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Abstract Transfer learning (TL) has been widely used in electroencep halogram (EEG)-based brain-
computer interfaces (BCIs) for reducing calibration e�ort s. However, backdoor attacks could be introduced
through TL. In such attacks, an attacker embeds a backdoor wi th a speci�c pattern into the machine learning
model. As a result, the model will misclassify a test sample w ith the backdoor trigger into a prespeci�ed
class while still maintaining good performance on benign sa mples. Accordingly, this study explores backdoor
attacks in the TL of EEG-based BCIs, where source-domain dat a are poisoned by a backdoor trigger and then
used in TL. We propose several active poisoning approaches t o select source-domain samples, which are most
e�ective in embedding the backdoor pattern, to improve the a ttack success rate and e�ciency. Experiments
on four EEG datasets and three deep learning models demonstr ate the e�ectiveness of the approaches. To
our knowledge, this is the �rst study about backdoor attacks on TL models in EEG-based BCIs. It exposes
a serious security risk in BCIs, which should be immediately addressed.
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1 Introduction

A brain-computer interface (BCI) uses human brain signals to directly interact with the computer [ 1].
Electroencephalogram (EEG), which records electrical activities on the scalp of the brain, is the most
widely used input signal in BCIs, due to its low cost and convenience [2]. Common paradigms of EEG-
based BCIs include motor imagery (MI) [3], P300 evoked potentials [4], and steady-state visual evoked
potentials (SSVEPs) [5].

An EEG-based BCI system usually consists of three parts: signal acquisition [6{ 8], signal analysis, and
control action [9]. The signal analysis module is responsible for understanding the brain's intentions based
on the collected brain signals. It generally includes signal processing [10], feature extraction [11,12], and
pattern recognition [13]. The latter two can be integrated into a single neural network if deep learning is
used.

A major challenge in EEG signal analysis is that di�erent subjects, or even the same subject in di�erent
sessions or tasks, have di�erent neural responses to the same stimulus [14]. Therefore, it is di�cult to
build a generic model in EEG-based BCIs for di�erent subjects, sessions or tasks [15]. In real-world
applications, a calibration session is usually needed for anew subject to collect enough labeled data to
tune model parameters [14].

The calibration process in EEG-based BCIs is usually time-consuming and user-unfriendly, which
greatly a�ects its real-world applications. Transfer learning (TL) [ 16] uses acquired data/knowledge
in one or more source domains to improve the learning performance in a target domain, and hence
it can be used to solve the above-mentioned problem. Speci�cally, in EEG-based BCIs, TL reduces
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the di�erence between a new subject/session/task (target domain) and existing subjects/sessions/tasks
(source domains) to reduce or even completely eliminate thecalibration needed for the target domain [15].
Many researchers have applied TL to EEG-based BCIs and achieved promising results [17{ 19]. In this
study, we mainly consider cross-subject TL1) .

Most existing BCI studies focused on improving their accuracy, but ignored their security. Recent
studies have shown that EEG-based BCI systems are vulnerable to evasion attacks [20{ 22] and backdoor
attacks [23, 24]. In a backdoor attack [25], an attacker embeds a backdoor with a speci�c pattern into
the machine learning model. For backdoor attacks in TL, the attacker can poison source-domain data
to insert a backdoor. The resulting infected model will misclassify a test sample with a backdoor trigger
into a prespeci�ed class while still maintaining good performance on benign samples. Backdoor injection
usually happens in the training phase when third-party data or models are used. In cross-subject TL,
EEG data in the source domains are the main focus of the attacker, because he/she can o�er such data
for public downloading, but it is very di�cult to notice or de tect such backdoors. These backdoors
would bring a critical security risk to the target subject, a s pointed out in our previous research [20]:
\EEG-based BCIs could be used to control wheelchairs or exoskeletons for the disabled, where adversarial
attacks could make the wheelchair or exoskeleton malfunction. The consequence could range from merely
user confusion and frustration, to signi�cantly reducing t he user's quality of life, and even to hurting the
user by driving him/her into danger on purpose".

This study considers a new attack scenario in EEG-based BCI systems, in which a crafted trigger is
added to the source data to create a dangerous backdoor in theTL model. A sample with the trigger
(attacked sample) from a new subject will activate the backdoor and be classi�ed into the target class2) .
At the same time, the benign samples will be normally classi�ed.

Figure 1 illustrates the idea of using data alignment-based unsupervised TL. Assume that the data of
multiple source-domain subjects are obtained from a third party, some EEG samples in them have been
inserted with a trigger (e.g., a narrow period pulse (NPP) orother types), and their labels are modi�ed to
the target class. An innocent user aligns the EEG data in the target domain with those in the poisoned
source domains and then uses them together in TL for traininga target domain model, completing the
backdoor injection. In the test phase, the infected model will classify benign EEG samples in the target
domain into its correct class, but it will misclassify those with the trigger into the target class speci�ed
by the attacker.

To improve the attack e�ciency and stealthiness, we proposeseveral active poisoning (AP) strategies
to select samples in the source domains that are most bene�cial to poison, including maximum diver-
sity sampling (MDS), representativeness and diversity sampling (RDS), minimum uncertainty sampling
(MUS), minimum model change sampling (MMCS), and their combinations. Experiments on four EEG
datasets and three convolutional neural network (CNN) models validated that TL in EEG-based BCIs is
vulnerable to backdoor attacks, and our proposed AP strategies can improve the attack success rate and
stealthiness.

In summary, we make the following contributions.
(1) Although TL is extensively used in EEG-based BCIs to reduce their calibration e�ort, its security

has not been investigated in the literature. This is the �rst study to show that backdoor attacks could
be performed on TL models in BCIs.

(2) We propose several AP strategies to optimally select source-domain samples to poison, making
backdoor attacks e�cient and stealthy.

(3) We show that backdoor attacks on TL models in EEG-based BCIs can achieve great success on
four EEG datasets and three CNN models, even in very challenging scenarios, such as �ne-tuning and
data augmentation. We also verify that the AP strategies can greatly improve the attack success rate
compared to traditional backdoor attacks under the same poisoning rate in di�erent scenarios.

The rest of the paper is structured as follows. Section2 introduces related works on adversarial
attacks in BCIs, TL, and active learning (AL). Section 3 proposes our backdoor attack scheme to TL in
EEG-based BCIs and several AP strategies. Section4 evaluates the attack performance of our proposed
approach. Finally, Section 5 draws conclusions.

1) Cross-subject transfer and cross-session transfer are e ssentially the same in TL. They are common in research and pra ctice.
Cross-task TL, where the label spaces of the source and targe t domains are di�erent, is di�cult and rarely studied in EEG- based
BCIs. To our knowledge, only one work [ 19] has considered cross-task TL in EEG-based BCIs so far.

2) Target class or target label refers to the attacker-speci �ed class in backdoor attacks, which is di�erent from the con cept of
the target domain in TL.
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Figure 1 Illustration of backdoor attacks in TL-based BCIs. Circles and triangles represent EEG samples from di�erent classes.
The red solid circle indicates the trigger speci�ed by the at tacker. In the training phase, the trigger is inserted into s ome source-
domain samples to inject the backdoor, and their labels are m odi�ed to an attacker-speci�ed class. Then, data alignment is used
to make the data distributions from the source and target dom ains consistent. Finally, the target model is trained on the poisoned
and aligned source-domain data. In the test phase, the class i�cation of the benign samples is una�ected, but the attacke d samples
(with the backdoor trigger added) will be classi�ed into the target class.

2 Related work

This section brie
y reviews related works on adversarial attacks in BCIs, TL, and AL.

2.1 Adversarial attacks in BCIs

Recent studies have shown that machine learning models are vulnerable to adversarial attacks, posing
great security risks. There are two main types of adversarial attacks: evasion attacks and poison attacks.
Evasion attacks fool a machine learning model by adding imperceptible perturbations to a test sample.
Poison attacks inject deliberately designed poisoned samples into the training set to manipulate the
performance of a machine learning model. Backdoor attacks [25] are among the most dangerous poison
attacks, where a secret backdoor is created in the model thatallows the input sample with the backdoor
trigger to be classi�ed into a target class speci�ed by the attacker.

Many adversarial attacks have been reported in image classi�cation [ 26], speech recognition [27], and
autonomous driving [28]. In recent years, there have also been multiple studies on adversarial attacks in
EEG-based BCIs. Zhang and Wu [20] were the �rst to point out the existence of adversarial examples
in EEG-based BCIs and performed white-box, gray-box, and black-box attacks on three popular CNN
models in BCIs. Zhang et al. [22] showed that a tiny perturbation added to the EEG trial can mi slead
P300 and SSVEP spellers (which use traditional feature extraction and machine learning approaches) to
output any character that the attacker wants. Meanwhile, Li u et al. [21] proposed universal adversarial
perturbations for CNN classi�ers in EEG-based BCIs. Both studies explicitly considered the causality
in attacks. Recently, Bian et al. [24] successfully attacked SSVEP-based BCIs using square-wave signals
that are easy to generate and practically realizable.

