︷︷ ︸

E1

+
ρ

2

∥∥∥w(t+1) −w(t)
∥∥∥2︸ ︷︷ ︸

E2

.
(D6)

Then, we will bound E1 as follows:

E1 =
1

N

N∑
i=1

∇F
(
w(t)

)⊤ (
w

(t+1)
i −w(t)

)
=

1

N

N∑
i=1

∇F
(
w(t)

)⊤ (
w

(t+1)
i −w(t)

)

=
1

N

N∑
i=1

∇F
(
w(t)

)⊤ (
w

(t,τ)
i −w(t)

)

=
1

N

N∑
i=1

∇F
(
w(t)

)⊤ (
w

(t,τ−1)
i − η∇Fi

(
w

(t,τ−1)
i , D̃i

)
−w(t)

)

= −
η

N

N∑
i=1

τ−1∑
ℓ=0

∇F
(
w(t)

)⊤
∇Fi

(
w

(t,ℓ)
i , D̃i

)
.

(D7)

Because a⊤b = ∥a∥2 + ∥b∥2 − ∥a− b∥2, we have

E1 = −
η

2N

N∑
i=1

τ−1∑
ℓ=0

(∥∥∥∇F
(
w(t)

)∥∥∥2 +
∥∥∥∇Fi

(
w

(t,ℓ)
i , D̂i

)∥∥∥2 −
∥∥∥∇F

(
w(t)

)
−∇Fi

(
w

(t,ℓ)
i , D̂i

)∥∥∥2)

⩽ −
η

2N

N∑
i=1

τ−1∑
ℓ=0

(∥∥∥∇Fi

(
w

(t,ℓ)
i , D̂i

)∥∥∥2 −
∥∥∥∇F

(
w(t)

)
−∇Fi

(
w

(t,ℓ)
i , D̂i

)∥∥∥2)
(a)
⩽ −

η

2N

N∑
i=1

τ−1∑
ℓ=0

∥∥∥∇Fi

(
w

(t,ℓ)
i , D̂i

)∥∥∥2 +
η

N

N∑
i=1

τ−1∑
ℓ=0

(∥∥∥∇Fi

(
w

(t,ℓ)
i

)
−∇Fi

(
w

(t,ℓ)
i , D̂i

)∥∥∥2)

+
η

N

N∑
i=1

τ−1∑
ℓ=0

(∥∥∥∇F
(
w

(t,ℓ)
i

)
−∇F

(
w(t)

)∥∥∥2)
(b)
⩽ −

η

2N

N∑
i=1

τ−1∑
ℓ=0

∥∥∥∇Fi

(
w

(t,ℓ)
i , D̂i

)∥∥∥2 +
η

N

N∑
i=1

τ−1∑
ℓ=0

εi + σ̃R

√
(1− γ)

Din
+ σ̃S

√
γ

Din


+

ηρ2

N

N∑
i=1

τ−1∑
ℓ=0

∥∥∥w(t,ℓ)
i −w(t)

∥∥∥2 ,

(D8)
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where step (a) applied the triangle inequality, and step (b) uses the Lemma 1 and the ρ-Lipschitz smooth. Due to the

gradient descent process, we have∥∥∥w(t,ℓ)
i −w(t)

∥∥∥2 =
∥∥∥w(t,ℓ−1)

i − η∇Fi

(
w

(t,ℓ−1)
i

)
−w(t)

∥∥∥2 = η2

∥∥∥∥∥
ℓ−1∑
κ=0

∇Fi

(
w

(t,κ)
i

)∥∥∥∥∥
2

(a)
⩽ η2(ℓ− 1)

ℓ−1∑
κ=0

∥∥∥∇Fi

(
w

(t,κ)
i

)∥∥∥2 ,
(D9)

where step (a) is due to
∥∥∥∑ℓ−1

κ=0 aκ

∥∥∥2 ⩽ (ℓ− 1)
∑ℓ−1

κ=0 ∥aκ∥2. Substituting (D9) into (D8), we have

E1 ⩽ −
η

2N

N∑
i=1

τ−1∑
ℓ=0

∥∥∥∇Fi

(
w

(t,ℓ)
i , D̂i

)∥∥∥2 +
η

N

N∑
i=1

τ−1∑
ℓ=0

εi + σ̃R

√
(1− γ)

Din
+ σ̃S

√
γ

Din

2

+
η3ρ2τ

N

N∑
i=1

τ−1∑
ℓ=0

(τ − ℓ− 1)
∥∥∥∇Fi

(
w

(t,ℓ)
i

)∥∥∥2 .
(D10)

Next, we can bound E2 as follows:

E2 = E
{∥∥∥w(t+1) −w(t)

