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Abstract Transfer learning (TL) has been widely used in electroencep halogram (EEG)-based brain-
computer interfaces (BCIs) for reducing calibration e ort  s. However, backdoor attacks could be introduced
through TL. In such attacks, an attacker embeds a backdoor wi  th a speci c pattern into the machine learning
model. As a result, the model will misclassify a test sample w ith the backdoor trigger into a prespeci ed
class while still maintaining good performance on benign sa mples. Accordingly, this study explores backdoor
attacks in the TL of EEG-based BCls, where source-domain dat a are poisoned by a backdoor trigger and then
used in TL. We propose several active poisoning approaches t o select source-domain samples, which are most
e ective in embedding the backdoor pattern, to improve the a  ttack success rate and e ciency. Experiments
on four EEG datasets and three deep learning models demonstr ate the e ectiveness of the approaches. To
our knowledge, this is the rst study about backdoor attacks on TL models in EEG-based BCls. It exposes
a serious security risk in BCls, which should be immediately addressed.
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1 Introduction

A brain-computer interface (BCI) uses human brain signals o directly interact with the computer [ 1].

Electroencephalogram (EEG), which records electrical adgvities on the scalp of the brain, is the most
widely used input signal in BCls, due to its low cost and convaience P]. Common paradigms of EEG-
based BCls include motor imagery (Ml) [3], P300 evoked potentials 4], and steady-state visual evoked
potentials (SSVEPS) [B].

An EEG-based BCI system usually consists of three parts: sigal acquisition [6{ 8], signal analysis, and
control action [9]. The signal analysis module is responsible for understaridg the brain's intentions based
on the collected brain signals. It generally includes signiaprocessing L0], feature extraction [11,12], and
pattern recognition [13]. The latter two can be integrated into a single neural netwak if deep learning is
used.

A major challenge in EEG signal analysis is that di erent subjects, or even the same subject in di erent
sessions or tasks, have di erent neural responses to the sarstimulus [14]. Therefore, it is di cult to
build a generic model in EEG-based BCls for di erent subjects, sessions or taskslp]. In real-world
applications, a calibration session is usually needed for aew subject to collect enough labeled data to
tune model parameters [L4].

The calibration process in EEG-based BCls is usually time-onsuming and user-unfriendly, which
greatly a ects its real-world applications. Transfer learning (TL) [ 16] uses acquired data/knowledge
in one or more source domains to improve the learning perforiance in a target domain, and hence
it can be used to solve the above-mentioned problem. Specially, in EEG-based BCIs, TL reduces
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the di erence between a new subject/session/task (target cbmain) and existing subjects/sessions/tasks
(source domains) to reduce or even completely eliminate thealibration needed for the target domain [L5].
Many researchers have applied TL to EEG-based BCls and achieed promising results fL7{19]. In this
study, we mainly consider cross-subject TI .

Most existing BCI studies focused on improving their accuray, but ignored their security. Recent
studies have shown that EEG-based BCI systems are vulnerablto evasion attacks R0{22] and backdoor
attacks [23,24]. In a backdoor attack [25], an attacker embeds a backdoor with a speci ¢ pattern into
the machine learning model. For backdoor attacks in TL, the atacker can poison source-domain data
to insert a backdoor. The resulting infected model will misdassify a test sample with a backdoor trigger
into a prespeci ed class while still maintaining good perfamance on benign samples. Backdoor injection
usually happens in the training phase when third-party data or models are used. In cross-subject TL,
EEG data in the source domains are the main focus of the attackr, because he/she can o er such data
for public downloading, but it is very dicult to notice or de tect such backdoors. These backdoors
would bring a critical security risk to the target subject, as pointed out in our previous research 20]:
\EEG-based BCls could be used to control wheelchairs or exd®letons for the disabled, where adversarial
attacks could make the wheelchair or exoskeleton malfunctin. The consequence could range from merely
user confusion and frustration, to signi cantly reducing t he user's quality of life, and even to hurting the
user by driving him/her into danger on purpose".

This study considers a new attack scenario in EEG-based BClystems, in which a crafted trigger is
added to the source data to create a dangerous backdoor in th&L model. A sample with the trigger
(attacked sample) from a new subject will activate the backaor and be classi ed into the target clas®).
At the same time, the benign samples will be normally classied.

Figure 1 illustrates the idea of using data alignment-based unsuperised TL. Assume that the data of
multiple source-domain subjects are obtained from a third m@rty, some EEG samples in them have been
inserted with a trigger (e.g., a narrow period pulse (NPP) orother types), and their labels are modi ed to
the target class. An innocent user aligns the EEG data in the airget domain with those in the poisoned
source domains and then uses them together in TL for traininga target domain model, completing the
backdoor injection. In the test phase, the infected model wi classify benign EEG samples in the target
domain into its correct class, but it will misclassify those with the trigger into the target class speci ed
by the attacker.

To improve the attack e ciency and stealthiness, we proposeseveral active poisoning (AP) strategies
to select samples in the source domains that are most bene al to poison, including maximum diver-
sity sampling (MDS), representativeness and diversity sarpling (RDS), minimum uncertainty sampling
(MUS), minimum model change sampling (MMCS), and their comhinations. Experiments on four EEG
datasets and three convolutional neural network (CNN) modés validated that TL in EEG-based BCls is
vulnerable to backdoor attacks, and our proposed AP strateges can improve the attack success rate and
stealthiness.

In summary, we make the following contributions.

(1) Although TL is extensively used in EEG-based BCls to redwce their calibration e ort, its security
has not been investigated in the literature. This is the rst study to show that backdoor attacks could
be performed on TL models in BCls.

(2) We propose several AP strategies to optimally select saee-domain samples to poison, making
backdoor attacks e cient and stealthy.

(3) We show that backdoor attacks on TL models in EEG-based BQs can achieve great success on
four EEG datasets and three CNN models, even in very challengg scenarios, such as ne-tuning and
data augmentation. We also verify that the AP strategies can greatly improve the attack success rate
compared to traditional backdoor attacks under the same pasoning rate in di erent scenarios.

The rest of the paper is structured as follows. Section2 introduces related works on adversarial
attacks in BCls, TL, and active learning (AL). Section 3 proposes our backdoor attack scheme to TL in
EEG-based BCls and several AP strategies. Sectiod evaluates the attack performance of our proposed
approach. Finally, Section5 draws conclusions.

1) Cross-subject transfer and cross-session transfer are e ssentially the same in TL. They are common in research and pra ctice.
Cross-task TL, where the label spaces of the source and targe t domains are di erent, is di cult and rarely studied in EEG- based
BCls. To our knowledge, only one work [ 19] has considered cross-task TL in EEG-based BCls so far.

2) Target class or target label refers to the attacker-speci ed class in backdoor attacks, which is dierent from the con cept of

the target domain in TL.



Jiang X , et al. Sci China Inf Sci August 2023 Vol. 66 182402:3

[ ___________________________________ =
| |
| A Data A g I
| e ) o AN b alignment A A o O O |
| o ® st A S |
I ® 0 AT A © |
A I
| Source subject 1 e)
I : ©C e © I
Training | O O |
phase | |
| 0@ OO Source subject 2 Train |
O |
I A A
| A D |
o !
| |
I Source subjec® O Benign sample (label 0) Model |
: Multiol b /\ Benign sample (label 1) |
t r t
ultiple source subjects @ Poisoned sample with trigger @ (target label 1)
. ©Posonedsampewithtrigger  @UargetEbel Y |
| I
| I
I A — I
0 O Label 0
I A A © o I
Test [ A A O o O A —» Labell |
phase | ApR A o @ © bel I
e —» | Labell
| L4 0%9 ote O N |
i Attacked Target |
: Target subject sample label |
L I
Figure 1 lllustration of backdoor attacks in TL-based BCls. Circles and triangles represent EEG samples from di erent classes.
The red solid circle indicates the trigger speci ed by the at tacker. In the training phase, the trigger is inserted into s ome source-
domain samples to inject the backdoor, and their labels are m odi ed to an attacker-speci ed class. Then, data alignment is used
to make the data distributions from the source and target dom ains consistent. Finally, the target model is trained on the poisoned
and aligned source-domain data. In the test phase, the class i cation of the benign samples is una ected, but the attacke d samples
(with the backdoor trigger added) will be classi ed into the target class.

