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Appendix A Preliminaries and problem formulation

In this section, we first present symbols used in our calculations. All transfer function matrices that are proper, stable, and rational
are represented as RHo,. For any matrix A, vector u, and complex number z, the complex conjugate is denoted by A™, v and
Z, respectively. Furthermore, the transposes of A and u are represented by AT and 7, respectively. Open and closed unit discs
are represented by D := {z € C : |z] < 1} and D := {z € C : |z| < 1}, respectively, and the complement of the closed unit disc is
denoted by D¢ := {z € C : |z| > 1}. We define 8D := {z € C : |z| = 1} as a unit circle. The notations ||-|| . and ||-||, represent the
Frobenius norm and the Euclidean vector norm, respectively. In particular, we have |G||% := tr(G® G). The Hilbert space L2 is
defined as

Lo = {F(z) : F(z) is measurable in 9D, ||[F(z), := (% /::r HF(EW)HidG)l/? < oo} .
Furthermore, an inner product defined in L2 is represented by
(F,G) = % /_: tr(FH (°)GH (£79))df.
Hy(D) and Hi (D) are subspaces of Lo and contain analytic functions in D and D¢, defined as follows:

. 1 ™ ) 1/2
H5(D) := {F(z) : F(z) analytic in D", ||F(2)||, := (si;; o HF(T&JG)HzF d0> < oo} s

and

1 -rr 2 1/2
H} (D) = {F(z) : F(2) analytic in D, ||F(2)]|, : (S?f = Hp(reﬂ)“F da> < oo} .
s ™

For any F' € Hy and G € H3-, we have (F,G) = 0. If the transfer function matrix G(z) is right-invertible and F(z) € RHu, the
coprime factorization of (1 — a)G(z)F(z) can be given by
(1 - )G(x)F(2) = N(zx)M ™' (2) = M~ (2)N(2), (A1)

where N(z), M(z), M(z), N(z) € RHoo, and satisty the double Bezout equation

X -Y M Y
- =1, (A2)
—2 "N M z7"TN X

with X,Y, X,V € RH.,. The all-pass factorization of N(z) and M(z) be given by N(z) = L(2) Ny (2), and M(z) = B(z) M, (2),
where N,,(z) and M,,(z) are the associated minimum phase part, respectively. L(z) represent all-pass factor which can be
constructed as

Nz 1—3; z—s; H
L(z) = [[ Li(2), Li(2) = ;i
=1

U, UH, A3
1—s;1—5;z U (43)

i=
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Figure A1 Networked control systems with multiple constraints.

where 7; is the direction vector of the nonminimum phase zero z;, which satisfies the relation nmf + U; UiH = I with the matrix
U;. In the same way, N(z) = N, (2)L(z), here the factorization of L(z) can still be of the form (2).
Similarly, M(z) can be factorized as M (z) = My, (z)B(z), where M, (z) € RHo, and

Np
B(z) = [ Bi(2), Bi(2) = — 2wl + W, Wi,

i=1

@; is the direction vector corresponding to the unstable pole p;, where L:J“:J{i + W¢V~[/iH = I. For real diagonal matrix W, ]\7[(z)W
can be factorized as

M(2)W = M (2)B(2), (A4)
where M,,(z) € RHo, and
Np
Z — Pi H H
B(z) = [[ B;(2), B,(2) = ﬁwiwi +w,w, (A5)
i=1 i
1
where w; is the unitary vector, and w; = W, W, is the matrix that satisfies wiwfl + WiWiH = I. In addition, define
o i i

Lluw) = 1270
c0s £(u, ) = Turey
Then, by invoking the Youla parametrization given in [1], in order to stabilize G(z), each two-degree-of-freedom (TDOF)

compensator [K1Ks] can be

so Z(u,v) is a directional angle between unit vector v and unit vector v.

Ki={K:K=[K Kz =(X-2""RN)'[Q V- RI} (A6)

where Q, R € RHo.

