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Abstract Using the concept of non-degenerate Bell inequality, we show that quantum entanglement, the

critical resource for various quantum information processing tasks, can be quantified for any unknown quan-

tum state in a semi-device-independent manner, where the quantification is based on the experimentally

obtained probability distributions and prior knowledge of the quantum dimension only. Specifically, as an

application of our approach to multi-level systems, we experimentally quantify the entanglement of formation

and the entanglement of distillation for qutrit-qutrit quantum systems. In addition, to demonstrate our ap-

proach for multi-partite systems, we further quantify the geometric measure of entanglement of three-qubit

quantum systems. Our results supply a general way to reliably quantify entanglement in multi-level and

multi-partite systems, thus paving the way to characterize many-body quantum systems by quantifying the

involved entanglement.
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1 Introduction

Quantum entanglement, the key resource for quantum communication [1] and quantum key distribu-
tion [2–4], provides remarkable quantum advantages for quantum simulators and quantum computers
over their classical counterparts [5, 6]. As a result, developing tools that can efficiently detect, or even
quantify unknown quantum entanglement is a central problem in quantum information science. However,
it is very challenging, as quantum entanglement cannot be measured directly by any observables.

To certify the existence of quantum entanglement, the concept of quantum entanglement witness [7]
has been widely used. For an arbitrary entangled state ρent, there is an entangled witness, defined as a
Hermitian operator W such that for all separable states Tr(Wρsep) > 0 but Tr(Wρent) < 0. However,
it is unsatisfactory for the following reasons: first, certain accurate information about the target state
is needed [8], which prevents its application to unknown states; second, from the experimental aspect,
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exact knowledge on the measurement devices needed by this approach is impossible to obtain; last, but
not least, quantum entanglement witnesses usually only detect the presence of entanglement, which is
insufficient for many applications such as classifying the topological phases in many-body systems by
entanglement [9, 10].

The device-independent (DI) method, initially introduced in quantum key distribution [11] and self-
testing [12], can also be used to detect the entanglement of a state. In this scenario, all the involved clients
perform local measurements {Mx} on the target quantum state and obtain corresponding outcomes {a},
where x ≡ (x1, x2, . . . , xn) and a ≡ (a1, a2, . . . , an) are the collections of the labels for measurement
settings and outcomes. Then entanglement can be detected based only on the violation of a Bell-type
inequality I(ρ, {Mx}, {a}) =

∑

a,x c
a

x
p(a|x) 6 Cl (c

a

x
are real coefficients and Cl is the classical bound).

As a result, this approach can overcome the critical drawbacks of the entanglement witness method men-
tioned above. In fact, the DI method has been experimentally implemented to demonstrate dimension
witness [13, 14], Bell-inequality violation [15], randomness generation [16], and self-testing [17]. Further-
more, measurement-DI [18, 19] and semi-DI schemes [20, 21], where partial information on the target
system is known reliably, have also been extensively studied. For example, semi-DI schemes assume that
the quantum dimension is known reliably before characterizing the target unknown quantum system.

Compared with entanglement detection, the quantification of entanglement is much more challenging.
Particularly, when the full information of target quantum states is known, some important measures,
such as the entanglement of formation and the entanglement of distillation, have been proposed to
quantify bipartite quantum entanglement [22, 23]. Similarly, although with much more complicated
mathematical structures, a few measures that can quantify multi-partite quantum entanglement have
also been utilized, which include the geometric measure of entanglement (GME) and the relative entropy
of entanglement [23–26]. Meanwhile, quantifying unknown quantum entanglement in that the underlying
density matrices are not available is also a realistic problem, which is even harder as one has to characterize
target quantum states first.

In this paper, we experimentally demonstrate that the semi-DI method can be utilized to efficiently
quantify unknown entanglement in multi-level and many-body quantum systems. Particularly, since
the foundation of our method is Bell-type correlations, whose size is not determined by the quantum
dimension directly, the number of quantum measurements needed is very modest, implying that our
method is very efficient.

