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Abstract Recent advances in developing beyond von Neumann architectures have moved the memristive

devices to the forefront as one of the key enablers to realizing memristive computing-in-memory (mCIM)

structures, which shows a great promise to boost the energy-efficiency and the performance of artificial intel-

ligence (AI) chips. In this study, by considering the interactions between devices, circuits, and systems in the

mCIM design, we propose several cross-layer design techniques, including (1) the BL-SL interactive forming

protection (BSIFP) circuit that can reduce the voltage drop on the selected transistor, suppress the current

overshoot by 65.96%, and improve the bit-cell density by more than 10.19%, (2) the clamping transistor

trimming scheme (CTTS) to prevent the multiply-and-accumulate (MAC) signal margin degradation from

chip-to-chip resistance variations, and (3) dynamic input-parallelism and output-precision (DIPOP) that

can reduce the energy cost by 22.92% in a typical inference task with negligible accuracy loss. The results

demonstrate the significant role of the cross-layer-interactive approach and provide a preliminary guideline

for highly-efficient mCIM design.
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1 Introduction

In the relentless pursuit of high performance and low power computation, the energy and latency con-
sumed by the data transferring between the processor and memory have been proven as a major bottleneck
in von Neumann architectures [1]. The concerns on this issue have been further intensified by the rapid
development of artificial intelligence (AI) technology [2, 3]. Although it has excelled at a broad range of
recognition and classification tasks associated with images, speeches, and objects [4], AI model sizes have
been increasing exponentially over the years [5, 6]. Consequently, the memory access and data move-
ment required to process these models tend to substantially increase, which poses a critical challenge to
designing efficient AI chips considering the von Neumann bottleneck.

Emerging nonvolatile memories (NVMs), such as resistive random-access memory (RRAM), phase
change memory (PCM), and magnetic random-access memory (MRAM), have aroused extensive attention
to boost the performance of next-generation AI chips [7–10]. Because of their non-volatility, high density,
low power, and high speed, emerging NVMs are already being intensively studied as the embedded
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Figure 1 (Color online) Conceptual views of (a) von Neumann DNN processors, (b) mCIM-based DNN processors, and (c) mCIM

macro structures.

NVMs in AI accelerators to achieve on-chip parameters accommodation [11, 12]. These advantages also
make emerging NVMs become ideal technological platforms to build mCIM chips. Among different
types of emerging NVMs, RRAM features good compatibility with advanced complementary metal oxide
semiconductor (CMOS) technology, low extra integration cost, small latency, low operational voltage,
and moderate resistance-ratio (R-ratio), which is attractive to developing embedded mCIM-based AI
accelerators [13–24].

Figure 1(a) conceptually shows a typical deep neural network (DNN) processor based on the von
Neumann architecture. It comprises a large array of processing elements (PEs) to execute arithmetic and
logic operations in parallel, on-chip static random access memory (SRAM) to cache the input, output
and weight data, off-chip dynamic random access memory (DRAM) to accommodate all weight data as
well as the intermediate data, and the host as the control and interface of the system. Its performance
is considerably bottlenecked by the memory accessing because (1) the weight data need to be fetched
from the off-chip DRAM, and (2) large amounts of intermediate data generated in DNN processing need
to be repeatedly written and read from the off-chip DRAM. As a result, the energy efficiency and the
throughput of DNN processors tend to be limited by the energy and latency caused by cross-memory-
hierarchy data movement.

On the other hand, the memristive computing-in-memory structure demonstrates great promise to
bypass the von Neumann bottleneck [25–27]. Figure 1(b) conceptually shows the structure of mCIM-
based DNN processors. It is composed of multiple mCIM macros as multiply-and-accumulate (MAC)
engines, a small PE to process other algorithmic operations beyond MACs, the SRAM buffer and the
host. The mCIM architecture can boost the efficiency of AI processors in several aspects. Firstly, mCIM
macro can perform highly energy-efficient and paralleled analog MAC operations. Secondly, all of weight
data can be possibly accommodated in the mCIM macros, hence the off-chip weight data fetching can
be potentially eliminated. Thirdly, intermediate data that are produced during DNN processing can be
effectively reduced. Particularly, the partial-sum results can be directly summed inside/near the mCIM
macros. Figure 1(c) further shows the typical structure of mCIM macro, including one-transistor-one-
resistor (1T1R) cell array, word-line (WL) driver, column multiplexer (YMUX), write driver, readout
circuit and the control (CTRL) logics. In the computing mode, the activation data are input by applying
voltage on WL (VWL) and the weight data (w) are pre-stored in the cell array. Consequently, the MAC
results can be readout from the data-line (DL), which can be either the bit-line (BL) or the source-line
(SL) of the cell array. Notice that RRAM-based mCIMs can already fully accommodate many tiny AI
models on-chip at present [28]. In order to process large AI models, large-scale mCIM systems composing
multiple mCIM chips can be developed by using advanced integration technologies, such as 2.5D and 3D
integration [29].



