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Appendix A Leaky integrate-and-fire (LIF) neuron

The leaky integrate-and-fire (LIF) neuron based on the memristive device of Ag/Ta2O5:Ag/Pt is shown in Figure A1. The values

of R1, R2 and C are 1 kΩ , 20 Ω and 0.1 µF, respectively. When the voltages applied on the memristive device exceed its threshold

voltage, the memristive device switches from the high resistance state (HRS) to the low resistance state (LRS); when the voltages

applied on the memristive device is lower than the hold voltage, the memristive device switches from the LRS to the HRS. In the

simulation, the threshold voltage follows a normal distribution with a mean value of 0.3 V and a standard deviation of 0.003 V; the

hold voltage follows a normal distribution with a mean value of 0.24 V with a standard deviation of 0.005 V. The HRS and LRS

of the device are 1012 Ω and 102 Ω, respectively.

Figure A1 LIF neuron based on the memristive device of Ag/Ta2O5:Ag/Pt.

The LIF neuron model can be described as:

R1C
d(V2(RM + R2))

dt
= ViR2 − V2(RM + R1 + R2), (A1)

Vo =

 1, V2 > Vth

0, V2 ⩽ Vth

, (A2)

where Vi, V1, V2 and Vo are the sampling voltage of input, node 1, node 2 and output, respectively.

Appendix B Implementation of the STDP learning rule

Several simple components such as multiplexers (MUXs), timers and basic computing units are needed to realize the STDP learning

rule, as shown in Figure B1. Three timers and a MUX are responsible for recording 3 different firing activities. When the input and

output neurons fire simultaneously, the MUX receives a control signal “11”, and then a pulse is applied on the timer 1 to increase

its value. Similarly, when only an input neuron or an output neuron fires, the MUX receives control signals of “10” or “01”, and

then a pulse is applied on the timer 2 or the timer 3 to add their values. Therefore, after inputting samples, the values of the timers

are ∆W11, ∆W10 and ∆W01. Afterwards, the computing units add the values of ∆W11, ∆W10 and ∆W01 to calculate the update

strides of each synapse.
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Figure B1 Implementation of the STDP learning rule.

Appendix C Artificial neural network

A fully connected artificial neural network (ANN) is implemented by TensorFlow 2.2, which is commonly used to build ANNs. The

structure of the ANN is similar to that of the SNN in the manuscript; both networks are trained by a small dataset (200 samples

from the MNIST dataset). In the forward propagation, the training image is expanded into a vector X. The prediction vector Y

is obtained by the vector-matrix multiplication (VMM) operation:

Y = WX + b, (C1)

where W is the weight matrix and b is the bias. Then, a softmax function is used as the activation function of the neurons to

calculate the probability corresponding to different possible outputs:

ypred(i) =
eY (i)

T∑
k=1

eY (k)

, (C2)

where Y (i) is the i-th element of Y , and T is the number of elements of the vector Y . ypred(i) is the i-th predicted result. The

loss is calculated following a categorical cross-entropy:

loss =
1

n

n∑
i=1

ytrue(i) ×
(
− ln(ypred(i) + 10

−7
)
)
, (C3)

where ytrue(i) and ypred(i) are the label value and the predicted value of the i-th sample, respectively, n is the sample number.

After the forward propagation, a standard gradient-based optimization method, Adam, is used to minimize the cost function and

train the output network.

Appendix D Training SNN without the network verification

Upon eliminating the network verification during training, there is a decline in both the learning rate and the capacity of SNNs to

suppress various types of sample noises. Figure D1 shows the conductance updating of the memristive devices in the synaptic array

when training the SNN without the network verification. When comparing with Figure 3(C), it is clear from the images that the

weights of the features learned in the synaptic array have significantly lower values. The network has the problem of under-learning

the sample features, and the network is under-fitting. Furthermore, it can be seen that the synaptic array displays increasingly

dispersed features with higher noisy gray values, which may lead to erroneous classification.
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Figure D1 Conductance updating of the memristive devices in the synaptic array when training the SNN without the network

verification.

