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Abstract In cooperative multi-agent reinforcement learning (MARL), where agents only have access to

partial observations, efficiently leveraging local information is critical. During long-time observations, agents

can build awareness for teammates to alleviate the restriction of partial observability. However, previous

MARL methods usually neglect awareness learning from local information for better collaboration. To ad-

dress this problem, we propose a novel framework, multi-agent local information decomposition for awareness

of teammates (LINDA), with which agents learn to decompose local information and build awareness for each

teammate. We model the awareness as stochastic random variables and perform representation learning to

ensure the informativeness of awareness representations by maximizing the mutual information between

awareness and the actual trajectory of the corresponding agent. LINDA is agnostic to specific algorithms

and can be flexibly integrated with different MARL methods. Sufficient experiments show that the pro-

posed framework learns informative awareness from local partial observations for better collaboration and

significantly improves the learning performance, especially on challenging tasks.
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1 Introduction

Learning how to achieve effective collaboration is a significant problem in cooperative multi-agent re-
inforcement learning (MARL) [1–3]. However, non-stationarity and partial observability are two major
challenges in MARL [4]. Non-stationarity arises from frequent interactions among multiple agents, with
which the changes in the policy of an agent will affect the optimal policy of other agents. Partial ob-
servability occurs in many practical MARL applications such as autonomous vehicle teams [5, 6] and
intelligent warehouse systems [7, 8], where agents’ sensor inputs are limited by their field of view.

For the problems of non-stationarity and partial observability, an appealing paradigm is centralized
training with decentralized execution (CTDE) [9]. Over the course of training, the global state of all
the agents is shared in a central controller. During execution, each agent makes individual decisions by
local observations to achieve collaboration. Many CTDE methods have been proposed recently [10–15]
and worked effectively. Besides, many methods [11, 12, 16] adopt a gated recurrent unit (GRU) [17]
cell to encode historical observations and actions into a local trajectory to alleviate the problem of
partial observability. They tend to tacitly assume that neural networks can automatically extract specific
information from trajectories for better policy learning, but it is not very easy in practice.

Despite that agents only have a limited view of their surroundings and communicating with other
agents is infeasible or unreliable [18], we can still utilize global information, including states of the
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Figure 1 (Color online) Illustration of building awareness in the representation space. Consider a 5-agent scenario, where A1 (Ai

denotes Agent i) observes A3 and A4, A2 observes A4 and A5 at timestep t. A1’s and A2’s awareness for A4 should be consistent

in the representation space due to their common observation for A4. A3 is visible to A1 while invisible to A2, making A2 hard to

build accurate awareness. A5 is visible to A1 and A2 at timestep t−1, but moves out of both of their sights at timestep t. Though,

A1 and A2 are still able to build awareness for A5 based on their past observations.

environment and other agents during training under the CTDE paradigm. Some previous studies [19–21]
use a modeling network to model the states and actions of opponents (teammates). Still, they suffer
from unstable opponent modeling when opponents’ policies change. Ref. [22] handles the problem with
fixed teammates and only controls one agent, but in practice, we need to train multiple agents’ policies
simultaneously.

To further alleviate the problem of partial observability and stabilize the modeling of changing team-
mates, instead of directly modeling the changeable teammates’ policies, we propose to learn awareness for
agents to extract knowledge of each teammate from local information. To clearly show our motivation, we
start from a 5-agent scenario. The awareness is generated locally but we analyze all the agents’ awareness
in a unified global representation space to introduce what we expect a well-learned awareness represen-
tation space to be like. As shown in Figure 1, A4 is in the field of view of A1 and A2, and thus A1 and
A2 both have sufficient knowledge of A4’s state. Therefore, A1 and A2 should have relatively consistent
awareness for A4. On the other hand, even though A1 and A2 cannot observe A5 at the current timestep
t, they still have knowledge of A5 because A5 is visible at the previous timestep t − 1. They can build
awareness based on their past observations. Besides, different observing timesteps lead to a different
knowledge of the target agent. Therefore, different agents’ awareness of the same target should also vary
and complement each other. In summary, intuitively, we expect that a well-learned awareness encoder
should generate consistent and complementary awareness embeddings in the representation space.

To learn such informative awareness, in this paper, we propose a novel framework, multi-agent local
information decomposition for awareness of teammates (LNIDA), with which agents can build awareness
for each teammate by learning to decompose local information in their local networks. The awareness
incorporates the knowledge about other agents, such as states and strategies. Awareness is modeled as
stochastic random variables and generated from the learned decomposition mapping from local trajecto-
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ries. To facilitate the informativeness of the learned awareness, we apply an information-theoretic loss
which maximizes the mutual information between awareness and the actual trajectory of the correspond-
ing agent. Based on the popular value-based learning methods [10–12] under the CTDE paradigm, the
auxiliary mutual information loss acts as a regularizer with the global temporal difference (TD) error.
During execution, the global information, including other agents’ trajectories and the global state, is
removed. Agents infer awareness for teammates from their local trajectories. By learning awareness,
agents can effectively exploit the information embedded in the local trajectories to further alleviate the
problem of partial observability. In Subsection 4.2, we reveal that the proposed LINDA framework works
to optimize the consistency and complementarity of awareness embeddings in the representation space.