An J J, et al. Sci China Inf Sci August 2023 Vol. 66 182404:3

SL 

BL

RRAM

WL

TiN

TMO

TiN

TE

BE

1T1R bias table

(a) (b)

(c)(d)

C
u
rr

en
t 

(µ
A

)

103

100

10−1

101

102

SET

RESET

10−2

0−1−2 3−3 1 2 4

Forming

Applied voltage (V)

Forming SET RESET Read

WL V
WL_Forming

V
WL_SET

V
WL_RESET

V
WL_READ

BL V
Forming

V
SET 0 V

READ

SL 0 0 V
RESET 0

RRAM RRAM
TE

BE BE

Figure 2 (Color online) (a) 1T1R bit-cell structure; (b) RRAM cell structure and cross-sectional views of the fabricated RRAM

cells using the 180 nm CMOS process (TE and BE represent top and bottom electrodes); (c) typical bipolar resistive switching I-V

curves, including the forming, set, and reset processes; (d) the biasing conditions for different operations.

Although the potential advantages of RRAM-based mCIMs have been demonstrated by many pioneer
works, however, RRAM-based mCIMs are still facing several critical challenges, such as device non-
idealities, small signal margins, limited parallelism, and readout precision. At the device level, the
large voltage and overshoot current in the forming process hinder the scaling down of the accessing
transistor [30]. At the circuit level, the signal margin (SM) in the MAC mode is much smaller than that
in the memory mode, hence necessitating dedicated circuitry to optimize the SM of MAC signals [19]. At
the system level, the widely existing sparsity in both the input and weight data can degrade the efficiency
of the conventional full-precision readout schemes [24]. These challenges have necessitated a cross-layer
design approach from device to system. In this study, we propose several interactive design techniques,
including (1) BL-SL interactive forming protection (BSIFP) to improve bit-cell density and suppress
over-shoot current, (2) CTTS to fine-tune MAC SM depending upon cell resistance, and (3) dynamic
input-parallelism and output-precision (DIPOP) to boost the energy-efficiency as well as the throughput
for DNN processing. The results demonstrate the significant role of the cross-layer-interactive approach
as well as provide a preliminary guideline for highly-efficient mCIM design. The rest of this paper is
organized as below. In Section 2, we present the proposed techniques by the co-designed device, circuit,
and system. In Section 3, the performance of the proposed schemes is evaluated. Section 4 concludes
this paper.

2 Proposed device-circuit-system interactive design techniques

2.1 Typical RRAM characteristics and BL-SL interactive forming protection scheme

Figure 2(a) shows the structure of a typical 1T1R RRAM bit-cell with transition-metal-oxide (TMO)
based RRAM cell. The RRAM cell has a metal-insulator-metal sandwiched structure as shown in Fig-
ure 2(b), which can easily be integrated between the metal layers by the back-end-of-line (BEOL) process
with high density. Figure 2(c) shows its typical resistive switching I-V curves. The forming process
is first performed to activate the cell by applying VWL Forming and VForming to the word line (WL) and
the bit line (BL), respectively. Then, the cell resistance can be reversibly switched by the reset and
set process. The reset process can be done by applying VWL RESET and VRESET to the WL and SL,
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Figure 3 (Color online) Comparison between different forming schemes with different current compliance methods, including

using (a) IO selector devices, (b) an additional IO current mirror, and (c) the proposed BL-SL interactive forming protection

(BSIFP) scheme.