2 Related work
This section brie y reviews related works on adversarial atacks in BCls, TL, and AL.

2.1 Adversarial attacks in BCls

Recent studies have shown that machine learning models areulnerable to adversarial attacks, posing
great security risks. There are two main types of adversaribattacks: evasion attacks and poison attacks.
Evasion attacks fool a machine learning model by adding impeseptible perturbations to a test sample.
Poison attacks inject deliberately designed poisoned sanigs into the training set to manipulate the
performance of a machine learning model. Backdoor attacks?p] are among the most dangerous poison
attacks, where a secret backdoor is created in the model thaallows the input sample with the backdoor
trigger to be classi ed into a target class speci ed by the atacker.

Many adversarial attacks have been reported in image classiation [ 26], speech recognition 27], and
autonomous driving [28]. In recent years, there have also been multiple studies ondwversarial attacks in
EEG-based BCls. Zhang and Wu RQ] were the rst to point out the existence of adversarial exanples
in EEG-based BCls and performed white-box, gray-box, and bhck-box attacks on three popular CNN
models in BCIs. Zhang et al. R2] showed that a tiny perturbation added to the EEG trial can mi slead
P300 and SSVEP spellers (which use traditional feature extaction and machine learning approaches) to
output any character that the attacker wants. Meanwhile, Liu et al. [21] proposed universal adversarial
perturbations for CNN classi ers in EEG-based BCIs. Both studies explicitly considered the causality
in attacks. Recently, Bian et al. [24] successfully attacked SSVEP-based BCls using square-wawsignals
that are easy to generate and practically realizable.

All the above attacks on EEG-based BCls are evasion attacksMeng et al. [23] were the rst to study
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poison attacks in BClIs. They designed an NPP trigger for poisning training data to embed a secret
backdoor into the classi er. As a result, any test sample with the trigger will be misclassi ed into the
target class. This study is di erent from [ 23] in the following ways.

(1) We consider a more practical TL scenario for backdoor atacks, where the poisoned source data
could be provided for public downloading, and a benign user ses it to train a target model with an
embedded backdoor. We also consider more challenging neashing, data augmentation, and cross-task
TL scenarios.

(2) We propose several AP strategies for selecting poisonesamples, which can further improve the
attack e ciency as compared with random selection in tradit ional backdoor attacks in various scenarios.

(3) In addition to the NPP trigger proposed in [ 23], we investigated other types of noise triggers and
veri ed their e ectiveness in AP attacks.

2.2 Adversarial attacks to TL

Some researchers have studied adversarial attacks on TL mets. Rezaei and Liu 29] implemented an
evasion attack in re-training-based TL, in which the attacker does not need any information about the
target model, except the publicly available pre-trained madel, to generate adversarial examples which can
be classi ed into any target category speci ed by the attacker. Wang et al. [30] also proposed an evasion
attack approach in re-training-based TL. They generated ad/ersarial examples on a pre-trained model by
minimizing the distance between the hidden-layer represetations of the pre-trained model and the target
model. Wang et al. [31] proposed a backdoor attack approach based on three commagnused backdoor
attack defense approaches in re-training-based TL, by modying the parameters of the pre-trained model
to generate a robust backdoor that is dicult to defend against. Kurita et al. [ 32] also implemented
backdoor attacks by modifying the parameters of the pre-traned model.

In summary, most attacks on TL so far were for re-training-based TL, and implemented by modifying
the model parameters. Additionally, none of them considerd EEG-based BCls. To our knowledge, we
are the rst to perform backdoor attacks by modifying the source-domain data, rather than the model.
Also, we are the rst to study backdoor attacks to TL models in EEG-based BCls.

23 AL

AL [33] is an e ective approach to reduce the data labeling e orts, by optimally selecting the most
useful instances to label. Many AL strategies, e.g., uncedinty sampling [34], expected model change
maximization [35], and RDS [36] have been proposed.

In the traditional data poisoning process of backdoor attads, the trigger is placed in a number of clean
samples which are randomly chosen from a training data set, rabling the model to learn a backdoor
pattern. Section 3 introduces several AP strategies to expdite backdoor learning. Dierent from the
typical idea of AL that the selected samples are given to an cacle for labeling, in AP the selected samples
are labeled into the target class, regardless of their true lass.

3 AP for backdoor attacks to TL in BCls

This section introduces the attack scenario in TL-based BCs, the backdoor trigger, and our proposed
AP strategies for poisoned sample selection.

3.1 Attack scenario

This work aims to attack the TL model in BCls. Assume that the attacker can poison the source-domain
data, which is possible in practice. For example, the attacler can collect some benign EEG data, add
poisoned samples, and then o er them for downloading. In dowloading such data, the user usually needs
to Il out a form to indicate his/her a liation, so the attack ers know who is using the poisoned data.

We assume a data alignment based o ine TL is used in EEG-basedBCls. Assume also there areS
source subjects, and thes-th source subject hasNs labeled EEG samplesf (X 2;y?)ghs, , where X[ 2
RC T is the n-th EEG sample andy? the corresponding label, in whichC is the number of EEG channels
and T the number of time domain samples. For binary classi cation the label for X isy? 2 f 0;1g. The
target subject hasN; unlabeled samplesf X"gh.; .
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The attacker selectsP non-target samples (i.e., Class 0) from the data of the soure subjects randomly
or using an AP strategy described below, adds the crafted tigger x to each channel of them, and
changes their labels to the target class (i.e., Class 1) to dhin the poisoned samples €P; 1)5;0, where
P+ Py + + Ps = P. Once the poisoned-source data are used in TL, the backdoos iautomatically
inserted.

For a new subject, the attacker injects the same backdoor tgger as in the source domain into the
EEG sample of the target domain. Then, the samples with the bakdoor trigger will be classi ed into
the target class speci ed by the attacker, and all benign samples will be classi ed normally. In practice,
using a simple, periodic and phase-independent trigger is ore realizable for attacking an online BCI
system.

3.2 Trigger design

We apply the NPP trigger proposed by Meng et al. R3] in our backdoor attacks, because it is easy to
implement and practically feasible, e.g., NPP as a type of common interference noise can be injected into
EEG signals during data acquisition.

A continuous NPP can be determined by an amplitudea, a period T, a phase , and a duty cycle d,
ie.,

8
20 nT6t<nT + ;
Ne()=_ & nT+ 6t<nT +dT+; 1)
00 nT+dT+ 6t< (n+1)T:

We set a random for each attacked samples to reduce the dependency of the Hedoor on the phase,
so that the backdoor attack performance is insensitive to ifection time.
After discretization with a sampling rate fs, the NPP can be expressed as

8
20 nTfg6 i< (nT + )fg;
Ng(i) = S & (nNT+ )6 i< (nNT +dT+ )fg; (2)
0, (NT+dT+ )s6i< (n+1)Tfg:

The discrete NPP was used as the triggek 2 R 7. Given an EEG sampleX" 2 R® T, the poisoned
sample X" can be obtained by adding the trigger to all channels simultaeously:

XU=X"+1 x ; (3)

where1 2 R® ! is a column vector with all ones.
Compared with artifacts in EEG signals, the backdoor triggers have higher requirements on controlla-
bility and repeatability. In addition to NPPs, other possib le triggers are discussed in Subsectiod.7.

3.3 Active poisoning

Intuitively, if there are more poisoned samples in the soure domain, then it is easier to learn the trigger
pattern and perform backdoor attacks. However, poisoning b0 many samples reduces the stealthiness of
backdoor attacks. It is desirable to select a small number ofamples that are most e ective in embedding
the trigger.

AL aims to select a few most useful unlabeled samples to labdbr training, so that good learning
performance can be achieved from a small nhumber of labeled sgles. Inspired by AL, we propose
several AP strategies below.

3.3.1 MDS

Diversity-based AL approaches, e.g., GSx, GSy, and iGS3[7], query the most scattered samples to label,
so that a good global model can be learned. In backdoor attack diversity is also an important criterion
for selecting the poisoned samples: if the poisoned samplese distributed in the entire input and/or
output space, then the trigger is more universally embeddednto the model, and hence it is easier to
perform backdoor attacks.
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Figure 2 lllustrative examples for AP strategies in binary linear cl
(d) combinational AP: MUS/MMCS + MDS.

assi er. (a) MDS; (b) RDS; (c) model-based AP: MUS/MMCS;

We use the Euclidean distance to measure the diversity. Firs we calculate the distance between each

S
sample and other samples in all source EEG datd = fX"g,3* Ne with the feature extractor g and
compute
dX™=_min  g(X") g(Xx") ; @)
xn%p xn

i.e., the minimum Euclidean distance betweenX " and all other source-domain samples< N2 p X0
in feature space. The topP samples with the maximum diversities are then selected as th candidates
for poisoning, as shown in Figure2(a).

