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Abstract Quantum gates and measurements on quantum hardware are inevitably subject to hardware

imperfections that lead to quantum errors. Mitigating such unavoidable errors is crucial to explore the power

of quantum hardware better. In this paper, we propose a unified framework that can mitigate quantum gate

and measurement errors in computing quantum expectation values utilizing the truncated Neumann series.

The essential idea is to cancel the effect of quantum error by approximating its inverse via linearly combining

quantum errors of different orders produced by sequential applications of the quantum devices with carefully

chosen coefficients. Remarkably, the estimation error decays exponentially in the truncated order, and the

incurred error mitigation overhead is independent of the system size, as long as the noise resistance of the

quantum device is moderate. We numerically test this framework for different quantum errors and find that

the computation accuracy is substantially improved. Our framework possesses several vital advantages: it

mitigates quantum gate and measurement errors in a unified manner, it neither assumes any error structure

nor requires the tomography procedure to completely characterize the quantum errors, and most importantly,

it is scalable. These advantages empower our quantum error mitigation framework to be efficient and practical

and extend the ability of near-term quantum devices to deliver quantum applications.
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1 Introduction

Quantum computers hold great promise for a variety of scientific and industrial applications [1–3].
Nonetheless, the challenges we face are still formidable. In the current noisy intermediate-scale quantum
(NISQ) era [4], quantum computers introduce significant quantum errors that must be dealt with be-
fore performing any exhilarating tasks. Such errors occur either due to unwanted interactions of qubits
with the environment or the physical imperfections of qubit initializations, quantum gates, and measure-
ments [5–8]. The problem can be theoretically resolved with quantum error correction [9–13], which is
far beyond the reach of NISQ quantum computers. This motivates the question of alleviating quantum
errors and increasing the quantum computation accuracy without quantum error correction.

Quantum error mitigation [14] provides an inspirational solution to this question and has been exper-
imentally implemented [15–18]. Typically, errors in a quantum device are classified into quantum gate
and measurement errors. For gate errors, numerous techniques have been designed such as zero-noise
extrapolations [14, 19–25], probabilistic error cancellations [14, 20, 26–29], subspace expansions [30–32],
purification-based methods [33–39], learning-based methods [40–42], and many others [43–45]. For mea-
surement errors, the focus is not as much as that on gate errors though measurement errors are signifi-
cantly larger than gate errors on many quantum platforms [15,46,47]. A well-known strategy is to regard
the measurement error as a classical noise model and handle it via classical post-processing [48–65]. We
recommend the interested reader to [66–68] for more detailed surveys of this topic. However, most existing
error mitigation techniques require complete characterization of the quantum device and are not scalable
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Figure 1 (Color online) Estimation of the expectation value Tr[Oρ] with the ideal quantum devices (left) and the noisy quantum

devices (right).

in general. On the other hand, the techniques targeting one type of error are not directly applicable to
the other at large.

We overcome these challenges by proposing a general error mitigation framework that can reduce both
quantum gate and measurement errors in computing the expectation values of quantum observables.
This framework does not require complete characterization of the quantum devices and is theoretically
scalable. The essential idea is to effectively approximate the inverse of quantum error using the truncated
Neumann series. Notably, the estimation accuracy of the expectation value is improved in the presence
of quantum errors.

2 Computing the expectation value

A common quantum computation task is to estimate the expectation value Tr[Oρ] within a specified
precision ε for a given quantum observable O and an n-qubit quantum state ρ := U |0〉〈0|U † generated
by a quantum gate U with initial n-qubit state |0〉. Without loss of generality, we may assume that
O is diagonal in the computational basis and ‖O‖2 6 1 where ‖·‖2 is the matrix 2-norm. This task
is the building component of multifarious quantum algorithms, and notable practical examples are the
variational quantum eigensolvers [69,70], quantum approximate optimization algorithm [71], and quantum
machine learning [72, 73].

Ideally, Tr[Oρ] can be estimated in the following way. Consider M independent experiments where in
each round we prepare the state ρ using U and measure each qubit in the computational basis as shown
in Figure 1. Let sm ∈ {0, 1}n be the outcome in the m-th round. Define the empirical mean value

η(0) :=
1

M

M
∑

m=1

O(sm), (1)

where O(x) is the x-th diagonal element of O. Let vec(ρ) be the 2n-dimensional column diagonal vector
of ρ. Then [55]

E(0) := E[η(0)] =
∑

x∈{0,1}n

O(x)〈x| vec(ρ) = Tr[Oρ], (2)

where E[X ] is the expectation of the random variableX . Eq. (2) implies that η(0) is an unbiased estimator
of Tr[Oρ]. Furthermore, the standard deviation σ(η(0)) 6 1/

√
M . By Hoeffding’s inequality [74], M =

2 log(2/δ)/ε2 would guarantee that η(0) approximates Tr[Oρ] within ε at probability greater than 1− δ,
where δ is the confidence and all logarithms are in base 2 throughout this paper.

