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At present, an increasing number of researchers have no-

ticed the importance of optimal consensus control (OCC) of

multiagent systems (MASs) because of their rich practical

applications in various areas [1–4]. To accomplish OCC, a

common method is to solve the coupled Hamilton-Jacobi-

Bellman (HJB) equation, which barely obtains the analyti-

cal solution and requires the complete mathematical model

of an MAS. Because of the limitations in solving the HJB

equation, we need to find more effective methods for over-

coming these challenges. Fortunately, adaptive dynamic

programming (ADP) is an efficacious way to address dis-

tributed control problems. Therefore, we focus on solving

an OCC problem of an MAS with unknown dynamics by

combining ADP approaches and the reinforcement learning

(RL) method. We design a novel policy iteration-based ADP

(PI-ADP) method called the β-PI algorithm, in which we

can learn the distributed optimal control policies (OCPs)

by relying only on the agent’s and its neighbors’ state in-

formation rather than an accurate mathematical model. In

addition, the β-PI algorithm fully uses current iterative con-

trol policies to expedite convergence during training.

We research the OCC problem of a homogeneous DT-

MAS, which includesN follower agents and one leader agent.

Each follower agent’s dynamics is given as

xp(i+1) = Axp(i) +Bpup(i), p = 1, 2, . . . , N − 1, N, (1)

where xp(i) ∈ R
n and up(i) ∈ R

mp represent each fol-

lower agent’s state and the control input, respectively. Both

A ∈ R
(n×n) and Bp ∈ R

(n×mp) are system matrices that

are considered unknown.

The leader with dynamics is given as

x0(i + 1) = Ax0(i), (2)

where x0(i) ∈ R
n is the leader’s state.

Then, we write the neighbor tracking error for agent p by

its state and the neighbors’ state information as follows:

errp(i) =
∑

q∈Ωp

apq(xp(i)− xq(i)) + bp(xp(i) − x0(i)), (3)

where Ωp denotes the set of neighbors of agent p, bp > 0 rep-

resents the relationship between a follower and the leader

agent, bp > 0 means that agent p can obtain the leader

agent’s state directly, and bp = 0 means otherwise.

The global tracking error is given in Appendix A.1, and

from (1), (2), and (3), we obtain the dynamics of tracking

error errp, which are described in the following equation:

errp(i+ 1) = Aerrp(i)−
∑

q∈Ωp

(apqBquq(i))

+ (dpp + bp)Bpup(i). (4)

In addition, we also consider the OCC of a grouped,

heterogeneous DT-MAS, in which the N follower agents

are divided into two groups, g1 and g2. The follower

agents have the same dynamics when they belong to the

same group; otherwise, their dynamics differ. The dynam-

ics of each follower agent can be depicted as xp(i + 1) =

Agsxp(i) + Bpup(i), Ags ∈ {Ag1, Ag2}, and the dynamics

of the leader agent is identical to that in (2). The system

matrix A differs from the matrices Ag1 and Ag2. We give

the local tracking error errp(i) as (3), similar to the ho-

mogeneous case. However, errp(i + 1) cannot be written

in an iterative form similar to that of (4) because it con-

tains follower agents with different dynamics, but it can be

given by function (3) when letting T = i + 1, errp(T ) =∑
q∈Ωp

apq(xp(T ) − xq(T )) + bp(xp(T ) − x0(T )), where T

is the time step; that is, we can obtain the dynamics of the

tracking errors regardless of whether the dynamics of the

agents are homogeneous or heterogeneous.
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Remark 1. We consider two groups of followers as a

whole system; i.e., the communication topology of all fol-

lower agents constitutes a directed graph.

Assumption 1. The directed graph of the MAS commu-

nication network includes a spanning tree.

We can define the same performance index functions

(PIFs) [4] for both homogeneous and grouped heterogeneous

DT-MASs because the local tracking error definitions are

identical. As a result, we rewrite the time step i as D and

define the PIF for each follower agent as follows:

Qp(errp(D), up(D), uΩp
(D))

=
∞∑

t=D

θt−Dgp(errp(D), up(D), uΩp
(D)),

(5)

where gp(errp(D), up(D), uΩp
(D)) = errTp (D)Ppperrp(D) +

uT
p (D)Sppup(D) +

∑
q∈Ωp

uT
q (D)Rpquq(D) represents the

evaluation function, uΩp
(D) signifies a set of control poli-

cies, {uq(D)|q ∈ Ωp}, θ ∈ (0, 1] represents the discount fac-

tor of the PIF equation, and Ppp, Spp, and Rpq are pos-

itive definite symmetric weighting matrices, where Ppp >

0, Spp > 0, Rpq > 0.

Definition 1 (Admissible control [5]). The admissible

control policies up(D) can stabilize system (4) and guar-

antee that PIF (5) is finite.

Presenting the admissible control polices up(D) for fol-

lowers, Eq. (5) can be rewritten as Qp(errp(D)) =

gp(errp(D), up(D), uΩp
(D)) + θQp(errp(D + 1)).