All the above attacks on EEG-based BCIs are evasion attacks.Meng et al. [23] were the �rst to study
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poison attacks in BCIs. They designed an NPP trigger for poisoning training data to embed a secret
backdoor into the classi�er. As a result, any test sample with the trigger will be misclassi�ed into the
target class. This study is di�erent from [ 23] in the following ways.

(1) We consider a more practical TL scenario for backdoor attacks, where the poisoned source data
could be provided for public downloading, and a benign user uses it to train a target model with an
embedded backdoor. We also consider more challenging �ne-tuning, data augmentation, and cross-task
TL scenarios.

(2) We propose several AP strategies for selecting poisonedsamples, which can further improve the
attack e�ciency as compared with random selection in tradit ional backdoor attacks in various scenarios.

(3) In addition to the NPP trigger proposed in [ 23], we investigated other types of noise triggers and
veri�ed their e�ectiveness in AP attacks.

2.2 Adversarial attacks to TL

Some researchers have studied adversarial attacks on TL models. Rezaei and Liu [29] implemented an
evasion attack in re-training-based TL, in which the attacker does not need any information about the
target model, except the publicly available pre-trained model, to generate adversarial examples which can
be classi�ed into any target category speci�ed by the attacker. Wang et al. [30] also proposed an evasion
attack approach in re-training-based TL. They generated adversarial examples on a pre-trained model by
minimizing the distance between the hidden-layer representations of the pre-trained model and the target
model. Wang et al. [31] proposed a backdoor attack approach based on three commonly used backdoor
attack defense approaches in re-training-based TL, by modifying the parameters of the pre-trained model
to generate a robust backdoor that is di�cult to defend again st. Kurita et al. [ 32] also implemented
backdoor attacks by modifying the parameters of the pre-trained model.

In summary, most attacks on TL so far were for re-training-based TL, and implemented by modifying
the model parameters. Additionally, none of them considered EEG-based BCIs. To our knowledge, we
are the �rst to perform backdoor attacks by modifying the source-domain data, rather than the model.
Also, we are the �rst to study backdoor attacks to TL models in EEG-based BCIs.

2.3 AL

AL [ 33] is an e�ective approach to reduce the data labeling e�orts, by optimally selecting the most
useful instances to label. Many AL strategies, e.g., uncertainty sampling [34], expected model change
maximization [35], and RDS [36] have been proposed.

In the traditional data poisoning process of backdoor attacks, the trigger is placed in a number of clean
samples which are randomly chosen from a training data set, enabling the model to learn a backdoor
pattern. Section 3 introduces several AP strategies to expedite backdoor learning. Di�erent from the
typical idea of AL that the selected samples are given to an oracle for labeling, in AP the selected samples
are labeled into the target class, regardless of their true class.

3 AP for backdoor attacks to TL in BCIs

This section introduces the attack scenario in TL-based BCIs, the backdoor trigger, and our proposed
AP strategies for poisoned sample selection.

3.1 Attack scenario

This work aims to attack the TL model in BCIs. Assume that the a ttacker can poison the source-domain
data, which is possible in practice. For example, the attacker can collect some benign EEG data, add
poisoned samples, and then o�er them for downloading. In downloading such data, the user usually needs
to �ll out a form to indicate his/her a�liation, so the attack ers know who is using the poisoned data.

We assume a data alignment based o�ine TL is used in EEG-basedBCIs. Assume also there areS
source subjects, and thes-th source subject hasNs labeled EEG samplesf (X n

s ; yn
s )gN s

n =1 , where X n
s 2

RC � T is the n-th EEG sample andyn
s the corresponding label, in whichC is the number of EEG channels

and T the number of time domain samples. For binary classi�cation, the label for X n
s is yn

s 2 f 0; 1g. The
target subject has N t unlabeled samplesf X n

t gN t
n =1 .
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The attacker selectsP non-target samples (i.e., Class 0) from the data of the source subjects randomly
or using an AP strategy described below, adds the crafted trigger x � to each channel of them, and
changes their labels to the target class (i.e., Class 1) to obtain the poisoned samples (eX p

s ; 1)Ps
p=0 , where

P1 + P2 + � � � + PS = P. Once the poisoned-source data are used in TL, the backdoor is automatically
inserted.

For a new subject, the attacker injects the same backdoor trigger as in the source domain into the
EEG sample of the target domain. Then, the samples with the backdoor trigger will be classi�ed into
the target class speci�ed by the attacker, and all benign samples will be classi�ed normally. In practice,
using a simple, periodic and phase-independent trigger is more realizable for attacking an online BCI
system.

3.2 Trigger design

We apply the NPP trigger proposed by Meng et al. [23] in our backdoor attacks, because it is easy to
implement and practically feasible, e.g., NPP as a type of common interference noise can be injected into
EEG signals during data acquisition.

A continuous NPP can be determined by an amplitudea, a period T, a phase� , and a duty cycle d,
i.e.,

Nc(t) =

8
><

>:

0; nT 6 t < nT + �;

a; nT + � 6 t < nT + dT + �;

0; nT + dT + � 6 t < (n + 1) T:

(1)

We set a random� for each attacked samples to reduce the dependency of the backdoor on the phase,
so that the backdoor attack performance is insensitive to injection time.

After discretization with a sampling rate f s, the NPP can be expressed as

Nd(i ) =

8
><

>:

0; nT f s 6 i < (nT + � )f s ;

a; (nT + � )f s 6 i < (nT + dT + � )f s ;

0; (nT + dT + � )f s 6 i < (n + 1) T f s:

(2)

The discrete NPP was used as the triggerx � 2 R1� T . Given an EEG sampleX n 2 RC � T , the poisoned
sample eX n can be obtained by adding the trigger to all channels simultaneously:

eX n = X n + 1 � x � ; (3)

where 1 2 RC � 1 is a column vector with all ones.
Compared with artifacts in EEG signals, the backdoor triggers have higher requirements on controlla-

bility and repeatability. In addition to NPPs, other possib le triggers are discussed in Subsection4.7.

3.3 Active poisoning

Intuitively, if there are more poisoned samples in the source domain, then it is easier to learn the trigger
pattern and perform backdoor attacks. However, poisoning too many samples reduces the stealthiness of
backdoor attacks. It is desirable to select a small number ofsamples that are most e�ective in embedding
the trigger.

AL aims to select a few most useful unlabeled samples to labelfor training, so that good learning
performance can be achieved from a small number of labeled samples. Inspired by AL, we propose
several AP strategies below.

3.3.1 MDS

Diversity-based AL approaches, e.g., GSx, GSy, and iGS [37], query the most scattered samples to label,
so that a good global model can be learned. In backdoor attacks, diversity is also an important criterion
for selecting the poisoned samples: if the poisoned samplesare distributed in the entire input and/or
output space, then the trigger is more universally embeddedinto the model, and hence it is easier to
perform backdoor attacks.
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Figure 2 Illustrative examples for AP strategies in binary linear cl assi�er. (a) MDS; (b) RDS; (c) model-based AP: MUS/MMCS;
(d) combinational AP: MUS/MMCS + MDS.

We use the Euclidean distance to measure the diversity. First, we calculate the distance between each

sample and other samples in all source EEG dataD = f X n g� S
s =1 N s

n =1 with the feature extractor g and
compute

d(X n ) = min
X n 02 D � X n






 g(X n ) � g(X n 0

)





 ; (4)

i.e., the minimum Euclidean distance betweenX n and all other source-domain samplesX n 0
2 D � X n

in feature space. The topP samples with the maximum diversities are then selected as the candidates
for poisoning, as shown in Figure2(a).

In addition, the diversity criterion can be combined with a m odel-based approach to enhance the AP
performance, as shown later in this paper.

3.3.2 RDS

Representativeness is also an important criterion in AL [36]. It selects for labeling the samples that
can represent as many surrounding samples as possible, i.e., those close to the cluster centers, to avoid
selecting outliers. Usually, the representativeness and the diversity cannot be maximized simultaneously,
so we need to �nd a good compromise between them.

RDS AP uses a clustering-based approach to select both representative and diverse samples for poi-
soning. Speci�cally, we �rst perform k-means (k = P) clustering on all source domain EEG samples,
and then selectP samples closest to theP cluster centers (one sample from each cluster) to poison, as
shown in Figure 2(b). The samples near the cluster centers are the most representative among clusters;
di�erent clusters scatter the entire feature space, which ensures diversity.