In this letter, we study the NCSs as shown in Fig. 1, where G(z) represents the controlled plant. A(z) and A~!(z) stand for
encoder and decoder, respectively. Bandwidth can be modeled by a low-pass Butterworth filters of order 1 with transfer function
matrix F(z). Q(z) in Fig. 1 is used to model the uniform quantizer, which means s = v + ¢, where ¢ is the quantization error and

T
represented by ¢(k) = {ql (k) - qm(k)] , the quantization error in each channel is independent and evenly distributed in the
interval { —A;/2 A;/2 ], and we define A = %diag(Al, --+,A,,). 7T is network-induced delay, d, indicates packet dropouts, be

described as:

dy (k) = 0, when packet dropouts occurs at time k, (A7)
" 1, when no packet dropouts occurs at time k.

The probability of packet dropouts is p{d, (k) =1} =1 — «, and p{d, (k) = 0} = «, and the signals r, n, ¢, v and y represent the
reference input, AWGN, quantization error, controller output ,and system output, respectively, the Z-transformed signals are 7, 7,
q, @ and g, respectively. We assume that these signals are independent of each other.

Appendix B Proof
For the NCSs as shown in Fig. 1, we can get

@ = K17 + Kodrz™ " (R4 §), (B1)
§ = GAT'(§+ FAa) = GA™'§ + GFa. (B2)

Thus § = T4 7 + Ted+ Tsn, é =7 — § = (I — T1)# — To§ — Ty, where

T, = (I -2 "d,GFK>) 'GFK,,
Ty = (I — 2 "d,GFK3) 'GA™!,
Ts = (I — 2 "d.GFK3) '27"d,.GFKj.

Form (A1), (A2), and (A6), we can obtain:

T, = (I -2 "d.GFK,) 'GFK,
= GF(I — 27 "K2d,.GF) 'K,
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liNMfl[Ifz**(Xfz*’RN)*l(YfRM)M*N]*l(X7z*TRN)*1Q
—
1 . .
= NM™Y(X =27 "RN)"'M
l1—«a
1
= NQ (B3)
11—«

"X —2""RN)'Q

We can calculate T2 and T3 in a manner similar to the calculation of T;7. It then follows that

1 - .

T = ——N(X - 2 TRN)F'ATY, (B4)
—

T3 = z "N(Y — RM). (B5)

Then the optlmal tracking performance can be further expressed as

o B _ s s ms2 . ~ ~ -
J = Iérelffc(l e)E{H(I T)7 — Taq Td”“g}+I§%€C5E{HT17"+T2Q+TJWH2 F}
2
V1—e(I—-T
= inf =Tyl 4 ins IT2Al2 +  inf  |[[TsW|2 — eT (B6)
QERHoo VETY RERHoo RERHoo

2

Form (B3), (B4), (5B), and (B6), we can obtain

2
VIl - N 1 N . 2
J* = inf sU==sNQ |l H N(X — 2 "RN)F'A~'A
QERHo \/E—l_laNQ RERH || 1 — 2
~ ~ 2
+ inf Hz**N(YfRM)WH —eT,
RERH 2
where U = diag(ar, - cm), W = diag(n, -~ 7m).

The problem studied in this letter can be expressed as J* = Iéréf;c J(Q,R,e) 2 J; + J5 + J; — eI, where

* VI—e(I- 2N
Jl _ 1}%2 E( . I—a Q) U , (B7)
Qe oo \/EliaNQ ,
* 1 & i1 414 ||
Jy = inf N(X —2z TRN)F A" A|| , (B8)
RERH ||1 — a 5
* . U . 2
Ty = pnt ||z NV — RM)WH2 . (B9)
We first compute Jy, which is given by the all-pass factorization
Vi—e(I - 2-LN,,
Ji= inf e e Do,
QERHoo \/EHLNHLQ 2
and since L is the all-pass factor, we can obtain:
1 1 2
V1—e(L™" — N,
Ji= inf &( T @yl (B10)
QERHoo Vera Nm@ 2
we define
N _
Si(s; — 1
v =1Ja(s1), g9(ss) = 7itig)’fhmﬂ + U U (B11)
i=1 o

From (B10) and (B11), it follows that

VI—eL™ =Y+ — 2 NwQ)

J; = _inf ull ,
QERHoo VEL NWQ ,
conspicuously,
VI—e(L7t - T—c(p — ——N,,
( 111) c H;, (w 11— Q) c Hg.