However, both the quantum gate and measurement of the quantum states suffer from Markovian errors
inherent in quantum devices. For simplicity, we ignore errors in preparing the initial state, which can be
accounted for by regulating noisy quantum gates after qubits initialization. For the quantum gate error,
we assume that the overall evolution is modeled as the ideal gate evolution U followed by some quantum
noisy channel N [14], i.e., the actual prepared state is N (ρ) rather than ρ. The gate error leads to
the noisy expectation value Tr[ON (ρ)]. Experimentally, the noise channel N can be fully characterized
via quantum process or gateset tomography [75]. For the measurement error, it was established that
such error can be well understood using classical noise models [48–50]. Specifically, an n-qubit noisy
measurement device can be characterized by an error matrix A of size 2n × 2n. The element in the x-th
row and y-th column, Axy, is the probability of obtaining an outcome x provided that the true outcome
is y. Experimentally, the error matrix can be learned via calibration [49].

Suppose now that we adopt the same procedure for computing η(0) and obtain the noisy estimator η(1)

(cf. the right side of Figure 1), where superscript 1 indicates that the noisy devices are functioning. We
prove in Appendix A that

E(1) := E[η(1)] =
∑

x∈{0,1}n

O(x)〈x|A vec(N (ρ)), (3)
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indicating that η(1) is no longer an estimator of Tr[Oρ]. Comparing (2) and (3), we find that in the ideal
case, the sampled distribution approximates vec(ρ) thanks to the weak law of large numbers, while in
the noisy case, the sampled distribution approximates A vec(N (ρ)) due to both gate and measurement
errors, leading to a bias in the estimator.

Our main result is a unified error mitigation framework that can alleviate the quantum errors identified
by N and A leading to the noisy estimator A vec(N (ρ)). In the following, we first describe the general
framework and then specialize it to deal with quantum gate and measurement errors.

3 Error mitigation via truncated Neumann series

3.1 General theory

Let R be the real field, Md be the set of d× d real square matrices, and I ∈ Md be the identity matrix.
Let f : Md → R be a linear function and A ∈ Md be a matrix. We are interested in estimating f(I) given
access to f(A). This abstract task encapsulates many important computational tasks in both classical
and quantum computing including the expectation value estimation task described above. We show in
the following proposition that, under certain conditions, the target f(I) can be efficiently approximated
via a linear combination of accessible terms f(Ak) of different orders with carefully chosen coefficients,
employing the Neumann series expansion [76, Theorem 4.20]. Since I = AA−1, the essential idea is to
simulate the effect of the inverse A−1 via a suitable truncated Neumann series. The proof is given in
Appendix B.

Proposition 1. If ‖I −A‖ < 1 in some consistent norm, then

∣

∣

∣

∣

∣

f(I)−
K+1
∑

k=1

cK(k − 1)f
(

Ak
)

∣

∣

∣

∣

∣

=
∣

∣f
(

(I −A)K+1
)∣

∣ , (4)

where the coefficient function is defined as

cK(k) := (−1)k
(

K + 1

k + 1

)

(5)

and
(

n
k

)

is the binomial coefficient.

Intuitively, Eq. (4) indicates that one may approximate the target value f(I) using the firstK truncated
Neumann terms f(Ak), if (1) the precondition ‖I −A‖ < 1 is satisfied, (2) the k-th order value f(Ak)
can be obtained in a similar way as that of f(A), and (3) the remaining term f((I − A)K+1) can
be upper bounded theoretically. And, even better, if the upper bound decays exponentially with K,
the approximation quickly converges. We show that with appropriate representations all these three
conditions can be satisfied in the quantum error mitigation tasks. This idea has previously been applied
for linear data detection in massive multiuser multiple-input multiple-output wireless systems [77].