LINDA is not built on a specific algorithm and can be easily integrated with MARL methods that
follow the paradigm of CTDE. We apply LINDA to three existing MARL methods, value decomposition
network (VDN) [10], QMIX [11], and duplex dueling multi-agent Q-learning (QPLEX) [12]. We evalu-
ate the effectiveness of LINDA in two benchmark environments frequently used in multi-agent system
research, level-based foraging (LBF) [23] and StarCraft II1) unit micromanagement benchmark [24, 25].
Experimental results show that LINDA significantly improves learning performance by virtue of aware-
ness learning. We further demonstrate the interpretable characteristics of learned awareness and the
relationships among the awareness of different agents.

Our main contributions are:
• We propose a novel framework for MARL, and move a step towards leveraging local information by

learning decomposition for awareness of teammates to alleviate the problem of partial observability.
• The LINDA framework is agnostic to specific algorithms, and is applicable to existing MARL methods

that follow the paradigm of CTDE.
• Sufficient experimental results demonstrate that awareness learning is robust to diverse tasks of

different difficulties, and significantly improves the learning performance, especially on the tough tasks.
In the challenging StarCraft II micromanagement (SMAC) [24,25] benchmark, we propose LINDA-QMIX
and LINDA-QPLEX, and achieve state-of-the-art results.

2 Related work

MARL. Deep MARL has witnessed prominent progress in recent years. Many methods have emerged
under the CTDE paradigm. Most of them are roughly divided into two categories: policy-based methods
and value-based methods. Multi-agent deep deterministic policy gradient (MADDPG) [26], counterfac-
tual multi-agent policy gradients (COMA) [27], and multi-actor attention critic (MAAC) [28] are typical
policy-based methods that explore the optimization of multi-agent policy gradient methods. Another
category of approaches, value-based methods, mainly focus on the factorization of the value function.
VDN [10] proposes to decompose the team value function into agent-wise value functions by an addi-
tive factorization. Following the individual-global-max (IGM) principle [29], QMIX [11] improves the
way of value function decomposition by learning a mixing network, which approximates a monotonic
function value decomposition. QPLEX [12] takes a duplex dueling network architecture to factorize the
joint value function, which achieves a full expressiveness power of IGM. Weighted QMIX [16] uses a
weighted projection to place more importance on the better joint actions, and proposes two algorithms,
centrally-weighted (CW) QMIX and optimistically-weighted (OW) QMIX.

Representation learning in MARL. Learning an effective representation in MARL is receiving sig-
nificant attention. Role-oriented multi-agent reinforcement learning (ROMA) [30] constructs a stochastic
role embedding space to lead agents to different policies based on different roles. Nearly decomposable Q-
functions (NDQ) [31] learns a message representation to achieve expressive and succinct communication.
Learning roles to decompose (RODE) [32] uses an action encoder to learn action representations and
applies clustering methods to decompose joint action spaces into restricted role action spaces to reduce
the policy search space. Influencing latent intent (LILI) [33] learns latent representations to capture the
relationship between its behavior and the other agent’s future strategy and use it to influence the other
agent. Unlike previous works, our approach focuses on awareness representation learning in the agents’
local networks by learning to decompose local information.

Local information decomposition in MARL. Recently, researchers have proposed some methods
that deal with the decomposition of local information. Action semantics network (ASN) [34] proposes

1) StarCraft II are trademarks of Blizzard EntertainmentTM.
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a new framework named action semantics network to explicitly represent the action semantics between
agents. Collaborative q-learning (CollaQ) [35] learns to decompose the Q-function of an agent into two
parts, depending on its own state and nearby observable agents, respectively. Universal policy decoupling
transformer (UPDeT) [36] decomposes the local observations into different parts and then uses universal
policy decoupling transformer to get the policy. However, these approaches need to manually divide the
local observations into each agent’s part first. Manual observation division may be hard to be directly
applied to complex scenarios where each agent’s part of the observation is tightly coupled with each
other. For example, in multiplayer online battle arena (MOBA) game AI [37] and multi-agent connected
autonomous driving [38], where observational inputs are visual images, parts of each agent in the images
are hard to be manually decoupled. Therefore, an automatically learned decomposition is necessary for
local information decomposition.

Opponent modeling in MARL. Modeling opponents (teammates) in MARL is a well-studied field,
with which agents learn to predict other agents’ mental states (e.g., intentions, beliefs, and desires) for
better coordination [39]. Deep reinforcement opponent network (DRON) [19] learns a modeling network
to reconstruct the actions of opponents from full observations. Deep recurrent policy inference Q-network
(DRPIQN) [20] appends an extra part to capture the actions of other agents and learns latent represen-
tations to improve the policy. Opponent modeling DDPG (OMDDPG) [21] takes a further step to use
variational autoencoders to model other agents with local information during execution, which eliminates
the need of opponents’ observations and actions during decentralized execution. Local information oppo-
nent modelling (LIOM) [22] aims to learn latent representations to capture the relationship between the
learning agent and modeled agents by encoder-decoder architectures only using agents’ local information.
LIOM models fixed teammates’ policies and only trains one protagonist agent, because directly modeling
the teammates’ inconstant behaviors leads to unstable training. However, fixing teammates’ policies is
not scalable for training multiple agents’ policies simultaneously. Therefore, LINDA takes a further step
for multiple agents to learn simultaneously through modeling awareness for teammates. The idea of op-
ponent modeling from partial observations is similar to decomposing local information into awareness for
others. However, LINDA starts from awareness alignment and uses information-theoretic tools to derive
the learning objective. LINDA focuses more on constructing a meaningful awareness latent space instead
of directly modeling the teammates’ changeable policies to stabilize the training process.