0 VETEZ Nm@Q

Furthermore, we can obtain

0 QERHoo EﬁNmQ

[W—e(Ll—w}U: . [W—e(w—llazvm@ o
2

2



Jiang Xiaowei, et al. Sci China Inf Sci 4

To facilitate the calculation of J°, we define

J*_H vieet-w ] T . VI=E($ — 2= NQ)
11 —

Ul , Jip = inf T-a Uyl ,
0 2 QERTee \/EﬁNmQ 2
so we have J; = J;; + J;5. By a direct calculation, we can obtain
* _ 2
T = |[vi=EaTt o) v
Nz i 2
= (=93 [T lstn-0P | [ = 9ts0)] U]
i=1h=1
i 2
a 1—s; 1—|si)? H
= (1- _ —_— ;U
O3 TT loten -t | L= L ls
i=1h=1 2
A (L—s)(1—s)(1— s = s> / 1
=(1- : ! : . , - U’
(1=¢) z; (I—5)(1—3;) <z—57', z—sJ>H|g(sh Sl
i,j=1 :

and using Cauchy’s integral theorem, we can obtain

1 ! dz 1
z—s; z—s;/  2mjJop (1 —%:2)(z —s;) Sis;—1
Thus we have

N — 54 — s, — |s; — s
=0 2:: . 1)(71 sz)(Jl)(jSJ)l(sllsz(il Ll H lg(sn—1)l Zal cos” Z(ni, e1).

=1

where e; represents the unit vector with its [—th element being 1. Next, we calculate Ji,.

2

mQ | U|
2

« X V1—ey —/1—c
Jis = inf +
QERH 0 Ve 1-a

we introduce an inner-outer factorization

—/1—€

NG l—«

Nm=A;A,,

where A, € RHo, and A; € RH, represent an outer matrix and an inner matrix, respectively. Furthermore, we define

AT(-2)

Y= AT (<)

)

thus, QH (e7¥)Q(e™%) = I, we then have

2
V1— —V1— 1
T = dnt [ S € ——N.Q | U
€ 0 —
oo Ve .
1-— V1-—
= it (AT [V s a4 (- AT )
QERH 0 0
2
2 2
Vv1-— V1—
= ||(1 = ;A7) ool ¢ AT S NS 7
0 QERH 0
2 2
2
V1o
it follows that o 111212 A’ir ¥ +A,Q | U|| can be made arbitrarily small by choosing appropriate Q € RHo,. By a
€RHoo 0
2

direct calculation, we can obtain
Ny m
2 2
Ji=e(l—=e)> |si|* DY af cos (Lni, er).
i=1 =1
Next, we calculate JJ.

J; = inf ||N(X—z TRN)F™ A*1A||
RERHOO (1_
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= it [N XF AT A TN RN E AT
RERHOO (1—-«) 2

N
Next, NF"'A7'A is decomposed as NF~'A7'A = N,,(2)E(z), E(z) ia an allpass factor formed as Z(z) = H 2i(2), Bi(z) =
% f:;_z H 4 U,v , where glc + v; U = I and Nm is the minimum phase part.
* : 1 G-l -1 —r o =2
Jp = inf s [Na XFTTATIA = 2T N RN E
RERHx (1 — ) 2
N | SN XFlAa"iAE"t NmRNm||2
RERHoo (1 — a)? 2
N 2
= i i(s-)’N (s:)X (si)F ' (s:)A " (ss)AH;Z; "G + R1 — N, RN,
RERHOO (1 _ a)z =~ K m 7 k2 k2 k2 ’L‘—’ 1 m m
‘= 2
2
. 1 - -1 =1 _ g1 S
= Relggm T ar ;(5 5:)X (8:)F ' (s:) A7 (8:)AH, (5] E; (00))Gi + Ry — Npy RNy ||,
2