In addition, the diversity criterion can be combined with a m odel-based approach to enhance the AP
performance, as shown later in this paper.

3.3.2 RDS

Representativeness is also an important criterion in AL B6]. It selects for labeling the samples that
can represent as many surrounding samples as possible, j.¢hose close to the cluster centers, to avoid
selecting outliers. Usually, the representativeness andhte diversity cannot be maximized simultaneously,
so we need to nd a good compromise between them.

RDS AP uses a clustering-based approach to select both repsentative and diverse samples for poi-
soning. Speci cally, we rst perform k-means k = P) clustering on all source domain EEG samples,
and then selectP samples closest to theP cluster centers (one sample from each cluster) to poison, as
shown in Figure 2(b). The samples near the cluster centers are the most represitative among clusters;
di erent clusters scatter the entire feature space, which @sures diversity.

In fact, RDS AP is identical to the RD AL approach proposed in our previous work [36], though the
latter was for regression problems.
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3.3.3 MUS

Uncertainty sampling is a classical AL approach, which selets the samples whose estimated labels are
most uncertain, e.g., closest to the decision boundary, fotabeling. For a classi er with probabilistic
output, the uncertainty of an unlabeled sample X" can be measured by the Shannon entropy:

X
u(x") = p(yiX ") log p(yjX "): ®)
y

In contrast to AL, AP selects the samples with the lowest uncetainty for poisoning in backdoor attacks.
The rationale is as follows: since the original model has lowncertainty (high classi cation con dence) on
these samples, e.g., these samples are far away from the dasation boundary, as shown in Figure 2(c),
poisoning these samples and changing their labels would by large distortion to the decision boundary;
if the high-con dent samples can be misclassi ed when the tigger is added, then those less-con dent
ones will also likely be misclassi ed with the trigger.

To perform MUS, we rst train a probabilistic classi er on th e EEG samplesf X “gn% Ne from the S
source subjects to obtain the posterior probability of nontarget samples, and then calculate the entropy-
based uncertaintyu(X ") in (5). The top P samples with the minimum entropy values are selected as the
candidate samples for poisoning. For binary classi cation as frequently used in BCls, this is equivalent
to choosing the non-target samples with the largesip(0jX ") for poisoning.

3.3.4 MMCS

Another popular AL approach, expected model change maximiation [35], estimates the model parameter
change caused by the addition of unlabeled sample(s) and saits those with the maximum change to
label. The rationale is that a sample that can bring a big charge to the model is usually informative.
MMCS is a model-speci ¢ AL approach. When the cross-entropyloss is used in gradient descent opti-
mization of a binary logistic regression classi erf , the model change on a samplX " can be approximated

as B9
(X" =(f(X")  yX" (6)

where y is the ground-truth label of the unlabeled sample X", which is unknown in AL but can be
estimated using the expectation over all classes.

In contrast to AL, AP chooses the samples that minimize the malel change for poisoning in backdoor
attacks: if the samples that have the least in uence on the malel parameters can successfully create a
backdoor after poisoning, i.e., the infected model is very ensitive to the backdoor trigger, then other
samples that have more in uence to the model parameters are lao likely to perform backdoor attacks
successfully.

More speci cally, we rst train a source model f on all EEG samplesf X “gn}ll N to obtain the softmax
output of the non-target samples, and usey = 0 in ( 6) to compute the model change of each sample,
c(X"). Finally, we choose the top P samples with the minimum model changes as the candidates for
poisoning, as shown in Figure2(c).

3.3.5 Combinational AP (MUS/MMCS+MDS)

As stated above, MUS and MMCS are model-based AP approachesgshich need to train a source model
f. Their main idea is to select the samples far away from the cwent decision boundary, as shown
in Figure 2(c), though their implementations are di erent. The selected samples may be concentrated
together, making the embedded backdoor pattern inapplicake to the entire input space.

The diversity-based MDS AP can be combined with the model-baed MUS or MMCS AP to select
samples for poisoning, by exploiting the input and output information simultaneously, as shown in Fig-
ure 2(d).

Speci cally, MUS+MDS measures the uncertainty u(X") in (5) and the distance d(X") in (4),
normalizes their values to the same range, and then adds therap:

du(X"™) = Normalize(d(X ")) Normalize(u(X")): @
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Similarly, MMCS+MDS computes
de(X ") = Normalize(d(X ")) Normalize(c(X ")): 8)

Then, we select the topP samples with the maximumdu(X ") in MUS+MDS or d¢(X ") in MMCS+MDS
as the candidates for poisoning.

4 Experiments and results

Experiments were performed in this section to verify the e ectiveness of our proposed AP approaches.
4.1 Datasets

The following four datasets were used in this study, as in18,20], including two datasets (P300 and ERN)
on event-related potentials and two Ml datasets in BCl Compsition IV 3,

P300 evoked potentials (P300). The P300 dataset B8] was collected from eight subjects, who
faced a laptop on which six images were ashed randomly to etit P300 responses. The goal was to
classify whether the image is target or non-target. The EEG @ta were recorded from 32 channels at
2048 Hz. We applied a [140] Hz band-pass lter and downsampled them to 128 Hz. Next, w extracted
the [0; 1] s EEG epochs after each image onset and standardized thensing z-score normalization. Each
subject had about 3300 EEG epochs.

Feedback error-related negativity (ERN). The ERN dataset [39] was used in a Kaggle competi-
tion* for detecting errors during the P300 spelling task, in orderto determine whether the selected item
was correct by analyzing the EEG signals after the subject reeived feedback. It is a binary classi cation
dataset collected from 26 subjects with 56 channels, and pétioned into a training set of 16 subjects and
a test set of 10 subjects. Our experiments only used the 16 sjdxts in the training set. We also applied
a [1;40] Hz band-pass lter, downsampled the EEG signals to 128 Hzextracted EEG epochs between
[0; 1:3] s, and standardized them usingz-score normalization. Each subject had 340 EEG epochs.

MI1. The MI1 dataset was Dataset 2& [40] in BCI Competition IV. It was collected from nine
subjects and included four classes: imagined movements ohé “left-hand’, ‘right-hand’, "both feet',
and ‘tongue'. The 22-channel EEG signals were recorded at P5Hz. We applied a [830] Hz band-
pass lter, downsampled the EEG signals to 128 Hz, extractedEEG epochs between [(5; 3:5] s, and
standardized them usingz-score normalization. Only two classes (left-hand' and ight-hand') were used
in our experiments. Each subject had 144 epochs, 72 in eachasis.

MI2. The MI2 dataset was Dataset P [41] in BCI Competition IV. It includes 59-channel EEG
signals from seven subjects. The same two classes (left#idl and ‘right-hand’) were selected and the
same preprocessing as MI1 was carried out. Each subject haddQ epochs per class in the calibration
phase with complete marker information.

4.2 CNN models

Three CNN models were used in our experiments, as ir2p, 21].

EEGNet. EEGNet [42] has a compact EEG-specic CNN architecture. It contains a temporal
convolutional block, a depthwise separable convolutionablock and a classi cation block. The depthwise
separable convolution can reduce the number of model paranters and learn a good feature map.

DeepCNN. DeepCNN (3] consists of four convolutional blocks and a classi cationblock. The rst
convolutional block is a combination of a temporal convoluion and a spatial Iter for handling multi-
channel EEG signals, and the other three are standard convakional-max-pooling blocks.

ShallowCNN. ShallowCNN [43] is a shallow version of DeepCNN. It has only one convolutioal block
which is similar to the rst convolutional block in DeepCNN, but with a larger kernel size, a di erent
activation function, and a di erent pooling approach.

We used Adam optimizer, cross-entropy loss, and batch size46 Early stopping was used to reduce
over- tting. For MMCS, we estimated the model change from the change of parameters in the last
classi cation block. MDS and RDS used the input to the last classi cation block as features.