respectively. Similarly, the set process is carried out by applying VWL SET and VSET to the WL and BL,
respectively. In the read process, the access transistor is activated by VWL READ and VREAD is applied
to the WL and BL, respectively. The biasing conditions for forming, set, reset, and read are summarized
in Figure 2(d). It is noteworthy that VForming is usually much larger than VSET or VRESET. Hence, high
voltage transistors for input and output (IO) are required in the 1T1R cells to tolerate the large VForming,
which hinders the scaling down of the accessing transistor and limits the bit-cell density [31]. Besides,
the large capacitive surge currents in the forming process may lead to a large overshoot current, which
degrades cell reliability [32]. Therefore, it is necessary to introduce forming protection schemes to protect
the bit-cells from large voltage drops and high overshoot currents during the forming process.

Figure 3 comparatively shows three types of forming schemes, including using the IO selectors [33],
an additional current mirror [34, 35], and the proposed BSIFP schemes. In the IO selectors scheme
(Figure 3(a)), the cell currents in the forming process are limited by controlling the gate voltage of the
IO selectors. Although it can strictly limit the cell current, the selector devices suffer from a large voltage
drop after switching the cells to the low resistive state (LRS), which rules out the possibility of using the
area-efficient core transistors as the selectors. On the other hand, in the current mirror (CM) scheme
(Figure 3(b)), the current compliance is achieved by controlling the reference current (IREF) of the CM
composed by the IO devices (PM1 and PM2), which reduce the voltage drop on the 1T1R bit-cell after the
forming process. As a result, it is possible to use core devices as selectors. However, a remaining problem
is because of the capacitive surging current between BL and SL, cell current overshoot can happen and
incur reliability problems. To deal with the challenge, we proposed the BSIFP scheme (Figure 3(c)). In
the forming operation, while the SL of the selected bit-cell is connected to an IO CM (NM1 and NM2)
for current compliance, the BL of the cell is connected to VForming through an IO transistor (PM1) whose
gate is connected to SL. Once the forming process is finished, the increasing SL voltage partially turns
off the PM1, which helps to stabilize the cell currents and suppress the current overshoot.

2.2 Typical MAC behavior and clamping transistor trimming scheme

One of typical MAC circuits used in the voltage-mode mCIM macros [22,24] is shown in Figure 4(a). The
conventional voltage clamper uses a signal transistor with a fixed size. Depending upon the WL input
data pattern and the stored weight data pattern, the MAC results can be readout from the data-line (DL)
voltage. The input/weight data encoding methods are summarized in Figure 4(e). Figure 4(b) shows a
typical computing cycle, and the SL is charged to 0.6 V. The BL is pre-charged to 0.2 V by VPRE. The
gate voltage of the clamping transistor (VCLP) is set to 0.8 V. Then, the WLs are activated according to
the input data patterns. Consequently, the DL voltage, corresponding to different MAC values (MACV),
is determined by the voltage division between the parallel-connected RRAM cells with activated WLs
and the clamping transistor. Then, the MACV results can be readout by the multi-level voltage-type
sense amplifier (ML-VSA).



An J J, et al. Sci China Inf Sci August 2023 Vol. 66 182404:5

0 1 2 3 4 5 6 7 8 9 10
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

B
L

 v
o
lt

ag
e 

V
B

L
 (

V
)

Number of activated WLs N
WL

MACV 1

MACV 2

MACV 3
MACV 4

MACV 5
MACV 6

MACV 7
MACV 8

Signal margins (V
SM

) of MACV 1

MACV 9R
LRS

: 10 kΩ

R-ratio: 10

0 1 2 3 4 5 6 7 8 9 10
0.004

0.3

Number of activated WLs N
WL

S
ig

n
al

 m
ar

g
in

 V
S

M
 (

V
)

R
LRS

: 10 kΩ

R-ratio: 10

V
SM,MAX

 of MACV 1 

MACV 1

MACV 2

MACV 3

MACV 4

MACV 5

MACV 6
MACV 7

MACV 8

ΔV
SM

(c)

(d)

Input/weight data encoding methods.