In fact, RDS AP is identical to the RD AL approach proposed in our previous work [36], though the
latter was for regression problems.
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3.3.3 MUS

Uncertainty sampling is a classical AL approach, which selects the samples whose estimated labels are
most uncertain, e.g., closest to the decision boundary, forlabeling. For a classi�er with probabilistic
output, the uncertainty of an unlabeled sample X n can be measured by the Shannon entropy:

u(X n ) = �
X

y

p(yjX n ) log p(yjX n ): (5)

In contrast to AL, AP selects the samples with the lowest uncertainty for poisoning in backdoor attacks.
The rationale is as follows: since the original model has lowuncertainty (high classi�cation con�dence) on
these samples, e.g., these samples are far away from the classi�cation boundary, as shown in Figure 2(c),
poisoning these samples and changing their labels would bring large distortion to the decision boundary;
if the high-con�dent samples can be misclassi�ed when the trigger is added, then those less-con�dent
ones will also likely be misclassi�ed with the trigger.

To perform MUS, we �rst train a probabilistic classi�er on th e EEG samplesf X n g� S
s =1 N s

n =1 from the S
source subjects to obtain the posterior probability of non-target samples, and then calculate the entropy-
based uncertainty u(X n ) in ( 5). The top P samples with the minimum entropy values are selected as the
candidate samples for poisoning. For binary classi�cation, as frequently used in BCIs, this is equivalent
to choosing the non-target samples with the largestp(0jX n ) for poisoning.

3.3.4 MMCS

Another popular AL approach, expected model change maximization [35], estimates the model parameter
change caused by the addition of unlabeled sample(s) and selects those with the maximum change to
label. The rationale is that a sample that can bring a big change to the model is usually informative.

MMCS is a model-speci�c AL approach. When the cross-entropyloss is used in gradient descent opti-
mization of a binary logistic regression classi�erf , the model change on a sampleX n can be approximated
as [35]

c(X n ) = ( f (X n ) � y)X n ; (6)

where y is the ground-truth label of the unlabeled sample X n , which is unknown in AL but can be
estimated using the expectation over all classes.

In contrast to AL, AP chooses the samples that minimize the model change for poisoning in backdoor
attacks: if the samples that have the least in
uence on the model parameters can successfully create a
backdoor after poisoning, i.e., the infected model is very sensitive to the backdoor trigger, then other
samples that have more in
uence to the model parameters are also likely to perform backdoor attacks
successfully.

More speci�cally, we �rst train a source model f on all EEG samplesf X n g� S
s =1 N s

n =1 to obtain the softmax
output of the non-target samples, and usey = 0 in ( 6) to compute the model change of each sample,
c(X n ). Finally, we choose the top P samples with the minimum model changes as the candidates for
poisoning, as shown in Figure2(c).

3.3.5 Combinational AP (MUS/MMCS+MDS)

As stated above, MUS and MMCS are model-based AP approaches,which need to train a source model
f . Their main idea is to select the samples far away from the current decision boundary, as shown
in Figure 2(c), though their implementations are di�erent. The selected samples may be concentrated
together, making the embedded backdoor pattern inapplicable to the entire input space.

The diversity-based MDS AP can be combined with the model-based MUS or MMCS AP to select
samples for poisoning, by exploiting the input and output information simultaneously, as shown in Fig-
ure 2(d).

Speci�cally, MUS+MDS measures the uncertainty � u(X n ) in ( 5) and the distance d(X n ) in ( 4),
normalizes their values to the same range, and then adds themup:

du(X n ) = Normalize( d(X n )) � Normalize(u(X n )) : (7)
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Similarly, MMCS+MDS computes

dc(X n ) = Normalize( d(X n )) � Normalize(c(X n )) : (8)

Then, we select the topP samples with the maximumdu(X n ) in MUS+MDS or dc(X n ) in MMCS+MDS
as the candidates for poisoning.

4 Experiments and results

Experiments were performed in this section to verify the e�ectiveness of our proposed AP approaches.

4.1 Datasets

The following four datasets were used in this study, as in [18,20], including two datasets (P300 and ERN)
on event-related potentials and two MI datasets in BCI Competition IV 3) .

P300 evoked potentials (P300). The P300 dataset [38] was collected from eight subjects, who
faced a laptop on which six images were 
ashed randomly to elicit P300 responses. The goal was to
classify whether the image is target or non-target. The EEG data were recorded from 32 channels at
2048 Hz. We applied a [1; 40] Hz band-pass �lter and downsampled them to 128 Hz. Next, we extracted
the [0; 1] s EEG epochs after each image onset and standardized them using z-score normalization. Each
subject had about 3300 EEG epochs.

Feedback error-related negativity (ERN). The ERN dataset [39] was used in a Kaggle competi-
tion4) for detecting errors during the P300 spelling task, in orderto determine whether the selected item
was correct by analyzing the EEG signals after the subject received feedback. It is a binary classi�cation
dataset collected from 26 subjects with 56 channels, and partitioned into a training set of 16 subjects and
a test set of 10 subjects. Our experiments only used the 16 subjects in the training set. We also applied
a [1; 40] Hz band-pass �lter, downsampled the EEG signals to 128 Hz, extracted EEG epochs between
[0; 1:3] s, and standardized them usingz-score normalization. Each subject had 340 EEG epochs.

MI1. The MI1 dataset was Dataset 2a5) [40] in BCI Competition IV. It was collected from nine
subjects and included four classes: imagined movements of the `left-hand', `right-hand', `both feet',
and `tongue'. The 22-channel EEG signals were recorded at 250 Hz. We applied a [8; 30] Hz band-
pass �lter, downsampled the EEG signals to 128 Hz, extractedEEG epochs between [0:5; 3:5] s, and
standardized them usingz-score normalization. Only two classes (`left-hand' and `right-hand') were used
in our experiments. Each subject had 144 epochs, 72 in each class.

MI2. The MI2 dataset was Dataset 16) [41] in BCI Competition IV. It includes 59-channel EEG
signals from seven subjects. The same two classes (`left-hand' and `right-hand') were selected and the
same preprocessing as MI1 was carried out. Each subject had 100 epochs per class in the calibration
phase with complete marker information.

4.2 CNN models

Three CNN models were used in our experiments, as in [20,21].
EEGNet. EEGNet [42] has a compact EEG-speci�c CNN architecture. It contains a temporal

convolutional block, a depthwise separable convolutionalblock and a classi�cation block. The depthwise
separable convolution can reduce the number of model parameters and learn a good feature map.

DeepCNN. DeepCNN [43] consists of four convolutional blocks and a classi�cationblock. The �rst
convolutional block is a combination of a temporal convolution and a spatial �lter for handling multi-
channel EEG signals, and the other three are standard convolutional-max-pooling blocks.

ShallowCNN. ShallowCNN [43] is a shallow version of DeepCNN. It has only one convolutional block
which is similar to the �rst convolutional block in DeepCNN, but with a larger kernel size, a di�erent
activation function, and a di�erent pooling approach.

We used Adam optimizer, cross-entropy loss, and batch size 64. Early stopping was used to reduce
over-�tting. For MMCS, we estimated the model change from the change of parameters in the last
classi�cation block. MDS and RDS used the input to the last classi�cation block as features.

3) http://www.bbci.de/competition/iv/ .
4) https://www.kaggle.com/c/inria-bci-challenge .
5) https://www.bbci.de/competition/iv/desc 2a.pdf .
6) https://www.bbci.de/competition/iv/desc 1.html .

http://www.bbci.de/competition/iv/
https://www.kaggle.com/c/inria-bci-challenge
https://www.bbci.de/competition/iv/desc_2a.pdf
https://www.bbci.de/competition/iv/desc_1.html
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4.3 Experimental settings

4.3.1 Attack settings

To simulate cross-subject backdoor attacks in TL-based BCIs, for each dataset, we sequentially selected
one subject as the target subject and all remaining ones as the source subjects, i.e., we performed leave-
one-subject-out cross-validation to evaluate the attack and classi�cation performance. This procedure
was repeated for each subject, so that each one became the target subject once for testing, the remaining
ones became the source subjects and were combined for training. For P300 and ERN, we performed
under-sampling for each source subject to overcome class imbalance. The source data were further
randomly partitioned into 80% training and 20% validation f or early stopping. The entire leave-one-
subject-out cross-validation process was repeated �ve times, and the mean results are reported in all
following subsections.

In each repeat, a small amount of EEG samples in the combined source-domain samples were poisoned
randomly (baseline) or by AP, then data from di�erent subjec ts were aligned by a TL approach in
Subsection4.3.3, and combined to train deep learning models.

The target label for poisoned samples is `target' in P300, `good-feedback' in ERN, and `right hand' in
MI1 and MI2. The attacker's goal was to make the model classify any sample in the target domain with
the trigger into `target'/`good-feedback'/`right hand'/ `right hand' for P300/ERN/MI1/MI2, no matter
what true labels they have.