3 Preliminaries

MARL. In our work, we consider a fully cooperative multi-agent task that can be modeled by a decen-
tralized partially observable Markov decision process (Dec-POMDP) [40] G = 〈I, S,A, P,R,Ω, O, n, γ〉,
where I is the finite set of n agents, s ∈ S is the true state of the environment, A is the finite ac-
tion set, and γ ∈ [0, 1) is the discount factor. We consider partially observable settings, where agent
i is only accessible to a local observation oi ∈ Ω according to the observation function O(s, i). Each
agent has an observation history τ i ∈ T ≡ (Ω×A)

∗
. At each timestep, each agent i selects an action

ai ∈ πi(a | τ i), forming a joint action a = 〈a1, . . . , an〉 ∈ A, results in the next state s′ according to the
transition function P (s′|s,a) and a shared reward r = R (s,a) for each agent. The joint policy π induces
a joint action-value function: Qπ

tot (τ ,a) = Es0:∞,a0:∞ [
∑∞

t=0 γ
trt|s0 = s,a0 = a,π], where τ is the joint

action-observation history.

Value function factorization MARL. This paper considers value function factorization in collab-
orative multi-agent systems (e.g., VDN [10], QMIX [11], QPLEX [12]). These three methods all follow
the IGM principle proposed by learning to factorize with transformation (QTRAN) [29], which asserts
the consistency between joint and local greedy action selections by the joint value function Qtot(τ ,a)
and individual value functions [Qi(τ

i, ai)]ni=1:

∀τ ∈ T , argmax
a∈A

Qtot(τ ,a) =

(

argmax
a1∈A

Q1

(

τ1, a1
)

, . . . , argmax
an∈A

Qn (τ
n, an)

)

. (1)

VDN utilizes the additivity to factorize the global value function QVDN
tot (τ ,a):

QVDN
tot (τ ,a) =

n
∑

i=1

Qi

(

τ i, ai
)

. (2)



Cao J H, et al. Sci China Inf Sci August 2023 Vol. 66 182101:5

While QMIX constrains the global value function Q
QMIX
tot (τ ,a) with monotonicity property:

∀i ∈ N ,
∂Q

QMIX
tot (τ ,a)

∂Qi (τ i, ai)
> 0. (3)

These two structures are sufficient conditions for the IGM principle but not necessary [12]. To achieve a
complete IGM function class, QPLEX [12] uses a duplex dueling network architecture by decomposing

the global value function Q
QPLEX
tot (τ ,a) as

Q
QPLEX
tot (τ ,a) = Vtot(τ ) +Atot(τ ,a) =

n
∑

i=1

Qi

(

τ , ai
)

+

n
∑

i=1

(

λi(τ ,a)− 1
)

Ai

(

τ , ai
)

. (4)

The difference among the three methods is in the mixing networks, with increasing representational
complexity. Our proposed framework LINDA follows the value factorization learning paradigm but
focuses on enhancing the learning ability of agents’ individual local networks. Different global mixing
networks in VDN, QMIX, and QPLEX can be freely applied to LINDA.

4 Method

In this section, we will propose multi-agent LINDA, a novel framework that introduces the concept of
awareness to alleviate partial observability and promote collaboration in MARL.

LINDA is a value-based MARL framework under the paradigm of CTDE [41, 42]. Over the course of
training, each agent builds awareness for teammates from local information, which includes historical local
observations and actions. Based on the awareness for each teammate, the agent produces its local action
value function. In the global mixing network, the action value functions of all the agents are gathered
to estimate the global action value and compute the TD error for optimization. Another information-
theoretic loss function is used to optimize the awareness distributions. During decentralized execution, the
mixing network and trajectories of other agents are removed. Each agent builds awareness for teammates
from local historical observations and makes individual decisions dependent on the awareness for the
teammates.

4.1 The LINDA architecture

As shown in Figure 2, the LINDA framework focuses on learning awareness of teammates based on
local information in each agent’s individual network. For agent i, LINDA uses a GRU [17] cell to
encode historical observations and actions into trajectory τ i. τ i is fed into an awareness encoder fi with
parameter θi

c to build awareness of each agent. The awareness encoder learns a decomposition mapping
for each agent, and outputs n multivariate Gaussian distributions N (µi

1,σ
i
1), . . . ,N (µi

n,σ
i
n), where n is

the number of agents, and µi
j ,σ

i
j are the awareness mean and awareness variance for agent j respectively.