∥∥∥2} =
η2

N2
E


∥∥∥∥∥

N∑
i=1

τ−1∑
ℓ=0

∇Fi

(
w

(t,ℓ)
i , D̂i

)∥∥∥∥∥
2


⩽
τη2

N

N∑
i=1

τ−1∑
ℓ=0

E
{∥∥∥∇Fi

(
w

(t,ℓ)
i , D̂i

)∥∥∥2}

⩽
τη2

N

N∑
i=1

τ−1∑
ℓ=0

E
{∥∥∥∇Fi

(
w

(t,ℓ)
i , D̂i

)
−∇F

(
w

(t,ℓ)
i

)∥∥∥2}+
τη2

N

N∑
i=1

τ−1∑
ℓ=0

E
{∥∥∥∇F

(
w

(t,ℓ)
i

)∥∥∥2}

⩽
τη2

N

N∑
i=1

τ−1∑
ℓ=0

εi + σ̃R

√
(1− γ)

Din
+ σ̃S

√
γ

Din

2

+
τη2

N

N∑
i=1

τ−1∑
ℓ=0

E
{∥∥∥∇F

(
w

(t,ℓ)
i

)∥∥∥2} .

(D11)

Substituting (D10) and (D11) into (D6), we have

E
{
F
(
w(t+1)

)
− F

(
w(t)

)}
⩽ −

ητ

2

N∑
i=1

τ−1∑
ℓ=0

εi + σ̃R

√
(1− γ)

Din
+ σ̃S

√
γ

Din

2

−
η

2N

N∑
i=1

τ−1∑
ℓ=0

E
{∥∥∥∇F

(
w

(t,ℓ)
i

)∥∥∥2}+ ητ

N∑
i=1

τ−1∑
ℓ=0

εi + σ̃R

√
(1− γ)

Din
+ σ̃S

√
γ

Din

2

+
η3ρ2τ2

N

N∑
i=1

τ−1∑
ℓ=0

∥∥∥∇Fi

(
w

(t,ℓ)
i

)∥∥∥2

+
ρτ2η2

2

N∑
i=1

τ−1∑
ℓ=0

εi + σ̃R

√
(1− γ)

Din
+ σ̃S

√
γ

Din

2

+
ρτη2

2N

N∑
i=1

τ−1∑
ℓ=0

E
{∥∥∥∇F

(
w

(t,ℓ)
i

)∥∥∥2}

⩽
ητ(1 + ρητ)

2

N∑
i=1

τ−1∑
ℓ=0

εi + σ̃R

√
(1− γ)

Din
+ σ̃S

√
γ

Din

2

+
η(η2ρ2τ2 − 1)

2N

N∑
i=1

τ−1∑
ℓ=0

∥∥∥∇Fi

(
w

(t,ℓ)
i

)∥∥∥2 .

(D12)

Then, summing both sides of (D12) from t = 0 to T − 1 yields,
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Finally, rearranging the terms in (D13), we have
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(D14)

From this theorem, we can have the following remarks.

Remark 2. If the number of training samples is larger, i.e., a larger Din, the convergence bound will be smaller. In other

words, increasing data samples can improve the FL training performance.

Remark 3. We assume the bounded variance caused by real samples is larger than fake ones, i.e., σ̃S ⩾ σ̃R. When the

system adopts more generated samples in the FL training, i.e., a larger γ, the convergence bound will be larger.
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Figure E1 Training loss v.s. Communication rounds with various fake sample ratios. (Left) MNIST Dataset; (Right)

Fashion-MNIST Dataset.

Appendix E Experimental Results

Appendix E.1 Datasets

In our experimental results, we use four benchmark datasets for different ML tasks:

• MNIST and Fashion-MNIST dataset, which both have 70, 000 digit images of size 28×28, are split into 60, 000 training

and 10, 000 test samples;

• CIFAR-10 dataset, which consists of 60, 000 color images in 10 object classes such as deer, airplane, and dog with 6000

images included per class, is split into 50, 000 training and 10, 000 test samples;

• Purchase dataset [4], which has around 32, 000 tabular samples and each sample has 600 attributes, is split into 20, 000

training and 12, 000 test samples.

We consider the data distribution as independent identically distributed (IID), i.e. clients in the FL system possess the

same amount of data from training sets randomly and independently.

Appendix E.2 Parameter and Hardware Settings

We use the multi-layer perceptron (MLP) with 512 neurons in a hidden layer with ReLU unites and softmax for the MNIST

and Purchase dataset, and a convolutional neural network (CNN) consists of three 3× 3 convolutional layers (the first with

64 filters, the second with 128 filters, the third with 256 filters, each followed with 2× 2 max pooling and ReLu activation)

and two fully connected layers (the first with 128 units, the second with 256 units, each followed with ReLu activation),

and a final softmax output layer for the Fashion-MNIST and CIFAR-10 dataset, as the training model to construct the FL

system.