4.3.2 Performance measures

We used the following two metrics to evaluate the classi�cation and attack performance:
(1) Balanced classi�cation accuracy (BCA), which is the average of the per-class classi�cation accura-

cies.
(2) Attack success rate (ASR), which is

ASR =
Number of successfully attacked samples

Total number of attacked samples
: (9)

A successfully attacked sample is the one with the trigger added and successfully classi�ed into the target
class speci�ed by the attacker. To ensure the ASR is caused solely by a backdoor attack instead of
inaccurate predictions, we computed the ASR on the correctly classi�ed non-target samples only, i.e., if
a non-target sample is already misclassi�ed into the targetclass without adding the trigger, then it is
not counted in neither the numerator nor the denominator of (9).

The clean target-domain data were used to compute the BCA, and the poisoned target-domain data
were used to compute the ASR.

4.3.3 TL approach

Since EA has demonstrated outstanding TL performance in both traditional machine learning and deep
learning [18,44], it was used in our experiments.

For each source domainf X n
s gN s

n =1 , EA �rst computes the mean covariance matrix of all EEG trial s by

�Rs =
1

Ns

N sX

n =1

X n
s (X n

s )T ; (10)

then performs the following transformation to each trial:

X̂ n
s = �R� 1=2

s X n
s : (11)

X̂ n
s then replaces the originalX n

s in all subsequent signal processing and machine learning.
Similarly, for the target-domain samples, we computed the mean covariance matrix �Rt and obtained

the aligned EEG samplesX̂ n
t .

In backdoor attacks, we assume the attacker �rst adds the backdoor to some selected source domain
non-target samples, then an innocent user downloads the poisoned dataset and uses it with his/her own
data for TL. Thus, EA should be performed after source-domain data poisoning.
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Figure 3 BCAs with and without poisoned samples.

Table 1 Classi�cation and attack performances (%) with poisoning r ate 5% a)

Dataset Model

Baseline Active poisoning

BCA ASR
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS

BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

P300

EEGNet 62 :5 0:4 62:0 83:2 62:1 80:9 62:6 86:3 61:8 92:1 61:4 94 :3 62:1 92:0 62:3 93 :2

DeepCNN 62 :9 0:1 62:9 79:0 63:2 82:3 63:5 84:9 63:0 88:8 63:1 91:3 62:8 91 :6 63:3 92 :9

ShallowCNN 60 :6 0:3 59:7 31:8 60:0 41:6 60:3 43:0 59:6 40:2 59:3 43:9 60:3 47 :3 59:6 50 :4

ERN

EEGNet 64 :9 1:5 63:7 78:1 63:9 87:6 63:7 87:9 62:9 91:7 63:3 92:7 63:1 93 :6 63:0 94 :0

DeepCNN 66 :6 2:4 65:0 75:8 64:7 86:9 65:8 87:9 64:4 90:0 64:8 92:0 64:7 92 :3 64:9 92 :4

ShallowCNN 64 :7 7:1 63:8 38:1 63:2 70:4 63:4 72:5 62:6 71:4 62:8 71:2 62:7 77 :5 62:7 77 :1

MI1

EEGNet 75 :7 4:5 75:7 96:6 76:2 99:0 76:6 98:2 75:6 99 :3 75:9 99:1 76:7 99 :2 76:5 98:9

DeepCNN 74 :1 0:3 72:7 61:6 74:4 82:3 74:0 86:2 72:7 86:2 73:7 87 :4 73:3 86 :7 74:0 85:2

ShallowCNN 74 :0 0:0 71:1 5:0 70:7 17:4 71:1 24:3 67:9 14:5 68:6 17:0 70:0 30 :3 70:6 29 :9

MI2

EEGNet 69.8 0.8 67.1 73.4 68.2 82.4 68.4 83.5 67.2 81.7 67.5 83 .1 68.4 85.7 68.1 84.8

DeepCNN 71.2 0.1 69.9 56.1 71.3 79.5 71.4 86.9 68.3 81.3 69.8 83.3 70.6 85.4 71.2 85.0

ShallowCNN 75.9 0.1 71.5 33.1 72.3 73.0 70.0 91.9 70.4 58.4 70 .5 63.3 71.1 92.6 70.6 92.0

Average

EEGNet 68.2 1.8 67.1 82.8 67.6 87.4 67.8 89.0 66.9 91.2 67.0 92 .3 67.6 92.6 67.5 92.7

DeepCNN 68.7 0.7 67.7 68.1 68.4 82.8 68.6 86.4 67.1 86.6 67.9 8 8.5 67.8 89.0 68.4 88.9

ShallowCNN 68.8 1.9 66.5 27.0 66.6 50.6 66.2 57.9 65.1 46.1 65 .3 48.8 66.0 61.9 65.9 62.3

a) The best two ASRs for each model and each dataset are marked in bold.

We �rst compared the BCAs of EA when 5% source-domain data were poisoned, with those when no
data were poisoned at all. The results are shown in Figure3. The BCAs with and without data poisoning
were very similar, i.e., the injected NPP trigger did not signi�cantly change the TL performance, which
is desirable. However, we still want the number of poisoned samples to be as small as possible, since
the trigger has a �xed pattern, and taking a simple average ofa large amount of poisoned samples may
expose it.

4.4 Attack performance

4.4.1 Baseline

First, we evaluated the baseline performance on the benign models, i.e., the models trained on the clean
aligned source-domain data. The BCAs and ASRs of di�erent models and datasets on the target-domain
data are shown in the `Baseline' panel of Table1. The baseline BCAs were obtained without using any
labeled target-domain data. They were well above the 50% chance level for binary classi�cation, indicating
the e�ectiveness of TL. However, the ASRs were mostly close to zero, i.e., when the source-domain data
were not deliberately poisoned to embed the backdoor, the trigger had little e�ect on attacking the target
model.

4.4.2 AP attacks

We used the NPP trigger with period T = 1 s, duty cycle d = 20% and a random phase� in [0; 0:8]T
for all poisoned samples. The amplitudea was set to 0.2%, 15%, 30%, and 100% of the mean channel-
wise standard deviation of the EEG amplitude for P300, MI1, MI2, and ERN, respectively. Di�erent
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(a) (b)

Figure 4 (a) The NPP trigger and (b) EEG signal of the �rst �ve channels before and after poisoning. Best viewed in color.

amplitudes were used on the three datasets because the ranges of EEG amplitudes in di�erent datasets
varied signi�cantly.

An example of the added NPP trigger and the EEG signal before and after poisoning MI1 is shown in
Figure 4. The poisoned sample with the NPP trigger is almost identical to the benign sample (NPP with
a = 30%, d = 20%, and � = 0 :5T was used for this example), making the trigger very di�cult t o notice.

When the poisoning rate was 5%, the classi�cation and attackperformances of di�erent AP strategies
are shown in the `Active poisoning' panel of Table1, where `Random' means the poisoned samples were
randomly selected from the non-target class of the source data, and the others were selected by various
AP strategies from the non-target class of the source data. Table 1 shows the following results.

(1) The BCAs of all AP approaches were very close to those in Baseline, indicating that introduc-
ing poisoned samples or embedding a backdoor did not signi�cantly degrade the normal classi�cation
performance, if the input target-domain samples did not contain the trigger.

(2) The ASRs of di�erent AP approaches were signi�cantly imp roved over Baseline, indicating the
e�ectiveness of backdoor attacks, i.e., once the NPP trigger was added to a non-target sample from the
target subject, the model would very likely misclassify it into the target class.

(3) Our proposed AP strategies, including MDS, RDS, MUS, MMCS and their combinations, generally
achieved higher ASRs on di�erent models and datasets, compared with Random, e.g., 83.2% (Random)
versus 94.3% (MMCS) for EEGNet on P300, indicating that AP can improve the attack e�ciency under
the same poisoning rate.

(4) The ASRs of MUS and MMCS were generally higher than those of MDS and RDS, likely because
MUS and MMCS are supervised and model-based approaches, which can utilize more information than
the unsupervised MDS and RDS approaches.

(5) The attack performance of RDS was better than that of MDS, suggesting that it is better to
consider both representativeness and diversity in AP than diversity only.

(6) The ASRs of the combinational approaches that integrateMUS/MMCS with MDS (the last two
columns in Table 1) were generally higher than those of MUS/MMCS, indicating that considering uncer-
tainty/model change and diversity simultaneously helped improve the attack e�ciency.

Figure 5 shows the BCAs and ASRs at di�erent poisoning rates on the four datasets. The parameters
of the NPP trigger on each dataset were the same for di�erent deep learning models, so the robustness
of di�erent models can be compared. We have the following observations.

(1) Generally, as the poisoning rate increased from 1% to 10%, the BCAs of all AP strategies remained
stable and comparable to those of Baseline, indicating thatbackdoor attacks in TL did not degrade the
classi�cation performance on normal samples and was di�cult to detect.

(2) The ASRs of all AP strategies on all four datasets and for all three deep learning models increased
rapidly as the poisoning rate increased, especially for EEGNet and DeepCNN. The ASRs of ShallowCNN
were relatively low when the poisoning rate was small, likely because ShallowCNN has small capacity to
remember the trigger pattern, which was also found in [45,46].