More specifically, with the help of the Collins-Gisin-Linden-Masser-Popescu (CGLMP) inequality [27],
we quantify the entanglement of formation and the entanglement of distillation in qutrit-qutrit systems
based only on the experimentally obtained probability distributions, demonstrating our approach on
multi-level systems. In addition, as a demonstration of multi-partite entanglement quantification, we
further quantify the geometric measure of entanglement in 3-qubit systems by examining experimentally
obtained probability distributions with the Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality [28–
30]. Although our experiments are performed on qutrit-qutrit bipartite quantum systems and 3-qubit
quantum systems, we would like to stress that the semi-DI approach we demonstrated works generally
for multi-level and many-body systems of arbitrary size, thus paving the way to studying many-body
quantum systems by efficiently quantifying their entanglement.

2 Theoretical derivation of the semi-DI entanglement measure

We consider the entanglement quantification scenario in which an n-partite quantum state is distributed
to n distant clients. For each experimental trial, the ith client performs a choice of measurement setting
on his shared subsystems upon receiving a classical random input xi and obtains a classical output ai.
After repeating the experiment sufficiently many times and collecting the observed statistics, the clients
can generate a quantum correlation expressed as the probability distribution p(a|x) = Tr((

⊗n
i=1M

ai
xi
)ρ),

where Mai
xi

is the measurement operator with outcome ai for the measurement xi performed on the i-th
party. For convenience, let {Mx} denote the tensor product of all local measurements

⊗n
i=1M

ai
xi
. The

probability distribution p(a|x) can then be used to detect nonlocality. Here, we further use them to
quantify the entanglement of unknown quantum states of known dimension, that is, in a semi-DI fashion.

To quantify the entanglement of a multi-partite quantum state, a general measure is needed and we
choose the GME [24,25,31]. The GME of a general quantum state ρ is defined by convex roof construction
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as
EG(ρ) ≡ 1− max

ρ=
∑

i
pi|ψi〉〈ψi|

∑

i

pi sup
|φi〉∈sepn

|〈ψi|φi〉|2,

where sepn is the set of n-partite product pure states.
To obtain the GME from p(a|x), we need to calculate two fundamental quantities. The first is the

maximal overlap between ρ and a pure product state |φ〉, denoted by F̂ . Using the properties of quantum
measurements, F̂ can be directly computed by numerical approaches such as the shifted higher-order
power method (SHOPM) algorithm [32] from the distribution p(a|x) [33] (see Supplemental Material for
more details). Meanwhile, if ρ is pure, it is not hard to see that the GME is exactly 1− F̂ 2. However, for
the general case that ρ is not pure, this relation does not hold. To address the general case, we need to
estimate the second quantity, the purity of ρ (it means how it is close to a pure state, defined as Tr(ρ2)).
The basic idea is as follows: if somehow we can prove that the purity of ρ is high, some term in the
orthogonal decomposition of ρ has a large weight, which means that this term is a pure state that is very
close to ρ. As a pure state, it is relatively easy to estimate its GME, then by utilizing the continuity
of the GME, we can eventually estimate the GME of ρ (see Ref. [33] for more details on how this idea
works).

Fortunately, if one applies the concept of non-degenerate Bell inequalities [34], a lower bound for the
purity of ρ can be obtained directly from the distribution p(a|x). Supposing a set of local measurements
and the corresponding outcomes have been labeled as ({Mx}) and ({a}), respectively, a general Bell
inequality can be expressed as I(ρ, {Mx}, {a}) =

∑

a,x c
a

x
p(a|x) 6 Cl, where c

a

x
are real numbers and Cl

is the maximal classical value. Intuitively, if a quantum state ρ remarkably violates the Bell inequality
I(ρ, {Mx}, {a}) 6 Cl, we hope ρ can be certified to be close to a pure state; i.e., the purity Tr(ρ2) is close
to 1, as in the Clauser-Horne-Shimony-Holt (CHSH) inequality [35]. The concept of non-degenerate for
Bell inequalities is used to make this intuition strict. Explicitly, supposing the target quantum system has
a dimension vector d ≡ (d1, d2, . . . , dn) (i.e., di is the dimension of the i-th party), I(ρ, {Mx}, {a}) 6 Cl
is called non-degenerate if there exist two real numbers 0 6 ǫ1 < ǫ2 6 Cq(d) (Cq(d) is the maximal value
of the Bell expression for quantum systems of given dimension vector d) such that, for any two orthogonal
quantum states |α〉 and |β〉, I(|α〉〈α|, {Mx}, {a}) > Cq(d)−ǫ1 always implies that I(|β〉〈β|, {Mx}, {a}) 6
Cq(d) − ǫ2. In fact, many notable Bell inequalities, such as the MABK inequality in qubit systems and
the CGLMP inequality in qutrit systems, have been proven to be non-degenerate [33, 34, 36].