Each client locally computes stochastic gradient descent (SGD) updates on each dataset and then aggregates updates to

train a global model. In addition, we set the total number of clients to M = 50, and in each communication round, 30 of

the 50 clients will be randomly chosen to upload the compressed models. In the experiments, the number of local iterations

is set to 5 with a learning rate of 0.02, and the training ends after 80 communication rounds. To record the average results,

we run 20 times for each experiment. All the experiments are conducted on computers with 11th Gen Inter(R) Core(TM)

i7-1180H @2.30GHZ CPU and NVIDIA GeForce RTX 3070 GPU.

Appendix E.3 Training Loss

In Fig. E1, we provide the training loss of the proposed algorithm under different fake ratios. As can be found in this figure,

the proposed algorithm can converge at a similar rate to the one without fake samples. In addition, a smaller fake ratio (γ)

has a lower training loss, which is consistent with Remark 3 in the main file.

Appendix E.4 Comparisons on the Successful Rate of the Membership Inference Attack

In this subsection, we provide the performance of the membership inference attack with different fake ratios and various

training epochs of the conditional GAN. As can be found in these Table E1 and E2, a larger fake ratio and training epochs

will lead to a better performance to against MIA, and it shows the effectiveness of the proposed algorithm.

We have also conducted experimental results to compare the proposed algorithms and baselines (DP-FL) on four datasets

as shown in Tab. E3. We can see that the proposed algorithms can achieve a higher test accuracy and a success rate of the

membership inference attack compared with baselines in most cases. In addition, we can observe the ratio of fake samples

γ is a key factor to balance the privacy risk and training performance.
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Table E1 Comparisons of the membership inference attack accuracy with various fake ratios and conditional-GAN training

epochs using the MNIST dataset.

Fake ratios Epochs = 10 Epochs = 50 Epochs = 100

γ =0.6 0.5112 0.5103 0.51

γ =0.2 0.5210 0.5192 0.5178

0.0 (No Fake Samples) 0.584 0.584 0.584

Table E2 Comparisons of the membership inference attack accuracy with various fake ratios and conditional-GAN training

epochs the FashionMNIST dataset.

Fake ratios Epochs = 100 Epochs = 200 Epochs = 400

γ =0.6 0.528 0.5162 0.5152

γ =0.2 0.5364 0.5284 0.5238

0.0 (No Fake Samples) 0.613 0.613 0.613

Table E3 Comparisons of test accuracy and precision of the membership inference attack (the left is the MIA successful

rate and the right is the test accuracy).

Dataset No Privacy DP-FL (ϵ = 4) DP-GenFL (γ = 1.0) DP-GenFL (γ = 0.6) DP-GenFL (γ = 0.2)

MNIST 0.584/0.977 0.533/0.934 0.510/0.501 0.515/0.947 0.519/0.962

Fashion-MNIST 0.613/0.826 0.543/0.769 0.510/0.550 0.518/0.750 0.533/0.789

CIFAR-10 0.668/0.553 0.543/0.350 0.512/0.212 0.548/0.506 0.551/0.545

Purchase 0.680/0.602 0.550/0.281 0.506/0.200 0.549/0.478 0.598/0.534

Appendix E.5 Related Works

In order to further preserve clients’ privacy in FL, many works focus on information stealing or data perturbation to explore

possible risks and privacy gains. Via GAN techniques, a designed attack generates prototypical samples of the targeted

training set that was meant to be private in the collaborative deep learning framework [12]. Further, the work in [13]

leveraged generative adversarial networks (GANs) to affect the learning process by unloading injected model parameters

and striving to reconstruct the private data of users by learning hidden features from shared local model parameters. The

work in [14] proposed a personalized FL method based on GANs that allows each client to design its own model to participate

in FL independently relying on combined datasets (both its local dataset and the generated dataset from other clients).

We can note that clients in FL can generate other clients’ training samples by uploading some crafted local updates, which

brings in additive privacy risks.

Other works aim to prevent clients’ privacy from stealing by leveraging differentially private data publication tech-

niques and differentially private GANs. As one of the most popular privacy-preserving data collection mechanisms, local

differential privacy (LDP), perturbs each user’s data locally and only sends the noisy version of her information to the ag-

gregator [15–17]. The work in [18] proposed efficient multi-dimensional joint distribution estimation algorithms with LDP

and then developed a local differentially private high-dimensional data publication algorithm (LoPub) by generating an

approximation of the original crowdsourced data based on this distribution estimation technique. The work in [19] studied

the utility difference between uploading differentially private GANs (data generator) and differentially privately trained

models (analytical algorithms) and then found that the latter is superior to the former in terms of data utility, at the cost

of the flexibility in choosing arbitrary analytical algorithms.

We can observe that image data is too sensitive, in which some private features are easy to recognize via generated data

based on differentially private GANs. However, existing local differentially private data publication techniques are more

suitable for tabular data instead of image data, which limits its application. In addition, it is also an unexplored area to

train FL models by synthesizing data using GAN techniques for image data.
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