(3) Generally, our proposed AP strategies achieved higher ASRs than Random. As the poisoning
rate increased, the ASR improvement of AP gradually vanished. This is consistent with traditional AL
approaches. As more poisoned samples make the backdoor easier to detect, we prefer a small poisoning
rate in practice, and hence the proposed AP approaches are desirable.
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(a)

(b)

(c)

(d)

Figure 5 BCAs and ASRs at di�erent poisoning rates on (a) P300, (b) ERN , (c) MI1, and (d) MI2.

(4) Consistent with the observations from Table 1, generally the combinational AP strategies achieved
higher ASRs.

4.5 Model consistency

As demonstrated in Subsection3.3, MUS and MMCS are model-based approaches, i.e., they selectthe
most useful samples for poisoning based on the predictions of the model trained on the source data. In
previous experiments, the attacker model used in these AP approaches was consistent with the user model
in TL, e.g., when the user model in TL was EEGNet, the AP approaches also used EEGNet. However,
in practice the attacker does not know which machine learning model the user would use.
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(b)

(a)

Figure 6 ASRs when the attacker and the user use di�erent models. (a) M US; (b) MMCS.

This subsection studies how the model consistency a�ects the attack performance. The ASRs when
MUS and MMCS used di�erent models from the user model in TL, with a 10% poisoning rate, are shown
in Figure 6. The horizontal axis represents the user model, and di�erent bars represent the ASRs when
using di�erent MUS and MMCS models. `Baseline' (black dot) represents the ASRs when the source-
domain data were not poisoned at all. Clearly, both MUS and MMCS always achieved much higher ASRs
than Baseline, regardless of the user model. That is, although the AP approaches are model-based, they
do not require the machine learning model to be consistent with the one used by the user in TL for good
attack performance. This makes backdoor attacks much easier to perform in practice, and also more
dangerous.

4.6 Stability of AP

The above experimental results showed the average performance of all subjects on each dataset. In order
to demonstrate the stability of our proposed AP approaches across di�erent subjects, we further analyzed
the results on each subject on P300 individually, as shown inFigures 7{ 9. We computed the average
ASRs from �ve runs for each subject on P300 using three di�erent deep learning models. The poisoning
rates of all AP approaches on EEGNet/DeepCNN/ShallowCNN were 5%/5%/8%, respectively.

Additionally, we computed the number of samples selected for poisoning by di�erent AP approaches
from each source subject, when subject 2 was the target subject (the reason for choosing this subject was
that the ASR on this subject was relatively low). The results are shown in the third row of each �gure.
Figures 7{ 9 show the following results.

(1) The BCAs of each subject for di�erent deep learning models were similar, all around 0.6. Di�erent
AP approaches did not change the BCAs on di�erent subjects.

(2) The ASRs of di�erent AP approaches were higher than thoseof Random. Although there were
obvious di�erences in the ASRs on di�erent subjects due to individual di�erences, especially subject 1,
subject 3, and subject 8, the ASRs almost reached 1 for EEGNetand DeepCNN, and were also very high
for ShallowCNN. The ASRs of our proposed AP approaches were generally higher than those of Random
for subjects whose attack performance was not very good.

(3) The third row of the �gures shows that the number of samples selected from di�erent source subjects
by di�erent AP approaches varied greatly. \Random" selected a roughly equal number of poisoned
samples from each subject, which is intuitive. The numbers of samples selected by MDS and the two
model-based strategies (MUS and MMCS) from di�erent subjects were quite di�erent, indicating that
not all source subjects were equal in data poisoning. The distributions of the selected samples from
di�erent subjects were similar for the two model-based AP approaches, likely because they both used
information about the model. It seems that poisoning samples in subject 3, subject 5, and subject 7
were more e�ective in improving the ASR of subject 2. Our future work will further investigate backdoor
attacks that are robust to individual di�erences.
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Figure 7 Stability analysis using EEGNet.

Figure 8 Stability analysis using DeepCNN.

4.7 In
uence of trigger

We designed three additional triggers as shown in Figure10 to investigate the in
uence of trigger on AP
approaches. The sine wave and sawtooth wave used the same period, T = 1 s, as NPP trigger. The
random pulse wasx � = sign( U(� 0:2; 0:8)), where U(� 0:2; 0:8) was uniform noise in [� 0:2; 0:8]. Min-max
normalization was used to normalize the three types of triggers to [0; 1]. Finally, they were multiplied by
the same amplitudea to form the triggers.

Tables 2{ 5 show the results of the three triggers on the four datasets. Clearly, backdoor attacks using
di�erent triggers were still e�ective, and the ASRs were generally even higher than those of NPP. In
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Figure 9 Stability analysis using ShallowCNN.

(a) (b) (c)

Figure 10 Di�erent triggers on MI1. (a) Sine wave; (b) sawtooth wave; ( c) random pulse.

addition, our proposed AP approaches had higher ASRs than Random in most cases, suggesting the
robustness of backdoor attacks and AP approaches to di�erent types of triggers.

In practice, we can select a trigger that is easy to generate and reproduce, and robust for backdoor
attacks. This study selects the NPP.

4.8 More challenging scenarios

4.8.1 Fine-tuning

Some labeled data from the target user may be used to �ne-tunethe trained (infected) model. It has
been found that backdoor attacks can still be e�ective when only the last fully-connected layer is �ne-
tuned [25]. However, using the clean labeled data to retrain the entire model almost completely eliminated
the backdoor in image classi�cation [47,48]. We tested the attack performance of AP approaches under
the challenging end-to-end �ne-tuning scenario when 20% samples from the target subject are labeled
and 5% source data are poisoned. The ASRs and BCAs of di�erentAP approaches are shown in Table6.

Table 6 shows that
(1) The �ne-tuning BCAs were generally higher than those in Table 1, indicating backdoor attacks and

AP approaches did not impact the classi�cation performance. The ASRs were generally lower than those
in Table 1, consistent with the observations in image classi�cation [47, 48], i.e., �ne-tuning can defend



Jiang X , et al. Sci China Inf Sci August 2023 Vol. 66 182402:16

Table 2 Classi�cation and attack performances (%) with poisoning r ate 5% and di�erent backdoor triggers on P300 a)

Trigger Model
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS Average

BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

Sine wave

EEGNet 62.0 94.8 62.3 94.2 62.3 96.1 61.8 98.3 61.8 98.8 62.3 9 8.6 62.1 98.8 62.1 97.5

DeepCNN 62.4 90.4 63.4 93.3 62.6 91.7 62.2 96.4 63.0 97.8 62.5 97.5 62.8 97.1 62.8 95.6

ShallowCNN 60.3 65.3 60.5 78.8 60.6 78.5 60.0 76.5 60.2 82.6 6 0.0 85.1 60.4 86.0 60.3 81.3

Sawtooth wave

EEGNet 62.3 95.7 61.8 95.6 62.1 97.2 62.2 98.5 61.7 99.0 62.0 9 8.6 62.3 99.2 62.0 98.0

DeepCNN 62.5 86.4 62.7 89.8 62.4 90.5 62.1 96.2 62.6 97.3 62.5 96.8 62.3 96.3 62.4 94.5

ShallowCNN 59.7 28.4 60.2 37.7 60.2 41.3 59.6 36.2 59.5 40.3 6 0.1 46.6 60.0 49.8 59.9 42.0

Random pulse

EEGNet 62.1 97.0 62.1 97.0 62.3 98.1 62.3 98.8 62.3 99.0 62.5 9 9.0 62.7 99.5 62.4 98.6

DeepCNN 62.9 95.6 62.7 96.7 62.5 97.4 62.7 98.7 62.8 99.0 63.2 98.7 62.7 99.0 62.8 98.2

ShallowCNN 60.2 74.2 60.4 82.6 60.6 85.6 60.0 85.8 59.7 88.5 5 9.9 89.5 60.4 90.7 60.2 87.1

a) `Average' was calculated excluding `Random'. Average AS Rs higher than Random are marked in bold.

Table 3 Classi�cation and attack performances (%) with poisoning r ate 5% and di�erent backdoor triggers on ERN a)

Trigger Model
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS Average

BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

Sine wave

EEGNet 63.5 94.5 63.8 97.9 64.0 97.1 63.3 98.2 63.6 98.4 63.7 9 8.8 63.7 98.8 63.7 98.2

DeepCNN 65.2 93.7 66.0 97.9 65.7 96.4 64.8 98.4 65.3 98.3 65.8 98.5 65.7 98.5 65.6 98.0

ShallowCNN 64.1 67.9 63.9 90.6 64.7 88.7 63.4 90.1 63.4 87.9 6 3.9 92.2 63.8 93.0 63.8 90.4

Sawtooth wave

EEGNet 64.0 97.2 64.3 98.7 64.9 98.3 64.1 98.8 64.3 98.9 64.3 9 9.0 64.1 99.0 64.3 98.8

DeepCNN 64.9 93.6 65.0 98.0 65.2 97.6 64.5 98.1 64.4 98.3 64.5 98.6 64.3 98.5 64.6 98.2

ShallowCNN 63.9 65.6 64.2 89.7 64.5 88.9 63.5 87.3 63.6 85.5 6 3.7 92.3 63.6 92.9 63.8 89.4

Random pulse

EEGNet 64.0 98.2 64.2 99.7 64.2 99.2 63.9 99.8 64.0 99.7 64.1 9 9.7 63.8 99.7 64.0 99.6

DeepCNN 65.2 96.5 65.4 99.3 65.8 98.6 65.6 99.4 65.7 99.2 65.0 99.5 64.7 99.3 65.4 99.2

ShallowCNN 63.9 85.6 64.3 97.6 64.2 95.5 63.4 96.2 63.5 95.3 6 3.0 97.4 63.6 98.1 63.7 96.7

a) `Average' was calculated excluding `Random'. Average AS Rs higher than Random are marked in bold.