(a) SL[m] BL[m]

WL[i]

WL[j]

WL[k]

SL[n] BL[n]

In
p
u
t 

d
ri

v
er

s

YMUX

CTTS:
clamping transistor 
trimming scheme

Readout

DL[n]

ML-VSA
3bitSAEN

DOUT[2:0]

V
PRE

Readout

Clamp 

Scheme

V
CLP V

PR

CTTS

DL[m]

V
PR

V
PRE

V
CLP

ML-VSA
3bit

V
REF

V
REF

SAEN

DOUT[2:0]

(b)

Readout

V
PRE

SL

BL

WL

SAEN

DOUT [2] [1] [0]

0 1

Input (WL) GND VDD

Weight (MC) HRS LRS

Conventional
voltage-mode
readout circuit

(e)

Figure 4 (Color online) (a) Typical mCIM macros with voltage-mode readout circuitry using conventional and proposed CTTS
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number of activated WLs (NWL) corresponding to different MACVs; (d) the read signal margin (VSM) of different MACVs; (e) the

input and weight data encoding methods.

The typical distribution of the MAC signals, in the case of 9 parallel WL inputs, is evaluated based
on typical foundry RRAM properties. The BL voltage corresponding to different MACVs as a function
of the number of activated WLs (NWL) is shown in Figure 4(c). The read signal margin (VSM) of a given
MACV can be defined as its voltage difference from the neighboring one. The VSM is also dependent
on the data pattern (Figure 4(d)). The maximum VSM (VSM,MAX) of an MACV can be observed when
no spare high resistance state (HRS) cells are activated and it decreases with increasing activated HRS
cells. The results indicate that to differentiate the MAC signals and improve input parallelism, it is
of particular importance to optimize VSM,MAX. In order to achieve optimal VSM,MAX, we propose the
clamping transistor trimming scheme (CTTS), in which multiple clamping transistors are used in the
voltage clamper. By adjusting the number of clamping transistors (NCLP), it is capable to fine-tune
VSM,MAX according to the cell resistances. Further details will be discussed in Section 3.

2.3 The weight mapping and dynamic input parallelism and output precision scheme

Figure 5(a) shows a typical DNN model, consisting of multi-layer convolution (CNN) and fully connected
neural network (FCNN). Here, while the CNN layer can extract feature maps of the input data through
a high-level abstraction, the FCNN layer can classify the features into different categories. In a CNN
layer, a convolution operation between the input and the kernel (or filter) weights is performed first, and
then the output is given after pooling and activation. The mapping method of the weight data of the
convolutional layer is shown in Figure 5(b). The weight data in a k × k convolution kernel are unrolled
and mapped to k2 cells in the same column. Notice that mapping different kernels corresponding to
the same output channel into the same mCIM macro can reduce the data movement between different
macros. On the other hand, in an FCNN layer, the output is given by the weighted sum of the input data
after activation. Figure 5(c) shows the mapping method of the weights of the FCNN layer. The weight
data corresponding to different input neurons and the same output neuron are mapped into the same
column. If the number of input neurons is larger than the number of rows of the cell array, the weight
data can be mapped to different columns and selected by the column multiplexer (MUX) in different
clock (CLK) cycles.

Based on the above weight data mapping scheme, we have further proposed the dynamic input paral-
lelism and output precision (DIPOP) DNN accelerating scheme. In a compute-in-memory (CIM) macro
with binary weight and input, the relationship between the input parallelism (NIN) and read readout
precision (bO) can be given by bO = log2(NIN + 1). Conventionally, fixed NIN and bO are used for
both CNN and FCNN processing (Figure 6(a)). However, because of the commonly existing sparsity in
both input and weight data, the number of practically appeared MACVs is usually much smaller than
log2(NIN + 1), which degrades the utilizing efficiency of the macros. In the proposed DIPOP scheme, we
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dynamically set the readout precision and input parallelism for CNN and FCNN processing (Figure 6(b)).
In a typical computing cycle for CNN processing, NIN equals k × k for kernel-order computing, and we
use a reduced bO (b′O), which is smaller than log2 (NIN + 1), to avoid redundant analog quantization
process for energy saving. In a typical cycle for FCNN, we use a boosted NIN (N ′

IN), which is larger than
(2bO − 1), to fully utilize the implemented readout circuit. By leveraging the DIPOP scheme, the CIM
macros can process DNN with reduced energy cost and improved throughput with a negligible accuracy
loss.
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Figure 7 (Color online) Comparisons on the voltage drop on the selectors (VSEL), the voltage drops on the RRAM cell (VRRAM),

and the current passed through the RRAM cell (ICELL) before and after the forming process in different forming schemes, including

(a) the IO selector devices, (b) an additional IO current mirror, and (c) the proposed BSIFP scheme.