Awareness representation embeddings ci1, . . . , c
i
n are sample from the corresponding multivariate Gaussian

distributions, where cij denotes agent i’s awareness for agent j. To ensure the gradient is tractable for the
sampling operation, we apply the reparameterization trick [43]. To sample from a Gaussian distribution
z ∼ N (µ, σ), it converts the random variable z into z = µ+σǫ, where ǫ ∼ N (0, 1), such that the gradient
descent can be backpropagated through the sampling operation. Formally, for agent i, its n awareness
embeddings are generated by

(µi,σi) = fi(τ
i; θi

c),

cij = µi
j + σi

j ⊙ ǫij , ǫij ∼ N (0, 1), for j = 1, 2, . . . , n,
(5)

where ⊙ is element-wise production, cij denotes agent i’s awareness for agent j, and θi
c is the parameters

of the awareness encoder fi. The awareness encoder fi inputs local trajectory τ i and outputs the mean
and variance of n awareness distributions, (µi,σi) = (µi

1, . . . ,µ
i
n;σ

i
1, . . . ,σ

i
n).

Since the awareness is designed for agents, awareness alone will cause the loss of environmental infor-
mation. Therefore we concatenate agent i’s awareness embeddings ci1, . . . , c

i
n together with its trajectory

τ i to compute the local action value Qi by the local utility network. During the centralized training,
action values of all the agents together with the global state st are fed into a mixing network to produce
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Figure 2 (Color online) Structure of LINDA. For agent i, the GRU cell encodes the current observation and hidden historical

state into an embedding vector of the local trajectory, denoted as τ i. τ i is then fed into the awareness encoder to generate

n awareness distributions, the awareness representations ci
1, . . . , c

i
n for teammates are sampled from the respective distributions

using reparameterization trick for gradient flow. The awareness representations and the trajectory are concatenated and fed into

a multi-layer perceptron (MLP) network to get the local action-value function Qi(τ
i, ai). During centralized training, a mixing

network is used to estimate the global action value Qtot(τ ,a) and compute the TD error. We propose an additional information-

theoretic regularizer to facilitate awareness representation learning.

the global action value Qtot and compute TD error for gradient descent. In our implementation, we try
three different kinds of mixing networks, VDN [10], QMIX [11], and QPLEX [12] for their monotonic
approximation.

To facilitate awareness learning, our approach additionally applies an information-theoretic regulariza-
tion loss Lc(θ

i
c) for agent i’s local network. The overall objective to minimize is

L(θ) = LTD(θ) + λ

n
∑

i=1

Lc(θ
i
c), (6)

where

LTD(θ) =
[

r + γmax
a′

Qtot(τ
′,a′; θ−)−Qtot(τ ,a; θ)

]2

(θ−, is the parameters of a periodically updated target network) is the TD loss, θ is the all parameters
of the framework, and λ is a scaling factor. We will then discuss the definition and optimization of the
regularization loss Lc(θ

i
c).

4.2 Optimized awareness objective and variational bound

The latent awareness representations for each agent are hard to be learned automatically. Therefore
an auxiliary loss function is necessary. Intuitively, we expect the learned awareness to be informative,
which means that the learned awareness needs to incorporate actual information about others. Since our
framework works under the CTDE paradigm, other agents’ trajectories are accessible during training but
inaccessible during execution. We can utilize other agents’ trajectories for awareness centralized training,
but awareness representations are entirely generated from the individual local trajectory for decentralized
execution. To this end, we establish the relationship between agent i’s awareness for agent j, denoted as
cij , and agent j’s actual trajectory τ j , by maximizing their mutual information conditioned on agent i’s

local trajectory τ i. For agent i, the objective for optimizing its awareness for all the agents is to maximize

Jc(θ
i
c) =

n
∑

j=1

I
(

cij; τ
j |τ i

)

. (7)
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During centralized training, the overall objective for awareness learning is

max
θc

n
∑

i=1

Jc(θ
i
c) = max

c

n
∑

i=1

n
∑

j=1

I
(

cij; τ
j |τ i

)

. (8)

By unfolding the mutual information term and swapping the summation order, we can rewrite the ob-
jective (8) into

max
c

n
∑

j=1

(

n
∑

i=1

H
(

cij|τ
i
)

−
n
∑

i=1

H
(

cij|τ
i, τ j

)

)

. (9)

For the same target agent j, the objective maximizes all the agents’ entropy of their awareness distri-
butions for agent j conditioned on their local trajectories, while minimizing the entropy conditioned on
local trajectories and the target trajectory τ j . Due to the partial observability, awareness for agent j is
not entirely precise. Conditioned on the local trajectories alone, the uncertainty of the awareness distri-
butions for agent j should be large. By pushing the entropy higher, it prevents the awareness embeddings
from collapsing to the same point in the representation space. It means that conditioned on multiple
views from different agents, the awareness for the same object should be diverse and complementary.

The second term suggests that when the target trajectory τj is given, the awareness distributions for
agent j should get more deterministic. It means that conditioned on sufficient information, the agents’
awareness for the same object should get aligned and consistent in the representation space.