Table 4 Classi�cation and attack performances (%) with poisoning r ate 5% and di�erent backdoor triggers on MI1 a)

Trigger Model
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS Average

BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

Sine wave

EEGNet 74.1 98.3 76.0 99.4 76.5 99.2 75.6 99.6 75.8 99.4 76.4 9 9.6 76.2 99.6 76.1 99.5

DeepCNN 72.9 85.6 73.6 94.4 74.2 94.8 73.8 97.0 73.4 97.2 73.7 96.9 73.0 95.9 73.6 96.0

ShallowCNN 71.8 53.3 70.7 78.6 71.0 83.1 69.8 77.8 69.8 77.1 7 0.4 84.2 71.2 82.4 70.5 80.5

Sawtooth wave

EEGNet 74.1 97.0 75.4 99.1 75.9 98.2 75.5 99.3 75.1 99.4 76.3 9 9.5 75.9 99.4 75.7 99.1

DeepCNN 74.2 86.8 73.7 95.0 73.4 95.5 72.7 96.9 73.4 97.5 74.4 96.3 73.9 94.9 73.6 96.0

ShallowCNN 71.7 39.2 71.9 61.6 71.5 66.3 68.8 59.0 69.9 60.1 7 0.8 70.2 72.0 72.0 70.8 64.8

Random pulse

EEGNet 76.1 98.3 77.1 99.4 76.8 99.2 76.5 99.6 76.9 99.6 77.2 9 9.7 77.0 99.6 76.9 99.5

DeepCNN 73.0 95.1 74.9 97.4 74.5 97.3 73.7 98.8 73.3 99.1 74.2 98.1 74.4 97.4 74.2 98.0

ShallowCNN 73.2 84.6 73.0 95.6 72.6 98.1 71.9 97.0 71.6 97.4 7 1.3 97.5 72.5 96.7 72.1 97.0

a) `Average' was calculated excluding `Random'. Average AS Rs higher than Random are marked in bold.

against backdoor attacks to some extent.

(2) Our proposed AP approaches still achieved higher ASRs than Random, and the combinational AP
strategies generally had the best attack performance.

(3) The ASRs dropped a lot, especially on P300 and MI1. The reason may be that the NPP amplitudes
on these two datasets were small, and hence �ne-tuning can more easily mask them.

(4) Di�erent models had di�erent robustness to the same backdoor trigger on the same dataset, e.g.,
EEGNet had strong attack performance against �ne-tuning.

Figure 11 shows the BCAs and ASRs of AP when �ne-tuned with di�erent lab eling rates in the target
domain on MI1 using EEGNet. Intuitively, the classi�cation performance gradually improved with the
increase of the number of clean labeled target-domain data.However, AP approaches still maintained
good attack performance (high ASRs), outperforming Random.
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Table 5 Classi�cation and attack performances (%) with poisoning r ate 5% and di�erent backdoor triggers on MI2 a)

Trigger Model
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS Average

BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

Sine wave

EEGNet 67.0 92.3 68.5 96.4 69.1 95.9 67.8 97.1 68.2 97.2 68.3 9 7.8 69.0 97.9 68.5 97.1

DeepCNN 70.9 77.1 72.9 91.0 71.5 91.8 70.7 91.6 70.8 91.3 70.2 91.5 71.3 91.2 71.2 91.4

ShallowCNN 72.6 79.5 72.4 96.8 71.7 98.6 71.7 96.9 71.6 98.0 7 1.5 96.9 72.3 96.5 71.9 97.3

Sawtooth wave

EEGNet 67.0 87.5 67.5 94.4 67.6 94.5 66.8 95.0 66.8 95.9 67.4 9 6.8 67.7 96.3 67.3 95.5

DeepCNN 70.4 74.5 72.6 88.2 72.5 90.1 70.9 89.3 71.3 90.9 71.9 88.6 73.6 79.3 72.1 87.7

ShallowCNN 73.6 79.3 72.3 88.6 72.4 95.4 71.8 89.1 71.0 90.3 7 2.3 97.4 72.6 96.2 72.0 92.8

Random pulse

EEGNet 67.1 94.7 68.0 97.8 67.6 97.7 66.9 98.0 67.4 97.7 68.1 9 8.1 71.0 84.9 68.2 95.7

DeepCNN 71.0 84.9 73.1 92.2 72.4 93.5 71.1 95.2 72.0 95.1 71.9 93.7 72.2 93.1 72.1 93.8

ShallowCNN 73.0 90.3 72.0 98.3 72.6 99.7 73.5 96.5 72.0 97.6 7 3.8 98.2 73.4 98.0 72.9 98.0

a) `Average' was calculated excluding `Random'. Average AS Rs higher than Random are marked in bold.

Table 6 Classi�cation and attack performances (%) with poisoning r ate 5% and labeling rate 20% in �ne-tuning a)

Dataset Model
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS

BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

P300

EEGNet 62.6 11.0 64.8 13.3 65.1 16.1 63.7 19.6 63.7 21.2 65.0 22.0 65.1 21.9

DeepCNN 67.2 15.3 68.2 13.4 67.8 11.6 67.7 22.2 67.6 19.0 68.2 10.5 67.0 12.1

ShallowCNN 58.6 1.3 57.4 0.6 58.3 0.7 58.2 0.8 57.6 0.7 58.1 0. 6 58.1 0.5

ERN

EEGNet 65.8 61.4 67.1 73.8 67.3 75.1 66.4 72.0 66.5 75.1 67.4 79.6 67.0 80.1

DeepCNN 66.1 36.5 66.0 58.0 65.8 63.9 65.4 57.7 65.6 58.5 65.6 67.7 65.3 73.4

ShallowCNN 62.9 15.0 66.0 46.4 66.3 52.2 66.1 38.5 65.1 46.2 6 5.7 61.4 65.8 59.6

MI1

EEGNet 75.7 72.7 77.8 88.4 78.3 87.2 77.0 86.0 77.9 90.6 78.1 90.6 78.1 90.4

DeepCNN 71.1 12.8 75.4 39.4 73.3 34.3 72.7 29.3 72.7 34.0 74.9 47.0 74.6 39.0

ShallowCNN 73.4 0.9 75.7 7.1 75.4 9.4 75.0 4.2 75.2 5.0 75.5 15.7 74.6 17.2

MI2

EEGNet 77.3 45.6 78.6 61.3 79.0 65.8 78.7 75.0 79.1 80.1 78.6 80.7 77.9 82.3

DeepCNN 70.6 7.8 73.1 23.8 71.0 26.2 71.5 42.1 69.9 41.0 70.4 49.8 70.6 50.2

ShallowCNN 76.0 1.6 77.5 7.2 79.1 34.6 75.9 64.2 76.2 69.8 76. 6 72.9 77.6 71.8

Average

EEGNet 70.3 47.7 72.1 59.2 72.4 61.1 71.5 63.1 71.8 66.7 72.2 68.2 72.0 68.7

DeepCNN 68.8 18.1 70.7 33.7 69.5 34.0 69.3 37.8 69.0 38.1 69.8 43.7 69.4 43.7

ShallowCNN 67.8 4.7 69.2 15.3 69.8 24.2 68.8 26.9 68.5 30.4 69 .0 37.6 69.0 37.2

a) The best two ASRs for each model and each dataset are marked in bold.