3) http://www.bbci.de/competition/iv/

4) https://lwww.kaggle.com/c/inria-bci-challenge

5) https://www.bbci.de/competition/iv/desc 2a.pdf .
6) https://www.bbci.de/competition/iv/desc A.html .
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4.3 Experimental settings

4.3.1 Attack settings

To simulate cross-subject backdoor attacks in TL-based BC$, for each dataset, we sequentially selected
one subject as the target subject and all remaining ones as #hsource subjects, i.e., we performed leave-
one-subject-out cross-validation to evaluate the attack ad classi cation performance. This procedure
was repeated for each subject, so that each one became the ¢gat subject once for testing, the remaining
ones became the source subjects and were combined for tramg. For P300 and ERN, we performed
under-sampling for each source subject to overcome class lralance. The source data were further
randomly partitioned into 80% training and 20% validation f or early stopping. The entire leave-one-
subject-out cross-validation process was repeated ve tires, and the mean results are reported in all
following subsections.

In each repeat, a small amount of EEG samples in the combinedaosirce-domain samples were poisoned
randomly (baseline) or by AP, then data from dierent subjects were aligned by a TL approach in
Subsection4.3.3 and combined to train deep learning models.

The target label for poisoned samples is “target' in P300, @od-feedback’' in ERN, and “right hand' in
MI1 and MI2. The attacker's goal was to make the model classif any sample in the target domain with
the trigger into “target'/"good-feedback'/ right hand'/ ‘right hand' for P300/ERN/MI1/MI2, no matter
what true labels they have.

4.3.2 Performance measures

We used the following two metrics to evaluate the classi caion and attack performance:

(1) Balanced classi cation accuracy (BCA), which is the average of the per-class classi cation accura-
cies.

(2) Attack success rate (ASR), which is

Number of successfully attacked samples
ASR = :
Total number of attacked samples

9)

A successfully attacked sample is the one with the trigger aded and successfully classi ed into the target
class specied by the attacker. To ensure the ASR is caused $&ly by a backdoor attack instead of
inaccurate predictions, we computed the ASR on the correcyf classi ed non-target samples only, i.e., if
a non-target sample is already misclassi ed into the targetclass without adding the trigger, then it is
not counted in neither the numerator nor the denominator of (9).

The clean target-domain data were used to compute the BCA, ad the poisoned target-domain data
were used to compute the ASR.

4.3.3 TL approach

Since EA has demonstrated outstanding TL performance in bol traditional machine learning and deep
learning [18,44], it was used in our experiments.
For each source domairf X " gl\z; , EA rst computes the mean covariance matrix of all EEG trial s by

Rs= o X&(XH)T; (10)

then performs the following transformation to each trial:
XD = R 12X (11)

)@Q then replaces the originalX{ in all subsequent signal processing and machine learning.

Similarly, for the target-domain samples, we computed the nean covariance matrix R; and obtained
the aligned EEG samplesX .

In backdoor attacks, we assume the attacker rst adds the bakdoor to some selected source domain
non-target samples, then an innocent user downloads the psoned dataset and uses it with his/her own
data for TL. Thus, EA should be performed after source-doman data poisoning.



Jiang X , et al. Sci China Inf Sci August 2023 Vol. 66 182402:10

P300 ERN Mi1 Mi2
1.0 1.0 1.0 1.0
i
0.8 0.8 0.8 ﬁ @ 0.8
061 % ﬁ% é% 0.6 @ % 0.6 0.6 4
< < < <
O O (S} O
0.4 © 0.4 @044 0.4
0.2 I Unpoisoned 0.2 4 I Unpoisoned 0.2 4 I Unpoisoned 0.2 I Unpoisoned
I Poisoned W Poisoned [ Poisoned [ Poisoned

0.0 N T T 0.0 N T T 0.0 T T T 0.0 ™ T T
EEGNet  DeepCNN ShallowCNN EEGNet  DeepCNN ShallowCNN EEGNet  DeepCNN ShallowCNN EEGNet  DeepCNN ShallowCNN

Model Model Model Model

Figure 3 BCAs with and without poisoned samples.

Table 1 Classi cation and attack performances (%) with poisoning r ate 5% 2
Baseline Active poisoning
Dataset Model Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS
BCA ASR

BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

0:4 62:0 83:2 62:1 80:9 62:6 86:3 61:8 92:1 61:4 94:3 62:1 92:0 62:3 93:2
0:1 62:9 79:0 63:2 82:3 63:5 84:9 63:0 88:8 63:1 91:3 62:8 91: 63:3 92:9
0:3 59:7 31:8 60:0 41:6 60:3 43:0 59:6 40:2 59:3 43:9 60:3 47: 59:6 50:4

EEGNet 62
P300 DeepCNN 62
ShallowCNN 60

1:5 63:7 78:1 63:9 87:6 63:7 87:9 62:9 91:7 63:3 92:7 63:1 93: 63:0 94:0

6

3

EEGNet 64 6
2:4 65:0 75:8 64:7 86:9 65:8 87:9 64:4 90:0 64:8 92:0 64:7 92:3 649 92:4

5

2

7

3

ERN DeepCNN 66

ShallowCNN 64 7:1 63:8 38:1 63:2 70:4 63:4 725 62:6 71:4 62:8 71:2 62:7 7T7: 62:7 77:1

76:5 98:9
74:0 85:2
70:6  29:9

4:5 757 96:6 76:2 99:0 76:6 98:2 75:6 99:3 759 99:1 76:7 99:
0:3 72:7 61:6 74:4 82:3 74:.0 86:2 72:7 86:2 73:7 87:4 73:3 86:
0:0 71:1 5.0 70:7 17:4 71:1 24:3 67:9 145 68:6 17:0 70:0 30:

EEGNet 75
MI1 DeepCNN 74
ShallowCNN 74

Ok N|N o ©|lo © w»

EEGNet 698 08 671 734 682 824 684 835 672 817 675 83 .1 684 857 68.1 84.8
Mi2 DeepCNN 712 0.1 699 56.1 713 795 714 86.9 68.3 813 69.8 833 706 854 712 85.0
ShallowCNN 759 0.1 715 331 723 730 700 919 704 584 70 5 633 711 926 70.6  92.0

EEGNet 68.2 18 671 828 67.6 874 678 89.0 669 912 670 92 3 67.6 926 67.5 927
Average DeepCNN 68.7 0.7 67.7 681 684 828 686 864 671 866 679 8 85 67.8 89.0 68.4 88.9
ShallowCNN 68.8 19 66.5 27.0 66.6 506 66.2 579 651 46.1 65 .3 488 66.0 619 659 623

a) The best two ASRs for each model and each dataset are marked in bold.

We rst compared the BCAs of EA when 5% source-domain data wee poisoned, with those when no
data were poisoned at all. The results are shown in Figur&. The BCAs with and without data poisoning
were very similar, i.e., the injected NPP trigger did not signi cantly change the TL performance, which
is desirable. However, we still want the number of poisoned amnples to be as small as possible, since
the trigger has a xed pattern, and taking a simple average ofa large amount of poisoned samples may
expose it.

4.4 Attack performance

4.4.1 Baseline

First, we evaluated the baseline performance on the benign odels, i.e., the models trained on the clean
aligned source-domain data. The BCAs and ASRs of di erent malels and datasets on the target-domain
data are shown in the "Baseline' panel of Tablel. The baseline BCAs were obtained without using any
labeled target-domain data. They were well above the 50% chece level for binary classi cation, indicating
the e ectiveness of TL. However, the ASRs were mostly closed zero, i.e., when the source-domain data
were not deliberately poisoned to embed the backdoor, the igger had little e ect on attacking the target
model.

4.4.2 AP attacks

We used the NPP trigger with period T =1 s, duty cycle d = 20% and a random phase in [0; 0:8]T
for all poisoned samples. The amplitudea was set to 0.2%, 15%, 30%, and 100% of the mean channel-
wise standard deviation of the EEG amplitude for P300, MI1, MI2, and ERN, respectively. Di erent
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Figure 4 (a) The NPP trigger and (b) EEG signal of the rst ve channels before and after poisoning. Best viewed in color.
amplitudes were used on the three datasets because the rargjef EEG amplitudes in di erent datasets
varied signi cantly.

An example of the added NPP trigger and the EEG signal before ad after poisoning MI1 is shown in
Figure 4. The poisoned sample with the NPP trigger is almost identicd to the benign sample (NPP with
a=30%, d=20%, and = 0:5T was used for this example), making the trigger very di cult t o notice.