N H i—1 H N, _
where H; = ( I 5;”@)) Gy = (1‘[ E;H(si)> ,and R1,Rs € RHoo, R1 = Ra — 3, (8:) " N (8:) X (s:)F 1 (s:) A7 (1) A
h=1

h=i4+1 i=1
Nz ~ .
H;E; " (00)Gl. Since_zl (51)" N (5:)X (s:)F 1 (s:) A7 (8)AH; (E; ' — E; ' (0))G; € Hy, In particular, Rz — Ny RNy, € Ha can
be rendered valid by choosing the appropriate controller parameter R € RH,, then we have

2

Nz
= e [ 3 (507 M) R () P (s AT () A (3 — 517 (00)) G
(1—a) |

+Rele’-Ioo (1 —_ HR2 - mRNmHz’

2
and |R2 — Ny RN, H = 0 can be rendered valid by choosing a suitable controller parameter R € RH., thus
2

. 1
Relgfioo (1—a)? )

Na 2
Iy = (1_%)2 D (50) Nun(s) X () F~H (s) A7 (s) AH (27 — 2771 (00)) G
i=1 2
_ 1 %(17&)( m) (5097 Now (1) X (55) P~ (1) A~ (s:) AHsci ™ G ’
(17(1)2 = (1—35;) (2—8:) ) g ) ,

1 s; — 1)(1 —s;)(|si|* — 1)(1 — |s;]?
_ 22( )( ) (sl )@ —1s517)

1-a)*, = (5: = 1)(5; — 1)(5;s85 — 1)

xsi (s)THITAA™ T (s:) P~ (5:) X T ()N (50)(55)" N (s5) X (55)F 1 (s;) A~ (s;)AH 56, GG i

From the double Bezout equation MX — 2~ " NY = I, and N(s;) = 0, thus we have X(s;) = M ~'(s;), so J5 can be expressed as

= = Z si — 11— s5)(Isal® = (1 — |s;]%)

52 (5: —1)(55 — 1)(8is; — 1)

mf(a)’Hi AATT () P (si) M~ (s:) N (53) (55)7 Now (s) M~ (s5)F 1 (s5) A7 (s5) AH 565 G5 G i

This completes the calculation of J. Next, we calculate J;. From the double Bezout equation: 2 "TNYWB™'=_wB~ !+ Rs,
where R3 € RH,, thus we can obtain:

Iz

2
inf H-WJT1 + Ry — z**NRMmH
RERHo 2

2
= inf HWf(Rgfz_TNRMm)B”z

RERH oo
— et { W - BRbeon |2+ [wERLeorBr) ) - B (o]

S+ HWB;V;(oo) By N(oo) (B - B;l(oo))Hz 4 Hwe — Ry + 2 "NRM,,

)

NE
Np . Np .

where 0 = 11;11 BNP+14(°°) ERIRCENE! +prJrlfl)wNerl,leerlfl).

Notably, (B;1 — B;l(oo)) € H2L (j = 1,---,Np), and an appropriate controller parameter R can be found to ensure that
WO — R3(z) + 2z~ " NRM,, € H is satisfied. Hence, we define J; = J3; + J3,, where

iy = |[wBRk - BREeo|[ + | wBRE (o BRL - BR:_i (o))
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o+ [ WBRL (o) -+ By (o) (BT = B (o))
Tia = gl [ W= Ra T RML

By a direct calculation, we can obtain

2

. 2 2 2 _ -
i = o = o 00— 0 oo
Np—1 2
2 _ H
+-+ (el =) | W H (I_(1+pr-{-l—k)wNp‘Fl*kwNp«#lfk)wl
k=1 )
Np 2 2
=> (|PNp+l—i -1 “WCNPJrl*i 5
i=1
wNP 1= 1,
where (N, 41— = i—1 B )
? (ZI:I1 (I = (14 PNy 1-D)WNp+1-1WN 41 1))&Npt1—i =2, , Np.