Supposing the Bell inequality I(ρ, {Mx}, {a}) 6 Cl is non-degenerate with parameters ǫ1 and ǫ2, ρ has
an orthogonal decomposition ρ =

∑

i ai|ψi〉〈ψi|, and I(ρ, {Mx}, {a}) > Cq(d) − ǫ1. Then, according to
the definition of the non-degenerate, it can be proven that there exists ai such that ai > 1−ǫ1/ǫ2 (without
loss of generality, we suppose i = 1; see Supplemental Material for more details) [33]. Particularly, when
I(|α〉〈α|, {Mx}, {a}) is very close to Cq, it turns out that ǫ1 and ǫ2 can be chosen such that ǫ1/ǫ2 ≪ 1,
implying that ρ is close to a pure state [34], which is consistent with the intuition mentioned above.

With the estimations for F̂ and a1, as mentioned above we are ready to apply the continuous property
of the GME. If F̂ 6 a1, a lower bound for the GME of ρ can be obtained as [33]

EG(ρ) > max
c∈[ F̂

√

a1
,
√
a1]

a1 − c2

1− c2






1−





F̂√
a1
c+

√

1− F̂ 2

a1

√

1− c2





2





.

Actually, in addition to the GME, one can also lower bound the relative entropy of entanglement (REE)
ER(ρ) for ρ [23] by estimating a1 and F̂ . Indeed, with the technique introduced in [37], the information
on a1 allows us to upper bound S(ρ), the von Neumann entropy of ρ that plays a key role in many-body
systems [38]. Combining this result with the information on F̂ , ER(ρ) can be directly lower bounded
using the relation ER(ρ) > −2 log2(F̂ )− S(ρ) [39].

Specifically, if ρ is restricted to a d × d-dimensional bipartite quantum state, the entanglement of
formation (denoted by Ef (ρ)) [22] and the entanglement of distillation (denoted by Ed(ρ)) [22] can also
be quantified in a semi-DI manner. For this, first note that both entanglement measures can be lower
bounded by the coherent information of ρ, defined by IC(ρ) = S(ρA)−S(ρ) [40,41], i.e., Ef (ρ) > Ed(ρ) >
IC(ρ) [42]. Furthermore, the coherent information IC(ρ) can be lower bounded by upper bounding S(ρ)
and lower bounding S(ρA) simultaneously from the correlation data p(a1a2|x1x2) (the dimension d of the
bipartite system is known) [34]. As a result, the entanglement of formation and distillation can be lower
bounded semi-device-independently.
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Figure 1 (Color online) Experimental setup for the semi-DI entanglement quantification of (a) qutrit-qutrit and (b) three-qubit

entangled states, both of which can be decomposed into an entangled source and a measurement apparatus. (a) An entangled

photon pair is generated from SPDC at a type-II cut periodically poled KTP (PPKTP) crystal embedded in a two-path Sagnac

interferometer and pumped by a continuous-wave (CW) violet laser (power is 4 mW, working at 404 nm). Qutrit-qutrit states

are encoded in the hybrid of the path and polarization degrees of freedom of the photons. The measurement settings for the

CGLMP inequality can be implemented via the configuration composed of a series of Phasers (a combination of two QWPs and an

HWP), HWPs, BDs, and PBS. (b) Polarization-encoded three-photon GHZ states are produced by combining two pairs of entangled

photons generated from two sandwich-like BBO crystals pumped by an ultraviolet laser (with a central wavelength of 390 nm, a

pulse repetition rate of 80 MHz, and a power of 25 mW). LiNbO3 and YVO4 are used for spatial and temporal compensations

between horizontal and vertical polarizations, respectively. IF: interference filter; HWP: half-wave plate; QWP: quarter-wave plate;

PBS: polarizing beam splitter; BD: beam displacer.