However, directly optimizing the objective (7) is difficult because computation involving mutual infor-
mation is intractable. Inspired by [44], we introduce a variational estimator to derive a lower bound for
the mutual information term:

I
(

cij ; τ
j |τ i

)

= Eτ ,ci
j

[

log
p
(

cij, τ
j |τ i

)

p
(

cij |τ
i
)

p (τ j |τ i)

]

> −Eτ

[

CE
[

p(cij|τ
i)‖qξ(c

i
j |τ

i, τ j)
]]

+ Eτ i

[

H(cij |τ
i)
]

, (10)

where qξ(c
i
j |τ

i, τ j) is the variational posterior estimator with parameter ξ, and CE is the cross-entropy
operator. A detailed derivation is shown in Appendix A. By using a replay buffer D, we can rewrite the
lower bound in (10) and derive its loss function:

Lc(θ
i
c) =

n
∑

j=1

Eτ∼D

[

DKL

[

p(cij |τ
i)‖qξ(c

i
j |τ

i, τ j)
]]

, (11)

where KL is the Kullback-Leibler divergence operator. Finally, the overall loss function is

L(θ) =
[

r + γmax
a′

Qtot(τ
′,a′; θ−)−Qtot(τ ,a; θ)

]2

(TD loss)

+ λ

n
∑

i=1

n
∑

j=1

Eτ∼D

[

DKL

[

p(cij |τ
i)‖qξ(c

i
j |τ

i, τ j)
]]

, (awareness learning loss) (12)

where λ is an adjustable hyper-parameter to achieve a trade-off between the TD loss and the summation
of all agents’ awareness learning loss. Over the course of training, global information including trajectories
of all the agents is used to compute the mutual information loss. During execution, the awareness learning
module is removed, and each agent infers awareness for others conditioned on its local trajectory.

5 Experiments

In this section, we design experiments to answer the following questions: (1) Can LINDA be applied
to multiple existing MARL methods and improve their performances? (Subsection 5.2) (2) Does the
superiority of LINDA come from awareness learning? (Subsection 5.3) (3) How do the learned awareness
embeddings distribute in the representation space and how do they influence the team cooperation?
(Subsection 5.4) (4) Do the awareness distributions have interpretable characteristics? (Subsection 5.5).
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Figure 3 (Color online) The LBF environment. Figure 4 (Color online) The StarCraft II micromanagement

environment.

5.1 Environments

We choose two multi-agent benchmark environments: LBF [23] and SMAC2) [25] as the testbed.
LBF. LBF [23] is a grid-world game that focuses on the coordination of the agents (Figure 3). It

consists of agents and foods initialized at different positions at the beginning of an episode. Both agents
and foods are assigned random levels. The goal is for agents to collect foods to achieve the maximum
team score. The food collection is constrained by the level. Food is successfully collected only when
the sum of the levels of the agents who pick up the food simultaneously exceeds the level of the food.
The action set of agents is composed of picking up action and movement in four directions: up, down,
left, and right. Agents receive a team reward only when they successfully collect food, which means the
environment has a sparse reward. Besides, the environment is partially observable, where the agents
observe up to two grid cells in every direction. The agents’ observation includes the positions of other
agents and foods in the visible range. For LBF, we test the algorithms in different sizes of exploration
space, with 8× 8, 10× 10, 16× 16 grid sizes, and all with 2 agents and 1 food.

SMAC. SMAC [25] is an environment for collaborative MARL based on Blizzard’s StarCraft II RTS
game (Figure 4). It consists of a set of StarCraft II micro scenarios, each of which is a confrontation
between two armies of units. The allied agents learn coordination to beat the enemy units controlled by
the built-in game AI. It is a partially observable environment, where agents are only accessible to the
status including positions and health of teammates and enemies in their limited field of view. For SMAC,
we test the algorithms on maps of different difficulties and classify them as easy, hard, and super hard
(see Table C1 in Appendix C for detail).

5.2 Performance on LBF and StarCraft II

To study the effectiveness of the LINDA framework, we try three different mixing networks in:
(i) VDN [10], (ii) QMIX [11], (iii) QPLEX [12]. Their mixing network structures are from simple to
complex, with increasing representational complexity. The methods applied with LINDA are denoted
as LINDA-VDN, LINDA-QMIX, and LINDA-QPLEX, respectively. The details of the LINDA network
structure are shown in Appendix B. To show the effectiveness of LINDA applied methods, We compare
with RODE [32], which is the state-of-the-art method, CollaQ [35], which uses manual local information
decomposition, and LIOM [22], which uses autoencoders for opponent modeling.

Because VDN suffers from structural constraints and limited representation complexity [11], it tends to
fail in complex environments like SMAC. We evaluate LINDA-VDN in LBF, which is simpler for agents
to achieve goals. We configure three different grid sizes, 8× 8, 10× 10, and 16× 16, all with 2 agents and
1 food. For LINDA-QMIX and LINDA-QPLEX, we test them on multiple SMAC maps. For evaluation,
we carry out each experiment with 5 random seeds, and the results are shown with a 95% confidence
interval.

2) Our experiments are all based on the PYMARL framework which uses SC2.4.6, note that performance is not always compa-

rable between versions.

https://github.com/oxwhirl/pymarl
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Figure 5 (Color online) Test episodic return for LINDA-VDN and VDN on three different LBF configurations. (a) 8 × 8;

(b) 10 × 10; (c) 16 × 16.

Figure 5 shows the learning curves of LINDA-VDN and VDN in different sizes of exploration space of
the LBF environment. As the grid size grows, each agent needs to search a larger space to collaborate
with others for food, and it takes more timesteps for agents to converge to a high reward. We show
that the application of LINDA, i.e., LINDA-VDN, improves the performance of VDN. For smaller grid
size, e.g., 8 × 8, LINDA-VDN accelerates the learning speed and stabilizes the performance curve when
converged. For larger grid sizes, the improvement is rather more significant.