T

Next, we calculate J3,. Because 277 is the all-pass factor, we have

T = pap |5 OV0 — Re) 4 N RM |
N, 2
= Reiggm ; (s:)"E;L; "T;(W6 — R3(si)) + Ra 4+ Ny RM,,
N 2 2
= pant Zj (s0)7Bi(Ly ' = Ly ' (00)Te(W8 — Rs(5:)) + Rs + N RMp, A

N, H i—1 H
where Ry, Rs € RHoo, and E; = I L;H(s,;) , Ty = T1 L;H(si)
h=i+1 h=1

The appropriate R € RHoo can be found to satisfy Rs+ N, RM,,, € Ha. Note that (s;)" E; (L] " 7L;1(oo))Ti(W97R3(si)) € Hi,
thus we have

2
N
I = Zl (5)"Ba(Li " = Ly (o) Ti(WO = Ra(s0))|| +  inf, [R5 + N RMom |3 -
= 2

Note that an appropriate R can be chosen such that = 111_‘,12 IRs + N RM,y, ||2 = 0, then we have
€ RHoo

N 2
T3y = |30 () Ei(L7 Y = L (00)Ti(WO — Rs(s:))||
i=1 5

we can calculate J3, in a manner similar to the calculation of J3. It then follows that

& (1= s)(1—s;)(1 = |s:|>)(A = |s,]?)
5= (1 =5)(1—5;)(is; — 1)

xni ()" B (s5)" Bynyn] TyW (0 — B~ (s;))(0 — B~ (s:) T WT .

*
J3p =

i i

This completes the proof.

Appendix C Illustrative example

This section discusses an illustrative example, to apply leader-follower systems [2], to verify the accuracy of the conclusions derived
in Theorems 1. For a given MIMO plant with the following transfer function matrix

1
0
G(z) = Z+0.2

z—k
(2+0.2)(z—3)

It is obvious that G(z) has a nonminimum phase zero z = k (|k| > 1), the input zero direction and output zero direction of the
NMP zero are both n = (0,1)%, and an unstable pole p = 3, it is polar direction is w = (0,1)7. In addition, assume

1 0 23 0
A(z) = | 708 P = T
0 z+10 2 0 z-’:;L

Assume U = diag(1,2), W =1, e = %, I'=27=06, u=0.5,qg= %, and select
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Figure C1 Tracking performance J* under the influence of different quantization interval A € {A1, A2, Az} and k € (1, +00).
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Figure C2 Tracking performance J* under packet-dropouts o € [0,0.8] and time delay 7 € [0, 4].
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We mainly discuss the influence of quantization error on the tracking performance in Fig. C1 and the influence of packet dropouts
and time delay on the tracking performance in Fig. C2.

In Fig. C1, it is evident that quantization error affects the tracking performance of NCSs, and the power spectral density(PSD)
of the quantization error is negatively correlated with the tracking performance of the systems. In other words, the larger the
PSD of the quantization error, the worse the tracking performance of the systems. We also noted that the tracking performance
of the systems deteriorates dramatically when the zeros and poles of the plant are sufficiently close. In the actual design of NCSs,
such proximity should be avoided. A similar conclusion can be drawn from Fig. C2, and the packet dropouts and time delay in
communication channels will significantly affect the optimal tracking performance of the systems. The packet dropouts and time
delay are negatively correlated with the tracking performance of the systems; the larger the packet dropouts probability and time
delay, the worse the tracking performance.

In [3], the authors present detailed applications of theoretical results to a tracking problem, in which an inverted pendulum
system mounted on a motor-driven cart is considered. We assumed that the pendulum moved only in the vertical plane.
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