3 Experimental implementation and results

3.1 Experimental setups

The experimental setup to implement the semi-DI entanglement quantification for multi-level and multi-
partite quantum states is shown in Figure 1. The setup mainly consists of entangled photon sources and
measurement simulations for corresponding non-degenerate Bell-type inequalities.

In Figure 1(a), we use a high-quality path-polarization hybrid encoded entanglement source [43] to
generate desired entangled states beyond the qubit state space. In particular, two-qutrit states of the
form |Φ(β)〉 = (|00〉 + β|11〉 + |22〉)/

√

2 + β2 with varied β are prepared by means of the process of
degenerate spontaneous parametric down-conversion (SPDC). Here, the vertically polarized (V) photon
in the upper path is encoded as state |0〉, and the horizontally polarized (H) and vertically polarized
photons in the lower path are encoded as state |1〉 and |2〉, respectively. The real coefficient β is controlled
by varying the angles of the half-wave plates (HWPs) at 404 nm. In Figure 1(b), two ultra-bright
beamlike EPR photon sources are used to generate the 3-partite Greenberger-Horne-Zeilinger (GHZ)
state |Ψ〉3 = (|HHH〉+ i|V V V 〉)/

√
2 [44]. Here an HOM-interferometer ensures photons from different

EPR sources are indistinguishable in arrival time, frequency, and spatial degree of freedom, and the
post-selection on two events |HHHH〉 and |V V V V 〉 results in a 4-photon GHZ state. The desired state
|Ψ〉3 can be obtained when one of the photons acts as a trigger and a phaser properly adjusts the relative
phase between |HHH〉 and |V V V 〉.

3.2 Entanglement of qutrit-qutrit states

The previously introduced semi-DI entanglement quantification method is general and can be applied
to any multi-level and multi-partite states. We first apply it on a 3 × 3 quantum system. Here both
Alice and Bob are required to randomly perform two measurements on their qutrits to test a Bell-type
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Figure 2 (Color online) Results of semi-DI entanglement quantification for qutrit-qutrit states, where β ∈ [0.3, 1]. (a) Exper-

imentally observed Bell expressions of the CGLMP inequality ICGLMP and the inequality tailored for maximally entangled state

IMAX are marked as blue and red dots, respectively, while the theoretical predictions are plotted in blue and red lines. (b) Coherent

information IC as a lower bound for the entanglement measures of the state |Φ(β)〉. Experimental results are marked as blue and

red dots for the two inequalities, respectively, and the theoretical predictions using our method are plotted in the blue and red

lines. For comparison, we also plot the exact coherent information of perfect |Φ(β)〉 as the green line.

inequality. If we choose the inequality to be the 3-dimensional CGLMP inequality (or the Bell inequality
tailored to maximally entangled states [45], see Supplemental Material for details [46, 47]), the involved
four measurements have projection states admitting a general quantum-mechanical formula as

|o(0)〉 = 1√
3
(|0〉+ eiα1|1〉+ eiα2|2〉),

|o(1)〉 = 1√
3
(|0〉+ ei(α1+2π/3)|1〉+ ei(α2+4π/3)|2〉),

|o(2)〉 = 1√
3
(|0〉+ ei(α1+4π/3)|1〉+ ei(α2+8π/3)|2〉),

where the phases α1, α2 ∈ [0, 2π). As depicted in Figure 1(a), the above measurements can be realized
by placing five phasers (P), five HWPs, two beam displacers (BDs), a polarizing beam splitter (PBS),
and three single photon detectors sequentially. Specifically, P2, P3 and P5 are set at α1 − α2, −α1, and
−(α1 + π/2), and HWP1-5 are rotated at 45◦, 67.5◦, 72.37◦, 45◦, and 22.5◦. P1 and P4 set at 0 are
used for temporal compensation, and detectors D1–D3 record three outcomes 0–2, respectively. Here the
phaser consisting of two quarter-wave plates (QWPs) and an HWP can add an arbitrary phase between
the H and V components.