In the SMAC environment, we test LINDA-QPLEX, LINDA-QMIX, and other methods on six super
hard maps, three hard maps, and six easy maps. The details of the SMAC maps are described in
Table C1. From Figure 6, we can find LINDA-QMIX and LINDA-QPLEX outperform the vanilla QMIX
and QPLEX, respectively, which indicates the effectiveness of LINDA for improving the coordination
ability in complex sceneries. The superiority of QPLEX over other methods except for QPLEX-LINDA
before 0.8M is for the improved network representation of QPLEX makes it good at some maps such as
3s5z vs 3s6z. LIOM can solve the POMDP and improve the coordinate ability of QMIX in some way, and
we find it is not competitive with LINDA. CollaQ only has a slight performance advantage over QMIX.
We guess it is because CollaQ only uses local observation to capture the relationship between agents,
which may not solve complex coordination problems.

We plot the averaged median test win rate across the six super hard maps in Figure 7. Compared
with QMIX and QPLEX, the application of LINDA yields better learning performance and outperforms
other methods. LINDA improves the collaboration for QMIX and QPLEX in all the six super hard maps,
especially in tough scenarios. For example, in 6h vs 8z, a map requiring strong coordination ability, all
other methods failed, but LINDA-QPLEX achieved a high winning rate. In Appendix D, we further show
the learning curves on the six easy scenarios and the hard maps. The LINDA framework still achieves
slight performance improvement on most easy maps, where micro-tricks and cohesive collaboration are
unnecessary. On the contrary, previous methods such as RODE perform worse than QMIX because
the additional role learning module needs more samples to learn a successful strategy [32]. The overall
experiments show that the LINDA framework is robust to both easy and tough scenarios and effectively
enhances the learning efficiency, especially on challenging tasks.
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5.3 Ablation study

To understand the superior performance of LINDA, we carry out ablation studies to verify the contribution
of awareness learning. To this end, we add the LINDA structure to QMIX without the mutual information
loss Lc(θc) during training and denote it as LINDA-QMIX w/o Lc(θc). Besides, to test whether the
superiority of our method comes from the increase in the number of parameters, we also test QMIX
with a similar number of parameters with LIDA-QMIX and denote it as QMIX-LARGE. As shown in
Figure 8, we compare LINDA-QMIX with LINDA-QMIX w/o Lc(θc), QMIX-LARGE, and QMIX on
three SMAC maps: MMM2, 2c vs 64zg, and 3s vs 5z. The experimental results indicate that the mutual
information loss plays a significant role in enhancing learning performance. Besides, it also proves that
larger networks will not definitely bring performance improvement, and the superiority of LINDA does
not come from the larger networks.

5.4 Awareness embedding representations

To further analyze the learned awareness in the representation space, we visualize the awareness embed-
dings on the SMAC map MMM2. MMM2 is a heterogeneous scenario, in which 1 Medivac, 2 Marauders, and
7 Marines face 1 Medivac, 3 Marauders, and 8 Marines. In this task, different types of agents should
cooperate well to fully exert the advantage of each unit type. We collect the awareness embeddings of all
the agents at two different timesteps in one episode. Since there are 10 agents, each with 10 awareness
embeddings for teammates, there are 100 embeddings in total at each timestep. We reduce the dimension
of each awareness embedding by t-SNE [45] to show them in a 2-dimensional plane.

As shown in Figures 9(a) and (b), the awareness embeddings generated by LINDA-QMIX w/o Lc(θc),
which is without awareness learning, distributed almost randomly in the representation space. Contrarily,
with the proposed mutual information loss Lc(θc), in Figures 9(c) and (d), agents’ awareness embeddings
automatically form several clusters in the representation space. According to the positions of self-to-self
awareness embeddings, we divide the agents into K groups G = {G1, . . . , GK}. We color the awareness
embeddings by the group each agent belongs to. That is, for each group Gk, the representations {cij |
1 6 j 6 n, i ∈ Gk} are painted the same color, where n is the number of agents. In the video frame of
the same timestep, we see the correspondence between the agent groups formed in the game and in the
awareness representation space. The agents in the same group tend to build similar awareness and achieve
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Figure 10 (Color online) Visualization of the awareness variances. (a) 6h vs 8z; (b) MMM2; (c) 3s5z vs 3s6z. σ̄i
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average of the awareness variance for agent 1. We take the first 6 agents in each SMAC map for concise visualization. The blue

bold curve, representing the variance of the self-to-self awareness distribution, is nearly the lowest among all the curves.

more cooperation. Besides, In the early timestep (Figure 9(c)) and the late timestep (Figure 9(d)), the
formed groups dynamically changed and adapted according to the battle situation. As shown in Fig-
ure 9(d), when the 7-th agent was dead, its awareness embeddings collapsed to a small region because
the observation inputs of a dead agent are all zeros in the environment implementation. Other agents
formed new groups and conducted new tactics for cooperation.

The phenomenon reveals the relationship between awareness representations and agents’ cooperation
strategies. The aggregation of the learned awareness makes the group members share similar latent
embeddings. Such consistency may encourage neural networks to output stable and consistent action
value functions, thus reaching a consensus on the strategies among the group members and achieving
better collaboration. Further, the pairwise relationship of the learned awareness implicitly forms groups
among agents, which is similar to role learning [30, 32, 46, 47] in multi-agent systems. It indicates that
pairwise awareness representations implicitly incorporate roles, and can be degraded into role-based
methods by further processing the relationships of awareness among agents.