3.2 Gate error mitigation (GEM)

We illustrate how to use the Neumann series framework to mitigate gate errors. For this aim, we first
recall the Pauli transfer matrix (PTM) representation in Appendix C. In PTM, quantum states |ρ〉〉 and
observables 〈〈O| are represented by vectors and quantum channels [N ] are represented by real matrices.
For n qubits, vectors and matrices are 4n-dimensional. The expected value of the observable O in the
state ρ going through the noisy quantum channel N reads as follows:

Tr[ON (ρ)] = 〈〈O|[N ]|ρ〉〉. (6)

Setting f ≡ Tr and A ≡ [N ], the above task fits into the truncated Neumann series framework. Define
the noise resistance of the quantum channel N as

ξg(N ) := ‖I − [N ]‖∞ , (7)

where ‖·‖∞ is the matrix ∞-norm. We assume that ξg(N ) < 1, which is a sufficient condition so that
Proposition 1 holds. For Pauli noise N , ξg < 1 corresponds to the case that all Pauli eigenvalues must
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Figure 2 (Color online) Experimental setup for estimating E(3)
g

, where the noisy gate device (box in green) is executed 3 times

sequentially.

be strictly positive [78, 79], which can be satisfied whenever the noise is weak [80]. We show in the
following theorem that the approximation error (right hand side (RHS.) of (4)) can be exponentially
upper bounded in terms of ξg. The proof is given in Appendix D.

Theorem 1. Assume that ξg(N ) < 1. For arbitrary positive integer K, it holds that

∣

∣

∣

∣

∣

Tr[Oρ] −
K+1
∑

k=1

cK(k − 1)E(k)
g

∣

∣

∣

∣

∣

6 ‖〈〈O|‖∞ ξK+1
g , (8)

where E
(k)
g := 〈〈O|[N ]k|ρ〉〉.

As evident from Theorem 1, the noise resistance ξg of N uniquely determines the number of terms
required in the truncated Neumann series to approximate Tr[Oρ] to the desired precision. What is more,
since ξg < 1, the approximation error decays exponentially in terms of K, indicating that small K suffices
to reach high estimating accuracy. Thanks to the multiplicativity property of PTM, which states that

the PTM of N ◦k is exactly [N ]k, each E
(k)
g can be viewed as the noisy expectation value generated by the

noisy gate device executed k times sequentially. Since measurement errors can be handled independently,

we do not concern such errors in GEM. Let Eg :=
∑K+1

k=1 cK(k− 1)E
(k)
g . Theorem 1 inspires a systematic

way to estimate the expectation value Tr[Oρ]. Firstly, we choose K so that the RHS. of (8) evaluates to
the desired precision ε, yielding the optimal gate truncated number

Kg =

⌈

log ε− log ‖〈〈O|‖∞
log ξg

− 1

⌉

. (9)

Secondly, we compute Eg by estimating each E
(k)
g and linearly combining them with coefficients cK .

Since Eg itself is only an ε-estimate of Tr[Oρ], it suffices to approximate E within an error ε. Motivated

by the relation between η(1) and E(1) in (3), we propose the following procedure to estimate E
(k)
g for

arbitrary 1 6 k 6 K + 1:
(1) Generate a quantum state ρ.
(2) Execute the channel N sequentially k times, yielding the final state N ◦k(ρ). Measure the final

state and collect the measurement outcome.
(3) Repeat the above two steps M rounds.

(4) Output the average η
(k)
g as an estimate of E

(k)
g .

We claim that the average ηg :=
∑K+1

k=1 cK(k − 1)η
(k)
g approximates Tr[Oρ] within error 2ε with high

probability, i.e.,

Pr
{

|Tr[Oρ]− ηg| 6 2ε
}

> 1− δ. (10)

The proof is given in Appendix E. For illustrative purposes, we demonstrate in Figure 2 the experimental

setup for estimating the noisy expectation value E
(3)
g , where the noisy device is repeated sequentially

three times in each round. It is worth noting that the GEM method does not necessarily require the
complete characterization of N , as the only relevant quantity is the noise resistance ξg. In principle, this
means that ξg can be estimated efficiently without resorting to time-consuming tomography procedures.