When the poisoning rate was 5%, the classi cation and attackperformances of di erent AP strategies
are shown in the “Active poisoning' panel of Tablel, where "TRandom' means the poisoned samples were
randomly selected from the non-target class of the source da, and the others were selected by various
AP strategies from the non-target class of the source data. @ble 1 shows the following results.

(1) The BCAs of all AP approaches were very close to those in Bseline, indicating that introduc-
ing poisoned samples or embedding a backdoor did not signiantly degrade the normal classi cation
performance, if the input target-domain samples did not conain the trigger.

(2) The ASRs of dierent AP approaches were signi cantly imp roved over Baseline, indicating the
e ectiveness of backdoor attacks, i.e., once the NPP triggewas added to a non-target sample from the
target subject, the model would very likely misclassify it into the target class.

(3) Our proposed AP strategies, including MDS, RDS, MUS, MMCS and their combinations, generally
achieved higher ASRs on di erent models and datasets, compad with Random, e.g., 83.2% (Random)
versus 94.3% (MMCS) for EEGNet on P300, indicating that AP can improve the attack e ciency under
the same poisoning rate.

(4) The ASRs of MUS and MMCS were generally higher than those bMDS and RDS, likely because
MUS and MMCS are supervised and model-based approaches, whi can utilize more information than
the unsupervised MDS and RDS approaches.

(5) The attack performance of RDS was better than that of MDS, suggesting that it is better to
consider both representativeness and diversity in AP than dversity only.

(6) The ASRs of the combinational approaches that integrateMUS/MMCS with MDS (the last two
columns in Table 1) were generally higher than those of MUS/MMCS, indicating that considering uncer-
tainty/model change and diversity simultaneously helped improve the attack e ciency.

Figure 5 shows the BCAs and ASRs at di erent poisoning rates on the fou datasets. The parameters
of the NPP trigger on each dataset were the same for di erent @&ep learning models, so the robustness
of di erent models can be compared. We have the following obsrvations.

(1) Generally, as the poisoning rate increased from 1% to 10%he BCAs of all AP strategies remained
stable and comparable to those of Baseline, indicating thatackdoor attacks in TL did not degrade the
classi cation performance on normal samples and was di cult to detect.

(2) The ASRs of all AP strategies on all four datasets and for # three deep learning models increased
rapidly as the poisoning rate increased, especially for EEGet and DeepCNN. The ASRs of ShallowCNN
were relatively low when the poisoning rate was small, likel because ShallowCNN has small capacity to
remember the trigger pattern, which was also found in §5, 46].

(3) Generally, our proposed AP strategies achieved higher BRs than Random. As the poisoning
rate increased, the ASR improvement of AP gradually vanishé. This is consistent with traditional AL
approaches. As more poisoned samples make the backdoor eadio detect, we prefer a small poisoning
rate in practice, and hence the proposed AP approaches are digable.
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Figure 5 BCAs and ASRs at di erent poisoning rates on (a) P300, (b) ERN , (c) MI1, and (d) MI2.

(4) Consistent with the observations from Table 1, generally the combinational AP strategies achieved
higher ASRs.

4.5 Model consistency

As demonstrated in Subsection3.3, MUS and MMCS are model-based approaches, i.e., they selette
most useful samples for poisoning based on the predictionsf the model trained on the source data. In
previous experiments, the attacker model used in these AP ggroaches was consistent with the user model
in TL, e.g., when the user model in TL was EEGNet, the AP approaches also used EEGNet. However,
in practice the attacker does not know which machine learnirg model the user would use.
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Figure 6 ASRs when the attacker and the user use di erent models. (a) M Us; (b) MMCS.

This subsection studies how the model consistency a ects th attack performance. The ASRs when
MUS and MMCS used di erent models from the user model in TL, with a 10% poisoning rate, are shown
in Figure 6. The horizontal axis represents the user model, and di ereh bars represent the ASRs when
using di erent MUS and MMCS models. "Baseline' (black dot) represents the ASRs when the source-
domain data were not poisoned at all. Clearly, both MUS and MMCS always achieved much higher ASRs
than Baseline, regardless of the user model. That is, althogh the AP approaches are model-based, they
do not require the machine learning model to be consistent wh the one used by the user in TL for good
attack performance. This makes backdoor attacks much easieto perform in practice, and also more
dangerous.

4.6 Stability of AP

The above experimental results showed the average performae of all subjects on each dataset. In order
to demonstrate the stability of our proposed AP approaches aross di erent subjects, we further analyzed

the results on each subject on P300 individually, as shown irFigures 7{9. We computed the average
ASRs from ve runs for each subject on P300 using three di eret deep learning models. The poisoning
rates of all AP approaches on EEGNet/DeepCNN/ShallowCNN wee 5%/5%/8%, respectively.

Additionally, we computed the number of samples selected fopoisoning by di erent AP approaches
from each source subject, when subject 2 was the target sulge (the reason for choosing this subject was
that the ASR on this subject was relatively low). The results are shown in the third row of each gure.
Figures 7{9 show the following results.

(1) The BCAs of each subject for di erent deep learning mode$ were similar, all around 0.6. Di erent
AP approaches did not change the BCAs on di erent subjects.

(2) The ASRs of dierent AP approaches were higher than thoseof Random. Although there were
obvious di erences in the ASRs on di erent subjects due to individual di erences, especially subject 1,
subject 3, and subject 8, the ASRs almost reached 1 for EEGNettind DeepCNN, and were also very high
for ShallowCNN. The ASRs of our proposed AP approaches wereagerally higher than those of Random
for subjects whose attack performance was not very good.

(3) The third row of the gures shows that the number of samples selected from di erent source subjects
by dierent AP approaches varied greatly. \Random" selected a roughly equal number of poisoned
samples from each subject, which is intuitive. The numbers dsamples selected by MDS and the two
model-based strategies (MUS and MMCS) from di erent subjed¢s were quite di erent, indicating that
not all source subjects were equal in data poisoning. The digbutions of the selected samples from
di erent subjects were similar for the two model-based AP approaches, likely because they both used
information about the model. It seems that poisoning sampls in subject 3, subject 5, and subject 7
were more e ective in improving the ASR of subject 2. Our future work will further investigate backdoor
attacks that are robust to individual di erences.
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Figure 8 Stability analysis using DeepCNN.

4.7 Inuence of trigger

We designed three additional triggers as shown in Figure 0 to investigate the in uence of trigger on AP
approaches. The sine wave and sawtooth wave used the same mat, T = 1 s, as NPP trigger. The
random pulse wasx = sign(U( 0:2;0:8)), where U( 0:2; 0:8) was uniform noise in [ 0:2;0:8]. Min-max
normalization was used to normalize the three types of triggrs to [0, 1]. Finally, they were multiplied by
the same amplitudea to form the triggers.

Tables 2{5 show the results of the three triggers on the four datasets. @arly, backdoor attacks using
di erent triggers were still e ective, and the ASRs were generally even higher than those of NPP. In
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Figure 9 Stability analysis using ShallowCNN.

@ (b) ©

Figure 10 Di erent triggers on MI1. (a) Sine wave; (b) sawtooth wave; ( c) random pulse.

addition, our proposed AP approaches had higher ASRs than Radom in most cases, suggesting the
robustness of backdoor attacks and AP approaches to di erenhtypes of triggers.

In practice, we can select a trigger that is easy to generateral reproduce, and robust for backdoor
attacks. This study selects the NPP.

4.8 More challenging scenarios

4.8.1 Fine-tuning

Some labeled data from the target user may be used to ne-tunehe trained (infected) model. It has
been found that backdoor attacks can still be e ective when mly the last fully-connected layer is ne-
tuned [25]. However, using the clean labeled data to retrain the entie model almost completely eliminated
the backdoor in image classi cation 47,48]. We tested the attack performance of AP approaches under
the challenging end-to-end ne-tuning scenario when 20% saples from the target subject are labeled
and 5% source data are poisoned. The ASRs and BCAs of di erenAP approaches are shown in Tables.