5.5 Visualization of awareness distributions

We conduct visualization on the dynamic learning process of the awareness distributions. For each agent
i, we visualize its average of the variance of the multivariate awareness distribution for agent 1, which
is denoted as σ̄i

1. Figure 10 presents σ̄i
1, 1 6 i 6 6 (for the first 6 agents) over the course of training.

The blue bold curve, which represents σ̄1
1 , is nearly the lowest among all the curves during training.

The variance of a self-to-self awareness distribution is relatively lower than the variance of other-to-self
awareness distribution. It means that agents build more certain awareness for self than others, which is
consistent with our intuition.

To further demonstrate whether a lower variance indicates a more precise awareness embedding, we
visualize the variance and the difference of mean among the agents. To clearly show the relationship, we
conduct visualization on a two-agent scenario, 2c vs 64zg. In Figure 11, the orange solid curve represents
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Figure 11 (Color online) Visualization of awareness distributions on a 2-agent SMAC map 2c vs 64zg. The peaks of the curves

‖µ2
1 − µ1

1‖ and σ̄2
1 are almost perfectly aligned.

the average of the awareness variance, which is denoted as σ̄2
1 . The blue dashed curve represents the L1-

norm of the difference between the awareness mean, which is denoted as ‖µ2
1 − µ1

1‖. We find that the
peaks of ‖µ2

1 − µ1
1‖ and σ̄2

1 are highly overlapping, especially after 1.2 millions of timesteps when the
learning gradually converges. The peak of σ̄2

1 means that at that timestep, A2 (i.e., agent 2) is uncertain
about the state of A1 probably because A1 is out of the view of A2. The peak of ‖µ2

1 − µ1
1‖ means

that A1 and A2 have a huge difference in their awareness for A1. The phenomenon of peak alignment
indicates that the inference uncertainty is highly related to the proximity of awareness. The awareness
variance may serve as an indicator for agents to estimate the confidence of awareness. It suggests that for
further research, we can put different degrees of emphasis on different awareness according to confidence.
Higher-level modules such as the attention mechanism can be built based on awareness confidence.

6 Conclusion

We propose a novel framework, multi-agent LINDA, which learns to build awareness for teammates on
the local network to alleviate partial observability. We design an information-theoretic loss for awareness
learning. LINDA is agnostic to specific algorithms and is flexibly applicable to existing MARL methods
that follow the CTDE paradigm. We apply LINDA to three value-based MARL algorithms, and results
show that LINDA makes a significant performance improvement, especially on super hard tasks in the
SMAC benchmark environment. We also demonstrate the interpretability of the learned awareness dis-
tributions and show that LINDA forms awareness groups and promotes cooperation. Further research on
building higher-level modules such as the attention mechanism based on awareness would be of interest.
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7 Nowé A, Vrancx P, de Hauwere Y M. Game theory and multi-agent reinforcement learning. In: Reinforcement Learning.

Berlin: Springer, 2012. 441–470
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Appendix A Mathematical derivation

We maximize the mutual information between agent i’s awareness for agent j ci
j and agent j’s trajectory τ j conditioned on agent

i’s local trajectory τ i:

I
(

c
i
j ; τ

j |τ i
)

= E
τ,ci

j

[

log
p(ci

j |τ
i, τ j)

p(ci
j
|τ i)

]

= E
τ,ci

j

[

log
qξ(c

i
j |τ

i, τ j)

p(ci
j |τ

i)

]

+ Eτ

[

DKL

(

p
(

c
i
j |τ

i
, τ

j
)

‖qξ

(

c
i
j |τ

i
, τ

j
))]

> E
τ,ci

j

[

log
qξ(c

i
j |τi, τj)

p(ci
j
|τi)

]

= E
τ,ci

j

[

log qξ

(

c
i
j |τ

i
, τ

j
)]

− E
τi,ci

j

[

log p
(

c
i
j |τ

i
)]

= E
τ,ci

j

[

log qξ

(

c
i
j |τ

i
, τ

j
)]

+ E
τi

[

H
(

c
i
j |τ

i
)]

= Eτ

[
∫

p
(

c
i
j |τ

i
, τ

j
)

log qξ

(

c
i
j |τ

i
, τ

j
)

dc
i
j

]

+ E
τi

[

H
(

c
i
j |τ

i
)]

.

The awareness encoder of agent i is conditioned on the local trajectory τ i. Thus, given τ i, the awareness distribution p(ci
j) is

independent of τ j. And we have

I
(

c
i
j ; τ

j|τ i
)

> −Eτ

[

CE
[

p
(

c
i
j |τ

i
)

‖qξ

(

c
i
j |τ

i
, τ

j
)]]

+ E
τi

[

H
(

c
i
j |τ

i
)]

, (A1)

where CE is the Cross-Entropy operator. We use a replay buffer D in practice. For agent i’s n awareness distributions ci
1, . . . , c

i
n,

we can derive the minimization objective:

Lc(θ
i
c) =

n
∑

j=1

Eτ∼D

[

DKL

[

p
(

c
i
j |τ

i
)

‖qξ

(

c
i
j |τ

i
, τ

j
)]]

. (A2)

Appendix B Architecture, hyperparameters, and infrastructure

In this paper, we base our framework on three value factorization based methods, VDN [10], QMIX [11], and QPLEX [12]. Following

the CTDE paradigm, each agent has an individual neural network to approximate its local utility, which is fed into a mixing network

to estimate the global action value during training.