Appendix E Asymmetric ratio and number of conductance states of a memristive device
The asymmetric ratio (AR) of a memristive device is described by Eq. (E1):

AR =
max |Gp(n) − Gd(n)|

GH − GL

, (E1)

where Gp(n) is the device conductance after applying the n-th positive spike on it, Gd(n) is the device conductance after applying

the n-th negative spike on it; GH and GL are the maximum and minimum device conductance, respectively. AR ranges from 0

to 1, describing the relative size of the window between LTP and LTD curves, as shown in Figure E1. A large AR means that

the window between the LTP and LTD curves is large, which causes an uneven weight updating during the training period. For

example, when the device is at a low conductance state, a positive spike causes a conductance change larger than that at a high

conductance state. The large and uneven update stride reduces the classification accuracy of SNNs. When AR approaches 0, the

window between the two curves disappears, and the device is identical to an ideal device.

Because the device conductance drifts in the subsequent SET and RESET cycles, some close conductance states are unable to

be distinguished. Therefore, conductance states that fluctuate within a specific range (0.23% of the conductance variation range)

are combined into one stable conductance state.

Figure E1 Asymmetric ratio of memristive device.

Appendix F Performances of SNNs when trained with 3000 samples
Figure F1 shows the classification accuracy of the SNNs based on the three different devices trained with 3000 samples. The classifi-

cation accuracy is improved when the number of samples is increased to 3000. In particular, the SNN based on the Pd/W/WO3/Pd
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device achieves a classification accuracy of 80.03%. The highest classification accuracy of the SNNs based on the other two devices

are 75.27% and 69.42%, respectively.

Figure F1 Classification accuracy of the SNNs based on the three different devices trained with 3000 samples.

Appendix G Modelling the device Pd/W/WO3/Pd

The switching of the memristive device Pd/W/WO3/Pd is based on the modulation of the filament width [1]. When a forming

voltage is applied on the device, mobile ions or ionic defects (primarily oxygen vacancies) migrate and aggregate to generate

filaments. As the conductance of the filaments is higher than that of the matrix material, the conductance of the device increases

with the forming of filaments. Keeping applying SET spikes, oxygen vacancies continually migrate and aggregate to thicken the

filaments, thus the conductance of the device increases, which is defined to be the long-term potentiation (LTP). When a RESET

spike is applied on the device, oxygen vacancies migrate and diffuse away from the filaments to the matrix, thinning the filaments

and reducing the device conductance, which is defined to be the long-term depression (LTD). The device characteristics can be

described by the following equations:

I = (1 − w)α[1 − e
−βV

] + wγ, (G1)

dw

dt
= λ sinh(ηV ) −

w

τ
, (G2)

where Eq. (G1) is the I-V equation including the Schottky term (first term) and the tunnel term (second term). The two

conduction channels are parallel, and their relative weights are determined by the internal state variable w; w = 0 means fully

Schottky-dominated conduction, and the device is at the low conductance state; w = 1 means fully Tunnel-dominated conduction,

and the device is at the high conductance state. α, β, γ, τ and η are all positive parameters. Eqs. (G1) and (G2) are simplified to:

G = ae
− t

τ + b, (G3)

where G is the conductance of the memristive device Pd/W/WO3/Pd, a, b and τ are parameters to be fitted. The electrical property

of the device Pd/W/WO3/Pd is shown in Figure G1. The simulation parameters of Eq. (G3) are listed in Table G1.

Table G1 Simulation parameters for the device Pd/W/WO3/Pd

a(µS) τ(µs) b(µS)

LTP -87.67 4.03 157.75

LTD 68.40 6.15 75.68
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Figure G1 Measured and simulated electrical conductance of the device Pd/W/WO3/Pd.
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