Table 6 shows that

(1) The ne-tuning BCAs were generally higher than those in Table 1, indicating backdoor attacks and
AP approaches did not impact the classi cation performance The ASRs were generally lower than those
in Table 1, consistent with the observations in image classi cation f7,48], i.e., ne-tuning can defend
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Table 2 Classi cation and attack performances (%) with poisoning r ate 5% and di erent backdoor triggers on P300 a)
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS  Average
Trigger Model BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

EEGNet 620 948 623 942 623 96.1 61.8 983 618 988 623 9 86 621 988 621 975
Sine wave DeepCNN 624 90.4 63.4 933 62.6 917 622 964 63.0 978 625 975 628 971 628 95.6
ShallowCNN 60.3 65.3 60.5 78.8 60.6 785 60.0 765 60.2 826 6 00 851 604 860 603 813

EEGNet 62.3 957 618 956 621 97.2 622 985 61.7 99.0 620 9 86 623 99.2 620 98.0
Sawtooth wave DeepCNN 625 86.4 62.7 89.8 624 905 62.1 96.2 626 97.3 625 96.8 623 963 624 945
ShallowCNN 59.7 28.4 60.2 37.7 60.2 413 59.6 36.2 595 403 6 0.1 46.6 60.0 498 59.9 420

EEGNet 62.1 97.0 62.1 97.0 623 98.1 623 988 623 99.0 625 9 9.0 627 995 624 98.6
Random pulse DeepCNN 629 95.6 62.7 96.7 625 974 62.7 98.7 628 99.0 63.2 98.7 627 99.0 628 98.2
ShallowCNN 60.2 74.2 60.4 82.6 60.6 85.6 60.0 858 59.7 885 5 99 895 604 90.7 602 87.1

a) "Average' was calculated excluding "Random' Average AS Rs higher than Random are marked in bold.

Table 3 Classi cation and attack performances (%) with poisoning r ate 5% and di erent backdoor triggers on ERN )
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS  Average

Trigger Model BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

EEGNet 635 945 638 97.9 640 97.1 63.3 982 63.6 984 637 9 88 637 988 637 982
Sine wave DeepCNN 65.2 93.7 66.0 979 65.7 96.4 648 984 653 983 658 98.5 657 985 65.6 98.0
ShallowCNN 64.1 67.9 63.9 90.6 64.7 88.7 63.4 90.1 634 879 6 39 922 638 93.0 638 904

EEGNet 64.0 97.2 643 98.7 649 983 641 988 643 989 643 9 90 641 990 643 988
Sawtooth wave DeepCNN 649 93.6 650 98.0 65.2 976 645 98.1 644 983 645 98.6 643 985 64.6 98.2
ShallowCNN 63.9 65.6 64.2 89.7 645 889 635 873 636 85 6 37 923 636 929 638 894

EEGNet 64.0 98.2 64.2 99.7 642 99.2 63.9 99.8 64.0 99.7 641 9 97 638 99.7 64.0 99.6
Random pulse DeepCNN 65.2 96.5 65.4 99.3 65.8 98.6 656 99.4 657 99.2 65.0 995 647 993 654 99.2
ShallowCNN 63.9 85.6 64.3 97.6 642 955 63.4 96.2 635 953 6 3.0 974 636 981 63.7 96.7

a) "Average' was calculated excluding "Random' Average AS Rs higher than Random are marked in bold.
Table 4 Classi cation and attack performances (%) with poisoning r ate 5% and di erent backdoor triggers on MI1 a)
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS  Average
Trigger Model BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

EEGNet 741 983 76.0 994 765 99.2 756 996 758 994 764 9 96 762 996 76.1 995
Sine wave DeepCNN 729 85.6 73.6 944 742 948 738 97.0 734 972 737 969 73.0 959 73.6 96.0
ShallowCNN 71.8 53.3 70.7 786 710 831 69.8 778 698 771 7 04 842 712 824 705 805

EEGNet 741 970 754 99.1 759 982 755 993 751 994 763 9 95 759 994 757 99.1
Sawtooth wave DeepCNN 742 86.8 73.7 95.0 73.4 955 727 969 734 975 744 96.3 739 949 73.6 096.0
ShallowCNN 71.7 39.2 719 61.6 715 66.3 688 59.0 69.9 60.1 7 08 702 720 720 708 648

EEGNet 76.1 98.3 77.1 99.4 76.8 99.2 765 99.6 769 99.6 772 9 97 77.0 99.6 76.9 99.5
Random pulse DeepCNN 73.0 95.1 749 974 745 973 73.7 988 733 99.1 742 98.1 744 97.4 74.2 98.0
ShallowCNN 73.2 846 73.0 956 726 981 719 97.0 716 974 7 13 975 725 96.7 721 97.0

a) ‘Average' was calculated excluding "Random' Average AS Rs higher than Random are marked in bold.

against backdoor attacks to some extent.

(2) Our proposed AP approaches still achieved higher ASRs tan Random, and the combinational AP
strategies generally had the best attack performance.

(3) The ASRs dropped a lot, especially on P300 and MI1. The reson may be that the NPP amplitudes
on these two datasets were small, and hence ne-tuning can nre easily mask them.

(4) Di erent models had di erent robustness to the same backdoor trigger on the same dataset, e.g.,
EEGNet had strong attack performance against ne-tuning.

Figure 11 shows the BCAs and ASRs of AP when ne-tuned with di erent lab eling rates in the target
domain on MI1 using EEGNet. Intuitively, the classi cation performance gradually improved with the
increase of the number of clean labeled target-domain dataHowever, AP approaches still maintained
good attack performance (high ASRs), outperforming Random
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Table 5 Classi cation and attack performances (%) with poisoning r ate 5% and di erent backdoor triggers on MI2 a)
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS  Average
Trigger Model BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

EEGNet 67.0 923 685 964 69.1 959 67.8 97.1 682 972 683 9 7.8 69.0 979 685 971
Sine wave DeepCNN 709 77.1 729 91.0 715 918 70.7 916 708 913 70.2 915 713 912 712 914
ShallowCNN 72.6 79.5 724 96.8 71.7 98.6 717 969 716 980 7 15 969 723 965 719 973

EEGNet 67.0 875 675 944 67.6 945 66.8 950 66.8 959 674 9 6.8 67.7 963 67.3 955
Sawtooth wave DeepCNN 704 745 726 88.2 725 90.1 709 893 713 909 719 886 736 793 721 877
ShallowCNN 73.6 79.3 723 88.6 724 954 718 89.1 71.0 903 7 23 974 726 962 720 928

EEGNet 67.1 94.7 68.0 978 676 97.7 669 980 674 977 681 9 81 710 849 682 957
Random pulse DeepCNN 71.0 849 73.1 922 724 935 711 952 720 951 719 93.7 722 931 721 938
ShallowCNN 73.0 90.3 72.0 98.3 72.6 99.7 735 965 720 976 7 38 982 734 980 729 98.0

a) "Average' was calculated excluding "Random' Average AS Rs higher than Random are marked in bold.

Table 6 Classi cation and attack performances (%) with poisoning r ate 5% and labeling rate 20% in ne-tuning )

Random MDS RDS MUS MMCS MUS+MDS  MMCS+MDS

Dataset Model BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

EEGNet 62.6 11.0 648 133 651 16.1 63.7 196 637 212 650 22.0 65.1 219
P300 DeepCNN 672 153 682 134 678 116 67.7 22.2 67.6 19.0 68.2 105 67.0 121
ShallowCNN  58.6 1.3 57.4 0.6 58.3 0.7 58.2 0.8 57.6 0.7 58.1 0. 6 58.1 0.5

EEGNet 658 614 671 738 673 751 664 720 665 751 674 79.6 67.0 80.1
ERN DeepCNN 66.1 365 660 580 658 639 654 577 656 585 656 67.7 653 734
ShallowCNN 629 150 66.0 464 66.3 522 661 385 651 462 6 57 614 658 596

EEGNet 757 727 778 884 783 872 770 860 779 90.6 78.1 90.6 78.1 90.4

MI1 DeepCNN 711 128 754 394 733 343 727 29.3 72.7 34.0 74.9 47.0 74.6 39.0
ShallowCNN  73.4 0.9 75.7 7.1 75.4 9.4 75.0 4.2 75.2 5.0 75.5 15.7 74.6 17.2
EEGNet 773 456 786 613 79.0 658 787 75.0 79.1 80.1 78.6 80.7 77.9 82.3
MI2 DeepCNN 70.6 7.8 73.1 238 710 262 715 42.1 69.9 41.0 70.4 49.8 70.6 50.2
ShallowCNN  76.0 1.6 77.5 7.2 79.1 346 759 64.2 76.2 69.8 76. 6 729 77.6 71.8
EEGNet 703 477 721 59.2 724 611 715 63.1 71.8 66.7 72.2 68.2 72.0 68.7
Average DeepCNN 68.8 181 707 337 695 340 693 37.8 69.0 38.1 69.8 43.7 69.4 43.7
ShallowCNN  67.8 4.7 69.2 153 698 242 688 269 685 304 69 .0 376 69.0 37.2
a) The best two ASRs for each model and each dataset are marked in bold.
@
(b)