Comparison with existing results. The proposed GEM method shares similarities with the
Richardson extrapolation-based error mitigation method [14,24] in that both increase the effective noise
level and then infer the noiseless case through classical reconstruction. As demonstrated in [24], Richard-
son extrapolation produces the same fitting coefficients cK(k) as defined in (5) when the noise scale
factors are evenly spaced. However, our GEM method fundamentally differs from the Richardson ex-
trapolation method as it assumes that the expectation value E(1) defined in (3) is influenced by a scalar
noise factor and corresponds to a Taylor series approximation. This results in the inability to analytically
determine the number of extrapolation terms. Conversely, our GEM method evaluates the impact of
noise on the expectation value in its most general form and employs the truncated Neumann series to
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mitigate the noise effect at the matrix level. As a result, our method provides rigorous convergence rate
bounds, allowing the optimal determination of truncated terms. In some respects, our GEM method is
a multi-dimensional Richardson extrapolation based error mitigation method with rigorous convergence
rate bounds. Nonetheless, our method has shortcomings when compared to the Richardson extrapola-
tion method since it requires evenly spaced noise scale factors, thus preventing us from employing the
standard identity insertion technique to increase the effective noise level effectively. Consequently, our
method faces challenges in experimental implementation, which we will discuss shortly. In their recent
work, Takagi et al. [27] established fundamental bounds on the reduction of computation error by er-
ror mitigation methods in terms of sampling overhead, which place universal performance limits on our
proposed GEM method. Additionally, Cao et al. [81] introduced a scalable extrapolation approach to
mitigate algorithmic errors in quantum optimization algorithms. We believe that our proposed GEM
method, or the truncated Neumann series framework more generally, could also be extended to mitigate
algorithmic errors, given the similarity between our method and the extrapolation-based error mitigation
method.

Remarks on the experimental implementation. In practical quantum computing platforms, two-
qubit gates typically suffer from error rates that are orders of magnitude higher than that of single-qubit
gates [15, 46, 47]. Therefore, we may focus on mitigating errors induced by two-qubit gates such as the
CNOT gate as in [21]. Specifically, to implement the power Nm physically, we first learn the noise model
N of the CNOT gate to high accuracy and then carefully design a virtual identity gate whose noise model
approximates N . In this way, the power Nm can be experimentally accomplished by inserting the virtual
identity gates after the noisy CNOT gate. This approach is particularly suitable for near-term quantum
computers where two-qubit gate fidelities are limited and can be characterized.

3.3 Measurement error mitigation (MEM)

Recall that the error of a measurement device is well understood using classical noise models and is
characterized by an error matrix A. It is straightforward to classically reverse the noise effects by
multiplying the sampled distribution by the inversion A−1. Nonetheless, there are several limitations of
the direct inverse approach: (i) Completely characterizing A requires 2n calibration setups and is not
scalable; (ii) A may be singular which prevents direct inversion; and (iii) A−1 is hard to compute in
general and might not be column stochastic, resulting unphysical estimates.

We manifest how to use the Neumann series framework to mitigate measurement errors while avoiding
the limitations. Similar to the GEM case, the essential idea of MEM is to effectively simulate the inverse
of the error matrix A, utilizing the truncated Neumann series. First of all, we define the noise resistance
of the error matrix A as

ξm(A) := 2

(

1− min
x∈{0,1}n

〈x|A |x〉
)

. (11)

By definition, 1 − ξm/2 is the minimal diagonal element of A. Intuitively, ξm/2 characterizes the mea-
surement device’s worst-case behavior since it is the maximal probability for which the true and actual
outcomes mismatch. In the following, we assume ξm < 1, which is equivalent to the condition that the
minimal diagonal element of A is larger than 0.5. This assumption is reasonable since otherwise the
measurement device is too noisy to be applicable from the practical perspective. It is also a sufficient
condition under which Proposition 1 holds. We deploy the truncated Neumann series framework to al-
leviate the measurement errors and obtain the following, in a similar favor of Theorem 1. The proof is
given in Appendix F.

Theorem 2. Assume that ξm < 1. For arbitrary positive integer K, it holds that

∣

∣

∣

∣

∣

Tr[Oρ]−
K+1
∑

k=1

cK(k − 1)E(k)
m

∣

∣

∣

∣

∣

6 ξK+1
m , (12)

where

E(k)
m :=

∑

x∈{0,1}n

O(x)〈x|Ak vec(ρ). (13)
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Figure 3 (Color online) Experimental setup for estimating E(3)
m

, in which the noisy measurement device (box in red) is executed

3 times sequentially.

Upper bounding the RHS. of (12) with the desired precision ε yields the optimal measurement truncated
number

Km =

⌈

log ε

log ξm
− 1

⌉

. (14)

We can evaluate the noisy values E
(k)
m up to the optimal order Km in almost the same manner as we

estimated E
(k)
g in GEM. The different step is that we replace the single measurement with sequential

measurements so that Ak appeared in (13) can be recovered:
(1) Generate a quantum state ρ.
(2) Using ρ as input, execute the noisy measurement device k times sequentially and collect the outcome

produced by the final k-th measurement device.
(3) Repeat the above two steps M rounds.