Then, we define Q∗
p(errp(D)) = minup(D) Qp(errp(D),

up(D), uΩp
(D)) as the optimal performance index func-

tion (OPIF). From the Bellman-Optimality principle, Q∗
p

satisfies the DT-HJB equation as follows: Q∗
p(errp(D)) =

minup(D){gp(errp(D), up(D), uΩp
(D))+θQ∗

p(errp(D+1))}.

Remark 2. The final target of our research is to obtain

the distributed OCP u∗
p(i), which can minimize the PIF.

We present a β-PI algorithm to obtain the iterative policies

and iterative PIFs for solving the OCC problem of a DT-

MAS with unknown dynamics. Let Ql
p(errp(D)) and ul

p(D)

represent the iterative PIF and iterative control policy, re-

spectively, which are optimized with an iteration index l that

increases in real time. We define βl
p as the parameter β for

the pth agent with index l; then, the algorithm is given as

the Algorithm 1 in Appendix A.2.

Theorem 1 (Convergence of the β-PI algorithm). For

any p and l, the iterative control policy ul
p(D) and it-

erative PIF Ql
p(errp(D)) are computed using Algorithm

1, where the initial control policies u0
p(D) are admissible.

The parameter βl
p is computed using Algorithm 1. When

l → ∞, Ql
p(errp(D)) can converge to the OPIF Q∗

p(errp(D))

and ul
p(D) can converge to the OCP u∗

p(D), which means

that liml→∞ Ql
p(errp(D)) = Q∗

p(errp(D)), liml→∞ ul
p(D) =

u∗
p(D). The complete proof is in Appendix B.2.

Theorem 2 (Stability analysis). Assume that Assump-

tion 1 holds. If the OPIF Q∗
p(errp(D)) meets the DT-HJB

equation and the OCP u∗
p(D) satisfies the definition, then

the tracking error system of (4) must be asymptotically sta-

ble. The complete proof is in Appendix B.3.

Then, we implement the β-PI algorithm by training the

neural networks (NNs). We use two different three-layer

back propagation (BP) NNs (the function is in Appendix C)

as the actor NN and critic NN to compute the iterative PIF

Ql
p(errp(D)) and the iterative control policy ul

p(D).

The critic NN is used to compute the iterative PIF

Ql
p(errp(D)). It is given as Q̂p(D) = ŴT

cpΦcp(Y T
cpzcp(D)).

Then, we give the critic NN training BP error as σcp(D) =

gp(D−1)+θŴT
cpΦcp(Y T

cpzcp(D))−ŴT
cpΦcp(Y T

cpzcp(D−1)).

For training the critic NN, we define the loss func-

tion as Ecp(D) = 1
2
σT
cp(D)σcp(D), and we update the

weight matrix of the NN by solving gradient descending

of the loss function Ecp(D), i.e., Ŵcp(l + 1) = Ŵcp(l) −

lrcp
∂Ecp(D)

∂σcp(D)

∂σcp(D)

∂Ŵcp(l)
, where lrcp represents the updating

step size of the critic NN.

The actor NN is used to compute the iterative con-

trol policies ul
p(D), and it is described as ûp(D) =

ŴT
apΦap(Y T

apzap(D)). We set σap(D) as the BP NN error of

the actor NN and σap(D) = Q̂p(D) − Up(D), where Up(D)

is the final objective cost function and is usually set to zero;

i.e., σap(D) = Q̂p(D).

The loss function of the training actor NN is defined

as Eap(D) = 1
2
σT
ap(D)σap(D). We update Ŵap(l + 1) by

Ŵap(l+1) = Ŵap(l)−lrap
∂Eap(D)

∂σap(D)

∂σap(D)

∂Q̂p(D)

∂Q̂p(D)

∂ûp(D)

∂ûp(D)

∂Ŵap(l)
,

where lrap is the learning rate of the actor NN.

Remark 3. By approximating the value of the iterative

PIF Ql
p(errp(D)) by Q̂p(D) and the iterative control poli-

cies ul
p(D) by ûp(D), the OCP u∗

p(D) can be obtained by

the β-policy iteration algorithm; that is, the OCC problem

is resolved by only using the error information between itself

and its neighbors’ states.

Remark 4. It is important to obtain the admissible con-

trol policies in the β-PI algorithm initialization phase, i.e., to

find the admissible control policies u0
p(D). A viable method

for approximating the admissible policies is to repeat ex-

periments by training the actor NN until the initial control

policy is found to stabilize the errp(i+ 1) or errp(T ).

Simulation. We provide two experiments to demonstrate

the abovementioned theoretical analyses. The results show

that the proposed algorithm can not only solve the OCC

problem but also improve the speed of convergence and re-

duce fluctuation compared with traditional algorithms. The

figures of the two experiments’ results are shown in Ap-

pendix C.3.

Supporting information Appendixes A–C. The support-
ing information is available online at info.scichina.com and link.
springer.com. The supporting materials are published as sub-
mitted, without typesetting or editing. The responsibility for
scientific accuracy and content remains entirely with the au-
thors.
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