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In recent years, continuous-variable quantum key distribu-

tion (CV-QKD) has been proposed as a promising alterna-

tive to the most commonly implemented discrete-variable

QKD [1]. A typical CV-QKD system includes mainly two

phases: quantum transmission and post-processing. In the

first phase, legitimate communicators Alice and Bob prepare

and measure the coherent state through a private quantum

channel, while they can obtain a weakly advantage over the

eavesdropper Eve. To obtain the secret keys, Alice and Bob

subsequently perform a post-processing phase that includes

two main stages: reconciliation [2] and privacy amplifica-

tion. Reconciliation has attracted much attention in recent

years as it has a significant effect on the secret key rate and

transmission distance of CV-QKD systems.

In CV-QKD, reconciliation is performed using an error

correction code designed for a binary-input additive white

Gaussian noise (BI-AWGN) channel, and the efficiency of

the reconciliation can be measured by

β =
R

C(η)
. (1)

Here, R is the rate of the error correction code, and C(η)

is the capacity at the signal-to-noise (SNR) η, which can be

calculated by

C(η) =
1

2
log2(1 + η). (2)

Under ideal conditions, perfect error correction can be per-

formed during reconciliation, and the theoretical secret key

rate of the CV-QKD system is defined as follows:

K = βIAB − χBE, (3)

where IAB refers to the mutual information shared by le-

gitimate parties, and χBE denotes the Holevo bound on the

information leaked to Eve [3].

In practice, the entire frame with known errors must be

discarded after decoding because it cannot be used as a se-

cret key. Therefore, considering the frame error rate (FER)

Pe, a more realistic expression for the secret key rate of the

CV-QKD system is given by

K = (1 − Pe)(βIAB − χBE). (4)

It can be seen from (4) that both the reconciliation efficiency

and reconciliation FER affect the secret key rate.

The channel capacity obtained using (2) is the maximum

rate at which information can be transmitted under the con-

dition of infinite codeword length. However, in practice, the

codeword length cannot be infinite, and it is insufficient to

consider only the SNR when calculating the channel capac-

ity. In this study, we first calculated the channel capacity

by considering the effect of the finite codeword length using

(5). Then, the reconciliation efficiency with finite codeword

length can be calculated using (6). Moreover, as the sphere-

packing bound (SPB) of Shannon [4] provides the minimum

SNR for a given FER to calculate the minimum channel

capacity, the maximum reconciliation efficiency with finite

codeword length can be obtained. Finally, the maximum

secret key rate of the CV-QKD system with finite codeword

length was obtained by substituting the SPB and maximum

reconciliation efficiency into (4).

Let Cfin(η, n, Pe) denote the channel capacity consider-

ing the effect of codeword length n, SNR η, and FER Pe.

According to [5], this satisfies

Cfin(η, n, Pe) = C(η) −

√

V

n
Q−1(Pe) + o

(

1
√
n

)

≈ C(η) −

√

V

n
Q−1(Pe). (5)

Here, V = η
2

η+2
(η+1)2

ln 2, Q−1(·) is the functional inverse of
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the Q-function Q(Pe) =
∫+∞
Pe

1√
2π

e−
t
2

2 dt, and o
(

1√
n

)

de-

notes that limn→∞
(

o
(

1√
n

)

/ 1√
n

)

= 0. The channel capacity

obtained using (5) provides a more informative benchmark

for a practical channel, and it is not contradictory to the

traditional channel capacity analysis. Rather more accu-

rately, it refines and strengthens the classical results as for

any Pe ∈ (0, 1), we have limn→∞Cfin(η, n, Pe) = C(η).

Note that the SNR value at which the reconciliation is

performed depends on the FER value that can be tolerated

by the CV-QKD system. Hereafter, the corresponding SNR

for a given FER Pe is denoted by ηpe . Therefore, for a

given code, C(η) and Cfin(η, n, Pe) are denoted as C(ηpe )

and Cfin(ηpe , n, Pe), respectively.

It should be noted that
√

V
n
Q−1(Pe) indicates a gap be-

tween C(ηpe ) and Cfin(ηpe , n, Pe). This gap can be sig-

nificant in practice, as for small n,
√

V
n
Q−1(Pe) is large.

Therefore, for a given code rate R, the reconciliation effi-

ciency that is calculated using (1) is not accurate under the

condition of finite codeword length. The reconciliation effi-

ciency with finite codeword length should be calculated by

βfin =
R

Cfin(ηpe , n, Pe)
. (6)

Remark. The reconciliation efficiency βfin relies on the

codeword length n, FER Pe, and SNR ηpe , which can be

used to calculate the secret key rate of the CV-QKD system

with finite codeword length.

An example comparing C(ηpe ) with Cfin(ηpe , n, Pe), β

with βfin is provided in Appendix A.

Shannon studied coding and decoding systems, and de-

rived a classic lower bound, i.e., the SPB, on the FER. For

codes with a specific codeword length n, SPB is derived as

follows [4]:

Pe > Pt(θ, η, n). (7)

Here, Pt(θ, η, n) is the probability that an n-dimensional

Gaussian random vector with mean (η, 0, . . . , 0) and covari-

ance In×n (where In×n is an n × n identity matrix) falls

outside an n-dimensional cone with a half-angle θ around

its mean. The fractional solid angle within an n-dimensional

cone with a half-angle θ can be denoted by Ωn(θ). The solid-

angle function Ωn(θ) and the probability function Pt(θ, η, n)

can be expressed as follows:

Ωn(θ) =

∫ θ

0

n− 1

n

Γ
(

n
2
+ 1

)

Γ
(

n+1
2

)√
π

(sinφ)n−2 dφ, (8)

and

Pt(θ, η, n)=

∫

π

θ

(n− 1)(sin φ)n−2

2n/2
√
πΓ

(

n+1
2

)

∫ ∞

0
sn−1eF dsdφ, (9)

respectively, where F = −(s2 + nη2 − 2s
√
nη cosφ)/2 and

Γ(·) represents the gamma function. For simplicity, the SPB

Pt(θ, η, n) is denoted by Pt in the remainder of this study.

Note that for a given n, the angle θ can be solved using

(8), and SPB Pt can be solved using (9).

Substituting the exact function (9) into (7), the SPB for

codes with a specific codeword length n can be written as

follows:

Pe> Pt=

∫

π

θ

(n− 1)(sinφ)n−2

2n/2
√
πΓ

(

n+1
2

)

∫ ∞

0
sn−1eF dsdφ. (10)

It can be seen from (10) that the SPB is bounded by SNR

η, codeword length n, and the value of angle θ, which can

be calculated using (8).

The SPB can provide the minimum SNR, denoted by

ηpt , to achieve the given FER. The minimum SNR ηpt
can be employed to calculate the minimum channel ca-

pacity Cmin
fin (ηpt , n, Pt) using (5) when the channel capac-

ity is calculated by considering the effect of the finite

codeword length. Accordingly, the corresponding maxi-

mum reconciliation efficiency, βmax
fin , can be calculated using

R/Cmin
fin (ηpt , n, Pt).

Remark. The maximum reconciliation efficiency βmax
fin

depends on the codeword length n, SPB Pt, and minimum

SNR ηpt , which leads to the maximum secret key rate of the

CV-QKD system with finite codeword length.

An example comparing C(ηpt ) with Cmin
fin (ηpt , n, Pt), β

with βmax
fin is provided in Appendix B. The simulation result

of the secret key rate with finite codeword length and the

analysis result of the maximum secret key rate with finite

codeword length are shown in Appendix C.
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