(4) Output the average η
(k)
m as an estimate of E

(k)
m .

Likewise, the average ηm :=
∑K+1

k=1 cK(k−1)η
(k)
m approximates Tr[Oρ] within error 2ε with a probability

larger than 1− δ. The proof is the same as that of (10).
A crucial concept we introduce in the above MEM method is the sequential measurement. Roughly

speaking, it means that we use the output of one measurement device as the input of the other. In Ap-
pendix G, we elaborate thoroughly on this concept and show that the classical noise model describing the
sequential measurement repeating k times is indeed characterized by the error matrix Ak. For illustrative

purpose, we demonstrate in Figure 3 the experimental setup for estimating E
(3)
m , where the measurement

device is executed three times sequentially. Indeed, one can think of the rightmost k−1 measurements as
implementing the calibration subroutine since they always have the computational basis states as inputs.
In some sense, this is a dynamic calibration where we do not statically enumerate all computational bases
as input states but dynamically prepare the input states based on the output information of the target
state from the first measurement device. We note that our MEM method has been implemented in the
quantum error processing toolkit developed on the Baidu Quantum Platform [82].

3.4 Resource analysis

When applying the truncated Neumann series framework to mitigate quantum errors, we repeat the quan-
tum devices sequentially in different numbers of times, compute the noisy values, and linearly combine
them to approximate the target. We use the number of quantum states consumed as the resource metric
and analyze the complexity of the proposed methods GEM and MEM. Fundamentally, the resource costs
of both methods are dominated by the optimal truncated number K – Kg (9) in GEM and Km (14)
in MEM – that determines the maximal number of truncated terms and the number of quantum states
prepared to evaluate each truncated term. The detailed analysis has been given in Appendix E. Set
∆ :=

(

2K+2
K+1

)

− 1. For each 1 6 k 6 K, we need M = 2(K + 1)∆ log(2/δ)/ε2 copies of quantum states to
achieve the desired accuracy ε and confidence δ. As so, the total number of quantum states consumed is
roughly given by

M(K + 1) = 2(K + 1)2∆ log(2/δ)/ε2 ≈ 4K log(2/δ)/ε2, (15)

where the approximation follows from Stirling’s approximation. In other words, the number of quantum
states consumed by GEM or MEM is much more than that of the ideal case by a factor of 4K . We
shall call the factor 4K the error mitigation overhead with truncated Neumann series, characterizing
the overall increased number of samples necessary to ensure a certain accuracy. At first glance, the
exponential factor 4K renders the error mitigation methods utilizing truncated Neumann series infeasible
when K becomes large. However, we argue in the following that for near-term quantum devices with
moderate noise resistance, K is quite small and thus is acceptable experimentally. In Figure 4, we plot
the optimal truncated number K = ⌈log ε/ log ξ − 1⌉ as a function of the noise resistance ξ, where the
error tolerance parameter is fixed as ε = 0.01. Notice that ξ can be either ξg (7) in GEM (ignoring
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Figure 4 (Color online) The (simplified) truncated number K = ⌈log ε/ log ξ − 1⌉ as a function of the noise resistance ξ, where

ε = 0.01.

negligible extra terms) or ξm (11) in MEM. One can check from the figure that K 6 10 whenever the
noise resistance satisfies ξ 6 0.657. In GEM with Pauli noise, this corresponds to that the minimal
Pauli eigenvalue is larger than 0.343, while in MEM, this means that the minimal diagonal element of
A is greater than 0.67. These conditions are easily met by many publicly available quantum devices,
as shown in [15, 49]. Furthermore, in Appendix H, we illustrate that prevalent noise channels, including
depolarizing, dephasing, and amplitude damping channels, exhibit noise resistances that are linearly
proportional to their noise parameters. We also provide a more straightforward representation of the
relationship between the optimal truncated number K and the noise parameters of these channels, which
could serve as a useful guide for the practical implementation of our error mitigation method. In general,
the overhead incurred by error mitigation, 4K , can be independent of the system size (the number of
qubits), as long as the noise resistance ξ of the quantum device is moderate and below a certain threshold,
such as 0.657.