(a)

(b)

Figure 11 BCAs and ASRs when �ne-tuned with di�erent labeling rates on MI1 using EEGNet. (a) BCAs; (b) ASRs.
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Table 7 Classi�cation and attack performances (%) with poisoning r ate 5% and di�erent data augmentation strategies on P300 a)

Data augmentation Model
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS Average

BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

Noise

EEGNet 62.0 81.6 62.3 70.6 62.1 80.2 61.6 92.4 61.4 91.4 61.9 8 7.9 61.8 89.8 61.8 85.4

DeepCNN 62.9 68.7 63.0 68.9 63.0 74.9 62.7 88.0 62.8 86.5 63.0 86.4 63.4 83.7 63.0 81.4

ShallowCNN 60.5 56.6 60.9 67.9 60.7 69.0 59.8 73.2 59.9 75.1 6 0.1 76.1 60.2 78.2 60.3 73.2

Multiplication

EEGNet 62.8 77.2 62.4 65.9 62.5 77.2 62.6 88.1 62.3 89.7 62.2 8 3.9 62.0 85.9 62.3 81.8

DeepCNN 62.7 69.7 63.5 73.4 63.6 77.1 63.2 87.5 63.2 86.7 63.4 88.7 63.2 85.7 63.3 83.2

ShallowCNN 60.4 44.4 60.5 52.3 60.4 56.0 59.3 59.9 59.4 63.2 5 9.8 64.8 59.7 64.1 59.8 60.1

Frequency shift

EEGNet 63.1 81.1 62.7 72.9 62.8 81.2 62.6 91.0 62.3 91.2 62.5 8 9.0 62.1 89.9 62.5 85.8

DeepCNN 63.2 48.6 63.3 42.4 63.2 55.3 63.2 66.8 63.0 69.8 63.4 67.6 63.4 63.4 63.2 60.9

ShallowCNN 60.4 54.9 60.3 63.5 60.5 65.9 59.4 69.6 59.4 72.0 5 9.8 73.8 59.7 73.4 59.9 69.7

Channel weaken

EEGNet 62.4 80.3 62.5 71.6 62.6 78.5 62.1 91.4 62.3 91.3 62.1 9 0.0 62.0 92.7 62.3 85.9

DeepCNN 62.8 81.4 63.3 81.8 62.9 85.9 62.7 95.3 62.6 95.0 63.0 95.6 62.7 95.1 62.9 91.4

ShallowCNN 60.7 56.8 60.9 66.9 60.7 68.2 60.3 70.8 60.0 73.5 6 0.3 75.8 60.4 75.3 60.4 71.8

a) `Average' was calculated excluding `Random'. Average AS Rs higher than Random are marked in bold.

Table 8 Classi�cation and attack performances (%) with poisoning r ate 5% and di�erent data augmentation strategies on ERN a)

Data augmentation Model
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS Average

BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

Noise

EEGNet 64.5 85.0 64.3 90.1 64.6 89.7 63.8 93.7 64.1 94.0 63.9 9 3.5 63.9 93.0 64.1 92.3

DeepCNN 65.3 75.1 65.6 88.5 66.0 88.8 64.4 91.5 65.0 91.0 65.0 91.6 64.9 91.8 65.1 90.5

ShallowCNN 64.2 46.4 63.6 73.5 63.7 76.4 63.6 72.7 63.3 73.5 6 3.4 80.9 63.1 82.8 63.5 76.6

Multiplication

EEGNet 63.9 86.4 63.1 92.7 63.5 91.9 63.6 95.1 63.2 94.4 62.7 9 5.5 62.8 95.5 63.2 94.2

DeepCNN 65.8 75.3 65.2 83.5 65.2 85.5 64.1 87.7 64.3 88.7 64.4 89.2 64.8 89.6 64.7 87.4

ShallowCNN 64.5 46.8 63.1 69.4 63.5 71.1 62.7 69.3 62.4 69.2 6 2.2 75.8 62.1 76.3 62.7 71.9

Frequency shift

EEGNet 59.7 73.4 62.5 87.2 63.0 85.1 62.7 88.3 62.6 88.4 62.3 8 9.8 62.1 89.6 62.5 88.1

DeepCNN 65.5 74.1 65.3 85.7 65.6 86.0 64.4 86.3 64.4 85.8 64.8 89.3 63.8 86.9 64.7 86.7

ShallowCNN 63.2 43.5 63.0 66.7 62.5 65.3 61.3 61.1 61.9 62.5 6 1.7 71.0 61.2 72.2 61.9 66.5

Channel weaken

EEGNet 64.2 86.8 64.1 90.1 64.1 90.8 63.5 94.5 63.4 94.6 63.7 9 5.0 63.7 94.6 63.7 93.3

DeepCNN 65.5 79.0 65.2 90.0 65.6 89.7 64.8 92.2 64.9 91.6 65.1 92.0 65.5 92.5 65.2 91.3

ShallowCNN 63.7 44.5 63.3 72.4 63.6 72.9 62.2 68.5 62.4 69.4 6 2.3 78.9 62.7 78.3 62.7 73.4

a) `Average' was calculated excluding `Random'. Average AS Rs higher than Random are marked in bold.

4.8.2 Data augmentation

Fine-tuning on the clean data is a defense approach after training. Input preprocessing can be carried out
during training to defend against backdoor attacks [49,50]. Data augmentation on the raw EEG data is
extensively used in model training to enhance the generalization ability of the model or to alleviate data
insu�ciency. Tables 7{ 10 show the results of using data augmentation strategies of noise, multiplication
and frequency shift in [51] and channel weakening in [52] on the four datasets. The models were trained
on the combination of the transformed data and the raw poisoned data, as in [51].

Compared with the results in Table 1, data augmentation strategies had no signi�cant defense e�ect
against backdoor attacks in general. The attack performances of the AP approaches were still better
than Random, consistent with the above observations.

4.8.3 Simultaneous cross-subject and cross-task TL

Cross-task TL is a challenging scenario in EEG-based BCIs, where the labeled data from other similar
tasks (source domains) are used to improve the calibration for a new task (target domain) [15]. We
consider the more challenging simultaneous cross-subjectand cross-task TL scenario, where cross-task
means transferring between di�erent label spaces. Speci�cally, the label space of the target subject is
di�erent from that of the source subjects, e.g., the source data of `left-hand' and `right-hand' MIs may
be used to calibrate `feet' and `tongue' MIs of the target subject.

In AP attacks, the target label speci�ed by the attacker must be from the target label space. Therefore,
we considered the scenario that the label spaces of the source and target subjects are partially di�erent.
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Table 9 Classi�cation and attack performances (%) with poisoning r ate 5% and di�erent data augmentation strategies on MI1 a)

Data augmentation Model
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS Average

BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

Noise

EEGNet 75.6 91.0 75.7 96.2 75.0 95.8 74.3 98.2 74.4 98.2 74.9 9 8.1 74.6 97.9 74.8 97.4

DeepCNN 73.1 69.5 74.1 84.1 74.5 87.4 72.7 89.2 72.6 88.2 74.5 87.5 74.2 86.3 73.7 87.1

ShallowCNN 71.7 0.6 72.5 4.1 71.5 12.7 67.9 1.2 68.3 1.7 71.6 4 3.0 72.1 44.8 70.7 17.9

Multiplication

EEGNet 76.0 95.7 75.8 97.8 75.2 97.4 75.1 99.3 75.2 99.1 75.4 9 8.7 72.9 74.5 74.9 94.5

DeepCNN 72.9 74.5 72.7 86.8 72.2 90.7 72.0 90.6 72.5 91.5 72.1 90.7 71.7 87.7 72.2 89.7

ShallowCNN 70.2 0.7 70.8 3.3 70.2 12.5 67.8 1.7 67.3 1.7 69.6 3 9.0 69.6 41.3 69.2 16.6

Frequency shift

EEGNet 75.5 95.0 76.2 99.0 76.1 98.3 75.4 99.3 75.3 99.6 75.2 9 9.5 75.4 99.2 75.6 99.1

DeepCNN 73.1 34.4 73.5 49.4 73.2 58.2 70.2 55.0 70.2 51.4 72.1 69.9 73.1 64.6 72.0 58.1

ShallowCNN 70.7 0.4 70.9 1.2 70.1 5.6 68.4 0.6 68.1 0.5 69.4 18 .8 70.4 22.3 69.5 8.2

Channel weaken

EEGNet 76.5 97.0 76.8 98.4 76.8 98.2 75.9 99.3 76.5 99.3 76.7 9 9.1 76.4 98.9 76.5 98.9

DeepCNN 74.4 76.7 74.2 89.9 74.6 94.0 73.6 93.9 73.7 93.8 74.6 94.6 74.5 92.8 74.2 93.2

ShallowCNN 71.1 1.3 70.7 9.6 70.1 27.7 68.4 3.2 68.4 3.8 68.4 6 3.9 68.4 64.9 69.1 28.9

a) `Average' was calculated excluding `Random'. Average AS Rs higher than Random are marked in bold.