As the first demonstration, we report our experimental results on the two bipartite Bell expressions in
Figure 2, where the values of Bell expressions can be seen in Figure 2(a) and the lower bound for the co-
herent information can be seen in Figure 2(b). Here the class of states we chose is |Φ(β)〉 with β ∈ [0.3, 1].
As mentioned before, coherent information is a lower bound for the entanglement of formation and the
entanglement of distillation. In Figure 2, our experimental data are marked with colored points, while the
theoretical predictions (produce quantum correlations using perfect quantum states and measurements,
then apply our method if needed) are given as colored solid lines. Specifically, the blue points and line
represent results for the CGLMP inequality, and the red points and line are for the inequality tailored
for maximally entangled states introduced in [45]. For comparison, we also plot the exact value of the
coherent information as a green solid line in Figure 2(b). It can be seen that the measured Bell expres-
sions match well with the theoretical lines, implying high-precision preparations and measurements of
the qutrit-qutrit states. When choosing the CGLMP inequality, we obtain maximal coherent information
of IC = 1.01± 0.09 for β = 0.79, which coincides with the trend of theoretical prediction. Additionally,
the minimal β in our experiment that we can set to certify entanglement is 0.5, while theoretically the
coherent information should be positive when β is larger than βmin = 0.4223. See the Supplemental
Material for experimental results or more details on a1 and F̂ .

A blemish of the CGLMP inequality when used as an entanglement quantifier is that the maximal
violation is not obtained by the maximally entangled state. This can be avoided by utilizing the in-
equality tailored for maximally entangled states (see Supplemental Material section for details). With
this inequality, the detected coherent information increases with the parameter β, and a maximum of
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Figure 3 (Color online) Results on semi-DI entanglement quantification for the 3-qubit GHZ state. To test the 3-partite MABK

inequality, Alice, Bob, and Charlie randomly perform Pauli X or Pauli Y measurements on their qubits. The colored bars are the

experimentally observed probabilities that obtain different outcomes on different measurement settings, with the corresponding

theoretical predictions shown in grey edges. ‘A1B1C2’ means Alice and Bob perform Pauli X and Charlie performs Pauli Y

measurement, and ‘001’ means their outcomes are −1, −1, 1, respectively. Light green and light blue bars represent that the number

of outcome 1 is odd and even, respectively. From these statistics, we obtain a value of the MABK expression IMABK = 1.895±0.013

and a corresponding lower bound for the GME EG(|Ψ〉3) > 0.169 ± 0.006.

IC = 1.32± 0.07 is obtained for maximally entangled qutrits, indicating a highly visible signal of entan-
glement beyond qubit systems. As a cost, the region of detectable states narrows down to approximately
β > 0.64, which is verified in our experiment, and we successfully observe the existence of entanglement
at β = 0.7.

3.3 GME of the 3-qubit GHZ state

Then, we apply the method to quantify the entanglement of a multi-partite system. We test the 3-partite
MABK inequality (see Supplemental Material for details) on a 3-photon GHZ state |Ψ〉3, where Alice,
Bob, and Charlie randomly choose one of two Pauli measurements (Pauli X and Pauli Y) on their qubits.
Single-qubit Pauli measurements can be achieved by an assemblage of a phaser, an HWP, and a PBS.
The measured statistics are recorded and later used to calculate the corresponding MABK expression,
which allows us to lower bound the entanglement of the underlying quantum state. As shown in Figure 3,
we list the measured statistics in colored bars. From these correlations, we obtain an MABK inequality
expression value of IMABK = 1.895±0.013 and a GME of EG(|Ψ〉3) = 0.169±0.006, while the theoretical
predictions are 2 and 0.5, respectively. Here, despite these mismatches, our results show the enormous
potential of non-degenerate Bell inequalities in quantifying multi-partite entanglement. The error bars
of all the data are calculated from 100 simulations of Poisson statistics.

4 Conclusion

We have demonstrated semi-DI multi-level and multi-partite entanglement quantification in a proof-of-
principle experiment by preparing a class of entangled photonic qutrits and tripartite photonic GHZ
states. Despite the detection loophole, our result, together with existing measurement-DI scenarios [18,
19, 48, 49], marks an important step towards complete DI entanglement quantification of quantum sys-
tems. Because of the generality of the method, it potentially provides us with the opportunity to obtain
critical information about many-body quantum physics, such as thermalization [50, 51], many-body lo-
calization [51, 52], and topological order [9, 10, 53].
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