3.5 Numerical results

We use the qubit depolarizing channel as an example to verify the GEM method, and more examples
can be found in Appendix H. This channel is defined as Ωp(ρ) :=

(

1− 3p
4

)

ρ + p
4 (XρX + Y ρY + ZρZ),

where p ∈ [0, 1] and X , Y , Z are the Pauli operators. Consider the task where the ideal state is ρ = |0〉〈0|
and O = Z. The ideal expectation value is Tr[Zρ] = 1 while the noisy expectation value suffering
from depolarizing noise is Tr[ZΩp(ρ)] = 1 − p. To apply GEM, we first compute the optimal truncated
number. Since ξg(Ωp) = p and ‖〈〈Z|‖∞ =

√
2, we get Kg = ⌈(log ε− log

√
2)/ log p− 1⌉. Figure 5 shows

the noisy and mitigated expectation values obtained via exact simulation for the range of noise parameters
p ∈ [0, 0.3], where ε = 0.01 is fixed. To account for the effect of finite measurement shots, we numerically
estimate the noisy and mitigated expectation values for six noise parameters p = 0.025, 0.075, . . . , 0.275,
forming an arithmetic sequence. Each estimate is obtained from 104 measurement shots, and we repeat
the mitigation procedure 103 times to report the mean and standard deviation of each estimate. The
resulting data is also shown in Figure 5. We observe that the variance of the mitigated value increases
as the noise parameter p becomes large, because a large noise parameter leads to an increased number of

truncated terms η
(k)
g . The sample variance of η

(k)
g depends on the number of measurement shots, and η̄g

is a linear combination of η
(k)
g . Thus, the variance of η̄g must increase when the noise parameter becomes

large while the number of measurement shots remains unchanged. From our numerical results, we can see
that GEM works well and substantially improves computation accuracy, despite an increase in estimation
variance, which is a common trade-off in error mitigation methods. We note that the kink-like behavior
observed in Figure 5 is due to using the same truncation number K for a certain range of p. As p increases
within this range, more terms of the Neumann series are needed to achieve a good approximation, and
the approximation quality degrades. Therefore, using the same truncation number K across a wide range
of p values can result in insufficient approximation accuracy for some values of p.

We consider another example to verify the MEM method. Consider the input state ρ = |Φ〉〈Φ|, where
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ideal expectation value 0. Here, the number of qubits is 8 and ε = 0.01.

Φ is the maximal superposition state |Φ〉 :=
∑2n−1

i=0 |i〉 /
√
2n. The observable O is a tensor product of

Pauli Z operators, i.e., O = Z⊗n. The ideal expectation value is Tr[Oρ] = 0. We choose n = 8 and
randomly generate an error matrix A whose noise resistance satisfies ξ(A) ≈ 0.2 so that the measurement
error falls into the moderate regime. To account for the effect of finite measurement shots, we numerically
estimate the noisy and mitigated expectation values. Each estimate is based on 104 measurement shots,
and we repeat the mitigation procedure 103 times to obtain the mean and standard deviation of each
estimate. Note that all these experiments use the same error matrix A with fixed parameters ε = 0.01.
The resulting data is visualized in a bar graph in Figure 6, where the blue and red histograms indicate
the noisy and mitigated values, respectively, and the blue and red dotted lines indicate their mean. The
black line indicates the ideal expectation value of 0. We observe that the noisy measurement device,
characterized by the error matrix A, incurs a bias of approximately −0.005 to the estimated expectation
value. On the other hand, the mean of the mitigated expectation values approximates the ideal value
well, despite an increase in estimation variance, which is a common trade-off in error mitigation methods.
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4 Conclusion

We introduced a general framework to mitigate quantum gate and measurement errors in computing
expectation values of quantum observables, an essential building block of numerous quantum algorithms.
The idea behind this method is to approximate the inverse of the quantum error characterizing the noisy
behavior of the underlying quantum device using a small number of truncated Neumann series terms.
Remarkably, the estimation error decays exponentially in the truncated order, and the incurred error
mitigation overhead is independent of the system size, as long as the noise resistance of the quantum
device is moderate. The proposed error mitigation framework theoretically works for any quantum error
and does not require the tomography procedure to completely characterize the quantum errors. This
property is beneficial and will be more and more important as the quantum circuit sizes increase. We
numerically tested this method for both gate and measurement errors and found that the computation
accuracy is substantially improved. We believe that this framework will be helpful for quantum error
mitigation in NISQ quantum devices. We emphasize that quantum error mitigation is still an active
research area. For example, there is emerging interest in syncretizing error mitigation and correction
techniques [83, 84]. It would be interesting to explore how the proposed error mitigation framework can
be enhanced via error correction.
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