3 Results and discussion

3.1 The impact of the BSIFP scheme

In Figure 7, we compare the voltage drop on the RRAM cells (VRRAM) as well as the selected transistors
(VSEL) and the cell currents in the forming process using different forming protection and current com-
pliance schemes, including (a) the IO selectors, (b) the CM, and (c) the proposed BSIFP circuits. We
use the properties of typical TMO RRAM cells for the simulations, which have a cell resistance (RCELL)
of 10 MΩ at the fresh state and 10 kΩ at LRS and can be formed by applying 3.8 V for 100 ns. The
array size is 1024× 1024 with a parasitic capacitance of 1 pF on each BL and SL. The forming process
is carried out with a target compliance current of 100 µA.

In the IO selector forming scheme (Figure 7(a)), the VWL of the selector is set to 1.35 V to limit the cell
current. It can be seen that although the IO selector device can strictly limit the cell current, it incurs
large VSEL after forming and results in difficulties to scale down the IO transistor. Figure 7(b) shows the
case of using an additional IO CM made by IO devices in the write drivers for forming, which limit the
current by applying a reference current (IREF) of 100 µA. After the forming process, VRRAM and VSEL

can be effectively reduced because there is a considerable voltage drop on the IO device in the CM. The
final VSEL can be lower than 0.5 V, which makes using core logic devices as the selectors become possible.
However, it suffers from an overshoot current of up to 158.44 µA at the moment of resistive switching and
requires a relatively long time about 67 ns for stabilizing the cell current because of the capacitive surge
current induced by the BL (CBL) and SL capacitance (CSL). The large overshoot current can result in
the irreversible hard breakdown of the cell [32]. In the proposed BSIFP circuit (Figure 7(c)), the current
compliance is also realized by applying an IREF of 100 µA. Before the forming process is finished, the SL
voltage is low and PM1 is fully activated to pass the VForming without lowering VRRAM. After switching
to the LRS, the SL voltage rise and hence partially turn off PM1, which helps to stabilize the cell current.
Because of the BSIFP scheme, cell current overshoot can be avoided while maintaining low VSEL after
forming.

By lowering the VRRAM and suppressing the overshoot current in the forming process, the BSIFP
circuit makes it possible to use the core logic device as the selector. Figure 8(a) compares the layout
of 180 nm 400 Kb mCIM macros using IO selectors and core selectors with BSIFP. It shows that by
using the BSIFP scheme, the area of cell array can be reduced by 13.54% and that of the whole macro
can be reduced by 10.19%. Furthermore, considering the difference in area between IO and core devices
continually increases as technology node evolves, the impact of the BSIFP scheme tends to increase at the
advanced technology nodes. We have further evaluated its impact based on the foundry process develop
kits (PDKs), as shown in Figure 8(b). The BSIFP can potentially lead to a 51.53% reduction of mCIM
macro sizes at the 14 nm technology nodes.

3.2 Analysis of MAC signal margins and the CTTS

As previously discussed, optimizing the MAC signal margin is of particular importance for mCIM. Con-
sidering the circuit shown in Figure 4(a) and the voltage division relationship between the RRAM cells
and the clamping transistor. The maximum MAC signal margin (VSM,MAX) of a given MACV can be
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(b)

Figure 9 (Color online) Maximum VSM as a function of MACVs with (a) different LRS resistances (RLRS) and (b) different

numbers of the clamping transistors (NCLP). The symbols show the SPICE simulation results and the dash lines show the fitted

results given by the empirical equations.

given by

VSM,MAX = α
∆MACV

MACV(∆MACV +MACV)
RLRSNCLP, (1)

where α is the fitting parameter, ∆MACV is the space between the neighboring MACV, and NCLP is the
number of fingers of the clapping transistor. It indicates that the MAC signal margin can be optimized
by increasing either the cell resistance or the width of the clamping transistor. The derived relationship
is verified by fitting (1) with the SPICE simulated signal margins, as shown in Figure 9. It can be seen
that VSM,MAX nearly quadratically decreases with increasing MACV and are proportional to RLRS and
NCLP. Considering the differences between cell resistance in mass production, the average RLRS can be
different from chip to chip. By trimming the strength of the clamping transistor at the macro level, the
CTTS can effectively optimize the signal margins.