We base our implementations of LINDA-VDN, LINDA-QMIX, and LINDA-QPLEX in the PyMARL framework and use its

default mixing network structure and the same hyper-parameter setting with VDN3), QMIX4) and QPLEX5) from the original

paper, respectively. The architecture of all agent networks is a DRQN with a recurrent layer comprised of a GRU with a 64-

dimensional hidden state, with a fully-connected layer before and after, VDN only sum up all the DRON outputs. QMIX’s

mixing network consists of a single hidden layer of 32 units, utilizing an ELU non-linearity. The hyper-networks are then sized

to produce weights of appropriate size. The mixing network of QPLEX is more complex, which consists of two main components

as follows: (i) an individual action-value function for each agent, and (ii) a duplex dueling component that composes individual

action-value functions into a joint action-value function under the advantage-based IGM constraint. The awareness encoder adopts

a 64-dimensional hidden layer with LeakyReLU activation and outputs a 3-dimensional multivariate Gaussian distribution for each

agent. The posterior estimator qξ also uses a 64-dimensional hidden layer with LeakyReLU activation. The awareness embeddings

are sampled from the corresponding Gaussian distributions and concatenated with the trajectory to be fed into the local utility

network.

Appendix C The SMAC environment

We test the algorithms on different scenarios in SMAC. The detailed configurations of the scenarios are shown in Table C1.

Appendix D Additional experimental results

Performance on more maps. We mainly benchmark our method on the StarCraft II unit micromanagement tasks. To test the

generation of LINDA, we evaluate LINDA-QMIX and LINDA-QPLEX on other easy and hard maps. The additional results are

shown in Figures D1 and D2. We find that in easy scenarios where micro-tricks and cohesive collaboration are unnecessary, the

application of LINDA still brings slight performance improvement. On the contrary, previous methods such as RODE perform worse

than QMIX because the additional role learning module needs more samples to learn a successful strategy [32]. The experimental

results show that LINDA is robust to both easy and hard tasks.

3) VDN code. https://github.com/oxwhirl/pymarl.
4) QMIX code. https://github.com/oxwhirl/pymarl.
5) QPLEX code. https://github.com/wjh720/QPLEX.

 https://github.com/oxwhirl/pymarl
https://github.com/oxwhirl/pymarl
 https://github.com/wjh720/QPLEX
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Table C1 SMAC challenges

Map name Ally units Enemy units Type Challenge

2s vs 1sc 2 Stalkers 1 Spine, 1 Crawler Asymmetric, heterogeneous Easy

2s3z
2 Stalkers,

3 Zealots

2 Stalkers,

3 Zealots
Symmetric, heterogeneous Easy

3s5z
3 Stalkers,

5 Zealots

3 Stalkers,

5 Zealots
Symmetric, heterogeneous Easy

1c3s5z

1 Colossus,

3 Stalkers,

5 Zealots

1 Colossus,

3 Stalkers,

5 Zealots

Symmetric, heterogeneous Easy

MMM

1 Medivac,

2 Marauders,

7 Marines

1 Medivac,

2 Marauders,

7 Marines

Asymmetric, heterogeneous Easy

10m vs 11m 10 Marines 11 Marines Asymmetric, homogeneous Easy

5m vs 6m 5 Marines 6 Marines Asymmetric, homogeneous Hard

3s vs 5z 3 Stalkers 5 Zealots Asymmetric, homogeneous Hard

2c vs 64zg 2 Colossi 64 Zerglings Asymmetric, homogeneous Hard

15m vs 17m 15 Marines 17 Marines Asymmetric, homogeneous Super hard

6h vs 8z 6 Hydralisks 8 Zealots Asymmetric, homogeneous Super hard

3s5z vs 3s6z
3 Stalkers,

5 Zealots

3 Stalkers,

6 Zealots
Asymmetric, heterogeneous Super hard

1c3s5z vs 1c3s6z

1 Colossus,

3 Stalkers,

5 Zealots

1 Colossus,

3 Stalkers,

6 Zealots

Asymmetric, heterogeneous Super hard

MMM2

1 Medivac,

2 Marauders,

7 Marines

1 Medivac,

2 Marauders,

8 Marines

Asymmetric, heterogeneous Super hard

MMM3

1 Medivac,

2 Marauders,

7 Marines

1 Medivac,

2 Marauders,

9 Marines

Asymmetric, heterogeneous Super hard
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Figure D1 (Color online) Test win rate for LINDA-QPLEX, LINDA-QMIX, and other baselines on three hard SMAC maps.

(a) 3s vs 5z; (b) 2c vs 64zg; (c) 5m vs 6m.
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Figure D2 (Color online) Test win rate for LINDA-QPLEX, LINDA-QMIX, and other baselines on six easy SMAC maps.

(a) 2s vs 1sc; (b) 1c3s5z; (c) 3s5z; (d) MMM; (e) 10m vs 11m; (f) 2s3z.
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