Table 10 Classi�cation and attack performances (%) with poisoning r ate 5% and di�erent data augmentation strategies on MI2 a)

Data augmentation Model
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS Average

BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

Noise

EEGNet 67.7 68.6 69.6 85.1 69.9 85.9 68.8 84.8 68.8 86.0 69.2 8 8.5 69.1 88.0 69.2 86.4

DeepCNN 70.2 54.8 71.0 81.6 71.0 85.7 70.7 84.0 70.3 83.0 71.8 85.3 71.9 61.8 71.1 80.2

ShallowCNN 71.9 61.8 72.0 86.9 71.5 91.7 71.3 84.6 71.0 88.2 7 1.6 93.3 71.3 93.3 71.4 89.7

Multiplication

EEGNet 67.8 86.4 69.4 94.0 69.3 94.5 68.6 93.8 69.4 94.3 69.1 9 6.0 68.5 95.7 69.0 94.7

DeepCNN 71.4 66.1 72.3 89.5 72.8 91.9 71.0 91.9 70.4 90.6 72.6 91.2 71.2 70.3 71.7 87.6

ShallowCNN 71.2 70.3 72.0 86.3 71.0 96.3 70.3 87.7 70.1 88.8 7 1.6 94.4 71.2 94.2 71.0 91.3

Frequency shift

EEGNet 68.8 74.6 69.5 91.4 69.5 92.3 68.9 87.9 69.2 91.7 69.3 9 3.7 69.0 93.5 69.2 91.7

DeepCNN 71.9 59.6 71.8 89.9 71.9 91.9 71.5 88.5 71.5 89.6 70.9 92.1 71.7 90.0 71.6 90.3

ShallowCNN 70.2 68.1 70.7 77.8 71.1 85.2 68.5 76.8 69.5 77.3 7 0.3 95.2 69.9 92.9 70.0 84.2

Channel weaken

EEGNet 68.6 83.4 68.6 83.4 69.1 84.0 67.8 81.8 68.3 84.1 68.1 8 6.2 68.3 85.8 68.4 84.2

DeepCNN 73.0 57.5 72.5 84.5 71.9 90.1 71.4 86.6 71.0 88.5 71.6 89.3 72.1 89.8 71.7 88.1

ShallowCNN 71.6 65.5 71.0 85.6 71.1 96.5 69.7 81.4 69.6 83.9 7 0.6 96.1 71.0 96.3 70.5 90.0

a) `Average' was calculated excluding `Random'. Average AS Rs higher than Random are marked in bold.

Cross-task TL. We used label alignment (LA) [19] to align the source data to the target data. Assume
the target subject and the source subjects have the same number of classesM , but their class labels are
partially di�erent. The goal of LA is to transform the trials of the m-th ( m = 1 ; 2; : : : ; M ) class from
the s-th ( s = 1 ; 2; : : : ; S) source subject with a matrix As;m , so as to minimize the distance of the mean
covariance matrix from that in the m-th class of the target subject, i.e.,

As;m = arg min
A

kA �Rs;m AT � �Rt;m k2
F ; m = 1 ; 2; : : : ; M ; s = 1 ; 2; : : : ; S; (12)

where �Rs;m is the mean covariance matrix of them-th class of the s-th source subject, and �Rt;m the
mean covariance matrix of the corresponding target class.

The transformation matrix for the m-th class of the s-th source subject is then

As;m = �R
1
2
t;m

�R
� 1

2
s;m : (13)

�Rt;m requires some label information in target subject, which can be solved by selecting a small number
of target samples byk-means clustering based on Riemannian distance for labeling.

Finally, the n-th trial in the m-th class of the s-th source subject is transformed to

X̂ n
s;m = As;m X n

s;m ; n = 1 ; : : : ; Ns: (14)

As we consider partially di�erent label spaces between the source and target subjects, we match the
label of each source subject with the same label of the targetsubject, and then randomly match each
remaining source label with a remaining target label, as in [19].
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Table 11 Classi�cation and attack performances (%) with poisoning r ate 20% in simultaneous cross-subject and cross-task TL
scenario on the three-class MI1 dataset a)

Model
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS Average

BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

EEGNet 70.9 24.7 69.7 28.3 70.6 29.1 70.4 25.9 70.8 27.6 71.5 2 4.1 70.3 20.3 70.5 25.9

DeepCNN 70.3 20.3 69.7 21.2 70.6 20.7 69.6 25.7 69.8 21.7 69.4 22.0 71.3 19.1 70.0 21.8

ShallowCNN 74.2 6.5 70.8 11.3 73.6 6.6 72.0 5.2 72.4 5.8 73.8 7 .7 74.1 7.7 72.8 7.4

a) `Average' was calculated excluding `Random'. Average AS Rs higher than Random are marked in bold.

Table 12 Computational cost (s) of di�erent AP approaches on the four datasets using EEGNet as the target model, running on
a single GeForce GTX 1080 GPU

Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS

P300 111.79 129.95 142.77 181.53 120.65 134.93 128.55

ERN 49.66 103.98 95.07 102.37 76.97 70.68 69.03

MI1 63.57 107.56 100.14 73.60 105.96 80.37 78.55

MI2 33.54 66.03 73.97 64.58 66.12 62.10 60.77

Table 13 Classi�cation and attack performances (%) with poisoning r ate 5% on traditional models

Dataset Model

Baseline Active poisoning

BCA ASR
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS

BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

P300 xDAWN+SVM 58.3 13.5 57.1 91.8 57.9 73.1 57.1 90.4 56.3 95.0 56.7 95.1 56.4 94.1 56.6 91.3

ERN xDAWN+SVM 65.1 9.1 64.7 32.4 64.5 29.0 63.9 36.4 62.0 41.4 61.9 40.6 62.5 41.2 63.4 30.7

MI1 CSP+SVM 71.6 0.0 71.5 0.0 67.8 0.3 71.9 0.0 68.5 0.0 65.7 0. 2 67.8 0.4 66.6 0.0

MI2 CSP+SVM 79.5 0.0 79.0 0.2 65.6 0.0 66.2 0.0 71.5 0.0 72.6 0. 0 69.1 0.0 68.0 0.0

Average { 68.6 5.7 68.1 31.1 64.0 25.6 64.8 31.7 64.6 34.1 64.2 34.0 64.0 33.9 63.6 30.5

a) The best two ASRs are marked in bold.

Results. We performed leave-one-subject-out cross-validation on the three classes (`left-hand', `right-
hand', and `tongue') of MI1 for cross-subject evaluation. The dataset was further divided into a source
sub-dataset that had the two classes of `left-hand' and `right-hand' and a target sub-dataset that had
the two classes of `tongue' and `right-hand' for cross-taskevaluation using LA. We set k = 10 in k-means
clustering of LA, and the target label for AP attacks as `right-hand'. All other parameters were the same
as those in Subsection4.4.2. The average results of �ve repetitions are shown in Table11.

The classi�cation tasks were still successful (the BCAs were well above the 50% chance level for binary
classi�cation), when the source subjects and the target subject had di�erent label spaces, indicating the
e�ectiveness of LA. AP approaches slightly outperformed Random in most cases, but the ASRs were
much lower than those in previous experiments. This may be because LA transforms each class by a
di�erent matrix, and hence the actual backdoor is distorted (much di�erent from the original backdoor).

4.9 Computational cost

Table 12 shows the computational cost (s) of di�erent AP approaches on the four datasets using EEGNet
as the target model, averaged over di�erent subjects. It includes the time of two stages: the attacker
generates the backdoor trigger on the source data, and teststhe infected model on the target subject.
Generally, the computational costs of our proposed AP approaches and Random selection are comparable.
Due to the use of early stopping, the results on di�erent datasets were sometimes inconsistent.

4.10 AP attacks on the SVM classi�er

To our knowledge, no backdoor attack approach has been proposed for traditional classi�ers. We tested
our AP approaches on the SVM classi�er. Speci�cally, the same trigger settings as in Subsection4.4.2
on the CNN models were applied. xDAWN spatial �ltering [ 53] and SVM classi�er were used on P300
and ERN, and CSP �ltering [ 54] and SVM on MI1 and MI2. The results are shown in Table13.

`CSP+SVM' model for MI had strong resistance to backdoor attacks, resulted in nearly zero ASRs.
Attacks on `xDAWN+SVM' model for P300 and ERN were still e�ec tive. The model-based AP approaches
(MUS and MMCS) achieved better attack performance (higher ASRs) than Random, as for CNN models.
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However, the diversity-based AP approach, MDS, was ine�ective in attacking the traditional models. Our
future research will try to improve it.

5 Conclusion

TL has been widely used in EEG-based BCIs for reducing calibration e�orts. However, backdoor attacks
could be introduced through TL. Accordingly, this study exp lored backdoor attacks in TL of EEG-based
BCIs, where source-domain data are poisoned by an NPP trigger and then used in TL. We veri�ed
that the classi�cation performance remains good on benign target-domain samples, but once the trigger
is injected, the attacked samples would be misclassi�ed into an attacker-speci�ed target class with a
very high probability. We have proposed several AP approaches to select source-domain samples that
are most e�ective in embedding the backdoor pattern to improve the attack success rate and e�ciency.
Experiments on four EEG datasets and three CNN models demonstrated the success of backdoor attacks
in TL scenarios and the e�ectiveness of our proposed AP approaches.

To our knowledge, this is the �rst study on backdoor attacks on TL models in EEG-based BCIs. It
exposes a serious security risk in BCIs, which will be addressed in our future research.
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