3.3 Performance evaluations of the DIPOP scheme

To evaluate the performance of DIPOP at the system level, we perform a case study using a binary
LENET model for MNIST digits classification. Figure 10(a) shows the distribution of MAC values for
CNN processing using mCIM macros. Here, we choose NIN = 9 to process the 3 × 3 kernel in a signal
mCIM cycle. It can be seen that because of the sparsity in both the input and weight data, most of
MACVs are less than 4 (97.3% in C1 and 99.3% in C2). Although the full readout precision is 4-bit,
a readout precision of 2-bit can be sufficient to differentiate most of MACVs in practice. Figure 10(b)
further shows the distribution of MACs for FCNN layers processing using mCIM macros with NIN ranging
from 9 to 90. It shows that even in the case of NIN = 36, most of MACVs are less than 8 (99.9% in FC1
and 96.6% in FC2), which indicates that an output precision of 3-bit would be sufficient.
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Figure 10 (Color online) (a) Distribution of MAC values for CNN layers processing with NIN = 9. Here, C1 and C2 refer to the

first and second CNN layers, respectively. (b) Distribution of MAC values for FCNN layers processing with NIN = 9, 18, 36, and

90. Here, FC1 and FC2 refer to the first and second FCNN layers, respectively.
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Table 1 Comparison between different DNN processing schemes using mCIMs with different input parallelism and output precision

Baseline Lower precision of CNN (A) Larger parallelism of FCNN (B) DIPOP (C)

Input Output Input Output Input Output Input Output

parallelism precision parallelism precision parallelism precision parallelism precision

C1 9 3 9 2 9 3 9 2

C2 9 3 9 2 9 3 9 2

FC1 9 3 9 3 36 3 36 3

FC2 9 3 9 3 36 3 36 3

Inference accuracy (%) 98.82 98.78 98.65 98.63

Different implantations of input parallelism and output precisions are summarized in Table 1. Com-
pared to the baseline conditions with full precision readout, reducing the output precision to 2-bit for
CNN processing and increasing the input parallelism to 36 for FCNN processing result in a negligible
accuracy loss of 0.19%. The power consumption and throughput of the mCIMs can considerably benefit
from reducing the output precision and increasing the input parallelism. Particularly, reducing the out-
put precision can effectively reduce the power and latency consumed for the analog-to-digital convention
(ADC) process. Besides, improving the input parallelism can reduce the number of computing cycles
required for an inference task. It not only reduces the runtime for the task, but also reduces the total
number of analog readouts. Figure 11 compares the energy required for a single inference under different
strategies. It can be seen that by using the DIPOP scheme, the energy for CNN and FCNN processing
can be reduced by 23.00% and 22.50%, respectively, and the energy for an inference task can be reduced
by 22.92%. Besides, by improving NIN from 9 to 36 in FCNN layers, the throughput for the FCNN
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process can be improved by 4 times.

4 Conclusion

In this study, we have provided a cross-layer perspective on mCIM design from devices, and circuits to
the system. On this basis, we first proposed the BSIFP scheme, which can reduce the voltage drop on
the selector devices and suppress the overshoot current by 65.96% in the forming process. A case study
on a 180 nm 400 kb CIM macro design shows the BSIFP can shrink the macro size by 10.19%. Then, we
propose the CTTS to prevent the MAC signal margin degradation from chip-to-chip resistance variations
in mass production. Lastly, we proposed the DIPOP scheme to boost the performance of mCIM macro
leveraging the sparsity in DNN models. A case study shows it can reduce the energy cost by 22.92%
in a typical inference task with negligible accuracy loss. The results reveal that the cross-layer design
methodology can play an important role in future design and optimizing the performance, accuracy, and
energy efficiency of mCIM-based AI accelerators.
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