Figure 11 BCAs and ASRs when ne-tuned with di erent labeling rates on MI1 using EEGNet. (a) BCAs; (b) ASRs.
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Table 7 Classi cation and attack performances (%) with poisoning r ate 5% and di erent data augmentation strategies on P300 a)
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS Average
Data augmentation  Model BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

EEGNet 62.0 81.6 62.3 70.6 62.1 80.2 61.6 924 614 914 619 8 79 618 898 618 854
Noise DeepCNN 629 68.7 63.0 68.9 63.0 749 62.7 88.0 62.8 86.5 63.0 86.4 634 837 63.0 814
ShallowCNN 60.5 56.6 60.9 67.9 60.7 69.0 59.8 73.2 59.9 751 6 0.1 76.1 60.2 782 603 732

EEGNet 62.8 77.2 62.4 659 625 77.2 626 88.1 623 89.7 622 8 39 620 859 623 818
Multiplication DeepCNN 62.7 69.7 63.5 73.4 63.6 77.1 63.2 875 63.2 86.7 63.4 88.7 63.2 857 633 832
ShallowCNN 60.4 44.4 60.5 52.3 60.4 56.0 59.3 59.9 594 63.2 5 9.8 648 59.7 641 59.8 60.1

EEGNet 63.1 81.1 62.7 729 62.8 812 62.6 91.0 623 91.2 625 8 9.0 621 899 625 858
Frequency shift DeepCNN 63.2 48.6 63.3 42.4 63.2 55.3 63.2 66.8 63.0 69.8 63.4 676 634 634 632 609
ShallowCNN 60.4 54.9 60.3 63.5 60.5 659 59.4 69.6 59.4 720 5 9.8 738 59.7 734 59.9 69.7

EEGNet 62.4 80.3 625 71.6 62.6 785 62.1 914 623 91.3 621 9 00 620 927 623 859
Channel weaken DeepCNN 62.8 81.4 63.3 81.8 629 859 62.7 953 62.6 95.0 63.0 95.6 62.7 951 629 914
ShallowCNN 60.7 56.8 60.9 66.9 60.7 68.2 60.3 70.8 60.0 735 6 03 758 604 753 604 718

a) "Average' was calculated excluding "Random' Average AS Rs higher than Random are marked in bold.

Table 8 Classi cation and attack performances (%) with poisoning r ate 5% and di erent data augmentation strategies on ERN 2

Random  MDS RDS MUS MMCS MUS+MDS MMCS+MDS  Average
Data augmentation  Model BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

EEGNet 64.5 85.0 64.3 90.1 64.6 89.7 63.8 93.7 64.1 940 639 9 35 639 93.0 641 923
Noise DeepCNN 65.3 75.1 65.6 88.5 66.0 88.8 64.4 915 65.0 91.0 65.0 916 649 918 651 905
ShallowCNN 64.2 46.4 63.6 73.5 63.7 764 63.6 72.7 633 735 6 34 809 631 828 635 76.6

EEGNet 63.9 86.4 63.1 92.7 635 919 63.6 951 63.2 944 627 9 55 628 955 63.2 942
Multiplication DeepCNN 65.8 75.3 65.2 835 65.2 855 64.1 87.7 64.3 88.7 64.4 89.2 648 89.6 647 874
ShallowCNN 64.5 46.8 63.1 69.4 63,5 71.1 62.7 69.3 624 69.2 6 22 758 621 763 627 719

EEGNet 59.7 734 625 87.2 63.0 851 62.7 88.3 626 884 623 8 9.8 621 89.6 625 88.1
Frequency shift DeepCNN 655 74.1 653 85.7 65.6 86.0 64.4 86.3 64.4 85.8 64.8 89.3 63.8 869 64.7 86.7
ShallowCNN 63.2 435 63.0 66.7 62,5 653 61.3 61.1 619 625 6 1.7 71.0 612 722 619 66.5

EEGNet 64.2 86.8 64.1 90.1 64.1 90.8 63.5 945 634 946 63.7 9 50 637 946 63.7 933
Channel weaken DeepCNN 65.5 79.0 65.2 90.0 65.6 89.7 64.8 92.2 64.9 91.6 65.1 92.0 655 925 65.2 91.3
ShallowCNN 63.7 445 63.3 72.4 63.6 729 622 685 624 694 6 23 789 627 783 627 734

a) "Average' was calculated excluding "Random' Average AS Rs higher than Random are marked in bold.

4.8.2 Data augmentation

Fine-tuning on the clean data is a defense approach after triaing. Input preprocessing can be carried out
during training to defend against backdoor attacks @9,50]. Data augmentation on the raw EEG data is
extensively used in model training to enhance the generalation ability of the model or to alleviate data
insu ciency. Tables 7{10 show the results of using data augmentation strategies of riee, multiplication
and frequency shift in [51] and channel weakening in$2] on the four datasets. The models were trained
on the combination of the transformed data and the raw poisored data, as in p1].

Compared with the results in Table 1, data augmentation strategies had no signi cant defense eect
against backdoor attacks in general. The attack performanes of the AP approaches were still better
than Random, consistent with the above observations.

4.8.3 Simultaneous cross-subject and cross-task TL

Cross-task TL is a challenging scenario in EEG-based BCls, here the labeled data from other similar
tasks (source domains) are used to improve the calibrationdr a new task (target domain) [15. We
consider the more challenging simultaneous cross-subjeend cross-task TL scenario, where cross-task
means transferring between di erent label spaces. Specially, the label space of the target subject is
di erent from that of the source subjects, e.g., the source @ta of “left-hand' and ‘right-hand' Mls may
be used to calibrate “feet' and “tongue' Mls of the target sulect.

In AP attacks, the target label speci ed by the attacker must be from the target label space. Therefore,
we considered the scenario that the label spaces of the soer@and target subjects are partially di erent.
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Table 9 Classi cation and attack performances (%) with poisoning r ate 5% and di erent data augmentation strategies on MI1 a)
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS Average
Data augmentation  Model BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

EEGNet 75.6 91.0 75.7 96.2 75.0 958 743 98.2 744 982 749 9 81 746 979 748 974
Noise DeepCNN 73.1 69.5 74.1 84.1 745 87.4 727 89.2 72.6 88.2 745 875 742 863 737 871
ShallowCNN 71.7 0.6 725 4.1 715 127 679 12 683 17 716 4 3.0 721 448 707 179

EEGNet 76.0 95.7 75.8 97.8 75.2 974 751 99.3 752 99.1 754 9 87 729 745 749 945
Multiplication DeepCNN 729 745 72.7 86.8 72.2 90.7 72.0 90.6 725 915 721 90.7 717 87.7 722 89.7
ShallowCNN 70.2 0.7 70.8 3.3 70.2 125 678 1.7 67.3 17 696 3 9.0 69.6 413 69.2 16.6

EEGNet 755 95.0 76.2 99.0 76.1 98.3 754 99.3 753 99.6 752 9 95 754 99.2 756 99.1
Frequency shift DeepCNN 73.1 344 735 49.4 732 58.2 70.2 550 70.2 51.4 721 699 73.1 646 720 581
ShallowCNN 70.7 04 709 12 701 56 684 06 681 05 694 18 .8 704 223 695 8.2

EEGNet 76.5 97.0 76.8 984 76.8 98.2 759 993 765 99.3 767 9 9.1 764 989 765 98.9
Channel weaken DeepCNN 744 76.7 742 89.9 74.6 94.0 73.6 93.9 73.7 93.8 74.6 946 745 928 742 932
ShallowCNN 71.1 1.3 70.7 9.6 70.1 27.7 684 32 684 38 684 6 39 684 649 691 289

a) "Average' was calculated excluding "Random' Average AS Rs higher than Random are marked in bold.

Table 10 Classi cation and attack performances (%) with poisoning r ate 5% and di erent data augmentation strategies on MI2 2

Random  MDS RDS MUS MMCS MUS+MDS MMCS+MDS  Average
Data augmentation  Model BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

EEGNet 67.7 68.6 69.6 85.1 69.9 859 68.8 84.8 688 86.0 69.2 8 85 69.1 880 69.2 86.4
Noise DeepCNN 70.2 548 71.0 81.6 71.0 85.7 70.7 84.0 70.3 83.0 71.8 853 719 618 711 802
ShallowCNN 71.9 61.8 72.0 86.9 715 91.7 71.3 84.6 710 882 7 16 933 713 933 714 897

EEGNet 67.8 86.4 69.4 94.0 69.3 945 68.6 938 69.4 943 69.1 9 6.0 685 957 69.0 94.7
Multiplication DeepCNN 714 66.1 72.3 895 728 919 71.0 919 70.4 90.6 72.6 91.2 712 703 717 876
ShallowCNN 71.2 70.3 72.0 86.3 71.0 96.3 70.3 87.7 70.1 888 7 16 944 712 942 710 913

EEGNet 68.8 746 69.5 91.4 69.5 923 689 879 69.2 91.7 693 9 3.7 69.0 935 692 917
Frequency shift DeepCNN 719 59.6 71.8 89.9 719 919 715 885 715 89.6 70.9 921 717 90.0 716 90.3
ShallowCNN 70.2 68.1 70.7 77.8 71.1 85.2 685 76.8 69.5 773 7 03 952 699 929 70.0 84.2

EEGNet 68.6 83.4 68.6 834 69.1 84.0 67.8 818 683 84.1 681 8 6.2 683 858 684 84.2
Channel weaken DeepCNN 73.0 575 725 845 719 90.1 714 86.6 71.0 885 71.6 89.3 721 898 717 88.1
ShallowCNN 71.6 65.5 71.0 85.6 71.1 96.5 69.7 81.4 69.6 839 7 06 961 71.0 963 705 90.0

a) "Average' was calculated excluding "Random' Average AS Rs higher than Random are marked in bold.

Cross-task TL. We used label alignment (LA) [19] to align the source data to the target data. Assume
the target subject and the source subjects have the same nunda of classedM , but their class labels are
partially di erent. The goal of LA is to transform the trials of the m-th (m =1;2;:::;M) class from

covariance matrix from that in the m-th class of the target subject, i.e.,
Asm =argmin KARsm AT RymkZ;, m=1;2:::;M;s=1;2:::;S; (12)
A
where Rs.m is the mean covariance matrix of them-th class of the s-th source subject, andRn the

mean covariance matrix of the corresponding target class.
The transformation matrix for the m-th class of the s-th source subject is then

1 1
Asm = RZ, Red: (13)

Rem requires some label information in target subject, which ca be solved by selecting a small number
of target samples byk-means clustering based on Riemannian distance for labeln
Finally, the n-th trial in the m-th class of the s-th source subject is transformed to

Xn = Aem X2 n=1;110Ne: (14)

As we consider partially di erent label spaces between the surce and target subjects, we match the
label of each source subject with the same label of the targesubject, and then randomly match each
remaining source label with a remaining target label, as in 19].
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Table 11 Classi cation and attack performances (%) with poisoning r ate 20% in simultaneous cross-subject and cross-task TL
scenario on the three-class MI1 dataset @

Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS Average

Model
BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR

EEGNet 709 247 697 283 706 291 704 259 708 276 715 2 41 703 20.3 705 259

DeepCNN 70.3 203 69.7 212 706 207 69.6 257 69.8 217 694 220 713 19.1 70.0 21.8
ShallowCNN  74.2 6.5 708 11.3 736 6.6 72.0 52 72.4 5.8 73.8 7 7 74.1 7.7 72.8 7.4
a) "Average' was calculated excluding "Random' Average AS Rs higher than Random are marked in bold.
Table 12 Computational cost (s) of di erent AP approaches on the four datasets using EEGNet as the target model, running on

a single GeForce GTX 1080 GPU

Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS
P300 111.79 129.95 142.77 181.53 120.65 134.93 128.55
ERN 49.66 103.98 95.07 102.37 76.97 70.68 69.03
Mi1 63.57 107.56 100.14 73.60 105.96 80.37 78.55
Mi2 33.54 66.03 73.97 64.58 66.12 62.10 60.77
Table 13 Classi cation and attack performances (%) with poisoning r ate 5% on traditional models
Baseline Active poisoning
Random MDS RDS MUS MMCS MUS+MDS MMCS+MDS
Dataset Model BCA ASR
BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR BCA ASR
P300 xDAWN+SVM 58.3 135 57.1 918 579 731 57.1 904 56.3 95,0 56.7 951 564 941 566 913
ERN xDAWN+SVM 65.1 9.1 647 324 645 29.0 639 36.4 620 414 619 406 625 412 634 307

MI1 CSP+SVM 716 00 715 00 678 03 719 00 685 00 657 O 2 678 04 66.6 0.0
MI2 CSP+SVM 795 00 79.0 02 656 00 662 00 715 00 726 O 0 69.1 00 68.0 0.0

Average { 68.6 57 681 31.1 64.0 256 648 31.7 646 341 642 340 640 339 636 305
a) The best two ASRs are marked in bold.

Results. We performed leave-one-subject-out cross-validation ontte three classes (‘left-hand', “right-
hand', and “tongue'’) of MI1 for cross-subject evaluation. The dataset was further divided into a source
sub-dataset that had the two classes of ‘left-hand' and ‘rigt-hand' and a target sub-dataset that had
the two classes of “tongue' and ‘right-hand' for cross-taskvaluation using LA. We setk = 10 in k-means
clustering of LA, and the target label for AP attacks as ‘right-hand. All other parameters were the same
as those in Subsectiom.4.2 The average results of ve repetitions are shown in Tablell.

The classi cation tasks were still successful (the BCAs wee well above the 50% chance level for binary
classi cation), when the source subjects and the target sufect had di erent label spaces, indicating the
e ectiveness of LA. AP approaches slightly outperformed Raadom in most cases, but the ASRs were
much lower than those in previous experiments. This may be beause LA transforms each class by a
di erent matrix, and hence the actual backdoor is distorted (much di erent from the original backdoor).

4.9 Computational cost

Table 12 shows the computational cost (s) of di erent AP approaches a the four datasets using EEGNet
as the target model, averaged over di erent subjects. It indudes the time of two stages: the attacker
generates the backdoor trigger on the source data, and testthe infected model on the target subject.
Generally, the computational costs of our proposed AP appraches and Random selection are comparable.
Due to the use of early stopping, the results on di erent datasets were sometimes inconsistent.

410 AP attacks on the SVM classi er

To our knowledge, no backdoor attack approach has been propsed for traditional classi ers. We tested
our AP approaches on the SVM classi er. Speci cally, the sane trigger settings as in Subsectioré.4.2
on the CNN models were applied. XDAWN spatial Itering [ 53] and SVM classi er were used on P300
and ERN, and CSP ltering [ 54] and SVM on MI1 and MI2. The results are shown in Table13.
"CSP+SVM' model for Ml had strong resistance to backdoor attacks, resulted in nearly zero ASRs.
Attacks on "XDAWN+SVM"' model for P300 and ERN were still e ec tive. The model-based AP approaches
(MUS and MMCS) achieved better attack performance (higher ASRs) than Random, as for CNN models.
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However, the diversity-based AP approach, MDS, was ine ecive in attacking the traditional models. Our
future research will try to improve it.

5 Conclusion

TL has been widely used in EEG-based BCls for reducing calilation e orts. However, backdoor attacks
could be introduced through TL. Accordingly, this study explored backdoor attacks in TL of EEG-based
BCls, where source-domain data are poisoned by an NPP triggeand then used in TL. We veried
that the classi cation performance remains good on benign arget-domain samples, but once the trigger
is injected, the attacked samples would be misclassi ed inb an attacker-speci ed target class with a
very high probability. We have proposed several AP approachs to select source-domain samples that
are most e ective in embedding the backdoor pattern to improve the attack success rate and e ciency.
Experiments on four EEG datasets and three CNN models demorgated the success of backdoor attacks
in TL scenarios and the e ectiveness of our proposed AP appraches.

To our knowledge, this is the rst study on backdoor attacks on TL models in EEG-based BCls. It
exposes a serious security risk in BCls, which will be addred in our future research.
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