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Abstract Quantum coherence is crucial in quantum resource theory. Previous studies have mainly focused

on standard coherence based on a complete orthogonal reference. Standard coherence has recently been

extended to general positive-operator-valued measure (POVM)-based coherence, including block coherence

as a special case. Therefore, it is necessary to construct block and POVM-based coherence witnesses to

detect them. In this study, we present witnesses for block and POVM-based coherence and obtain the

necessary and sufficient conditions for constructing these witnesses. We also discuss possible realizations

of some block and POVM-based coherence witnesses in experiments and present examples of measuring

block coherence witnesses based on real experimental data. Furthermore, we present an application of block

coherence witnesses in a quantum-parameter estimation task with a degenerate Hamiltonian and estimate

the unknown parameter by measuring the block coherence witnesses when the input state is block coherent.

Finally, we prove that the quantum Fisher information of any block-incoherent state equals zero, which

coincides with the result obtained from measuring block coherence witnesses.
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1 Introduction

Quantum coherence plays a significant role in quantum mechanics, with many applications in quantum
optics, quantum information processing, quantum network, nanoscale thermodynamics, and biological
systems [1–13]. Recently, researchers have recognized that coherence can be viewed as a type of quantum
resource. Therefore, detecting coherence is crucial in quantum physics.

In [14], quantitative investigations of quantum coherence were launched, and several coherence mea-
sures for standard coherence were proposed with respect to von Neumann measurements. For standard
coherence, a state δ in a d-dimensional Hilbert spaceH is incoherent under a fixed reference basis {|i〉}di=1,
if and only if δ is diagonal under the reference basis [14], i.e.,

δ =

d∑

i=1

pi|i〉〈i|, (1)

with probabilities {pi}. One can define the standard dephasing operation ∆ as

∆(ρ) :=

d∑

i=1

|i〉〈i|ρ|i〉〈i|. (2)
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Thus, a state δ is incoherent under a chosen reference basis {|i〉}di=1 if and only if the following condition
holds:

δ = ∆(δ), (3)

where ∆ is defined in (2).

In [15], Åberg proposed a framework that defined block coherence with respect to projective measure-
ments. Standard coherence can be viewed as a special case of block coherence. Moreover, Bischof et
al. [16] generalized block coherence to the coherence with respect to general quantum measurements, i.e.,
positive-operator-valued measure (POVM)-based coherence. Therefore, the resource theory of coherence
was generalized from the standard coherence to the block coherence and even the POVM-based coher-
ence. Notably, POVMs describe the most general type of quantum measurements, and they might be
more advantageous than the projective measurements.

However, in contrast to standard coherence, only a few reported studies quantified block coherence
and POVM-based coherence [16–19]. Moreover, methods to detect whether a state has nonzero block
coherence and POVM-based coherence do not exist currently. For standard coherence, Ref. [13] first
introduced the standard coherence witness W . Similar to entanglement witnesses, a standard coherence
witness W is a Hermitian operator and Tr(δW ) > 0 holds for all incoherent states δ. If Tr(ρW ) < 0
can be found for a state ρ, then the state ρ must be a standard coherent state. Coherence measures
generally require full state information obtained via quantum state tomography, involving exponentially
increasing measurements with the number of qubits. In contrast, coherence witnesses can be measured
with considerably fewer measurements, without the need of quantum state tomography. Thus, it is
necessary to construct the block and POVM-based coherence witnesses to detect them without quantum
state tomography, particularly for experimentally unknown states.

In this study, we present witnesses for block and POVM-based coherence and obtain the necessary and
sufficient conditions for them. Moreover, we discuss possible realizations of some block and POVM-based
coherence witnesses in real experiments and present examples of detecting block coherence by measuring
block coherence witnesses. Furthermore, we provide an application of block coherence witnesses in a
quantum-parameter estimation task with a degenerate Hamiltonian and estimate the unknown parameter
by measuring the block coherence witnesses if the input state is block-coherent. We also prove that the
quantum Fisher information of any block-incoherent state is equal to zero, which agrees with the results
from measuring block coherence witnesses.

2 Detecting block coherence based on block coherence witnesses

Before discussing our main results, we first review the definition of block-incoherent states. In [15–21],
the block-incoherent state has been defined as follows.

Given a d-dimensional Hilbert space H that has been divided into n (n 6 d) subspaces, the subspace

projectors are P := {Ps}ns=1 with
∑n

s=1 Ps = 1 (where 1 is the identity operator). A state δ̃ is block-

incoherent under the reference subspace projectors P if and only if δ̃ is block-diagonal under the reference
P , that is,

δ̃ =

n∑

s=1

Psδ̃Ps := ∆̃(δ̃), (4)

where we define the modified dephasing operation as follows:

∆̃(ρ) :=
∑

s

PsρPs. (5)

Similar to the witnesses for standard coherence [13, 22–24], we can construct block coherence witnesses
as follows.

Theorem 1. (a) For any Hermitian operator A, we can construct a block coherence witness,

W̃A = ∆̃(A)−A. (6)

(b) An arbitrary Hermitian operator W̃ is a block coherence witness if and only if ∆̃(W̃ ) > 0.
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Proof. (a) We first prove that W̃A is a block coherence witness. Since A is a Hermitian operator, W̃A

must also be Hermitian. Thus, for an arbitrary block-incoherent state δ̃ =
∑

s Psδ̃Ps, we obtain

Tr(δ̃W̃A) = Tr[δ̃∆̃(A)]− Tr[δ̃A]

= Tr

[
δ̃
∑

s

PsAPs

]
− Tr[δ̃A]

= Tr

[
∑

s

Psδ̃PsA

]
− Tr[δ̃A]

= 0, (7)

which implies that W̃A is a block coherence witness.
(b) It is important to note that a Hermitian operator W is a coherence witness for standard coherence

if and only if ∆(W ) > 0 [13]. Similarly, we can prove that a Hermitian operator W̃ is a block coherence

witness if and only if ∆̃(W̃ ) > 0.

First, if ∆̃(W̃ ) > 0 holds, for any block-incoherent state δ̃ we can obtain

Tr[δ̃W̃ ] = Tr[∆̃(δ̃)W̃ ]

= Tr[∆̃(W̃ )δ̃]

> 0, (8)

that is, W̃ is a block coherence witness.
Conversely, we prove that if δ̃ Tr[δ̃W̃ ] > 0 holds for any block-incoherent state, then ∆̃(W̃ ) > 0. For

any quantum state ρ, we obtain

Tr[ρ∆̃(W̃ )] = Tr[∆̃(ρ)W̃ ]

= Tr[δ̃ρW̃ ]

> 0, (9)

where δ̃ρ := ∆̃(ρ) is a block-incoherent state. Thus, ∆̃(W̃ ) is positive-semidefinite, that is, ∆̃(W̃ ) > 0.

Therefore, W̃ is block coherence witness, if and only if ∆̃(W̃ ) > 0.

Remark 1. Based on Theorem 1(a), we can construct a block coherence witness W̃σ using A = σ,
where σ is any density matrix,

W̃σ = ∆̃(σ)− σ. (10)

Moreover, if σ is a pure state |φ〉, then we obtain

W̃φ = ∆̃(|φ〉〈φ|) − |φ〉〈φ|, (11)

and

Tr[ρW̃φ] = Tr[ρ(∆̃(|φ〉〈φ|) − |φ〉〈φ|)]
= 〈φ|∆̃(ρ)|φ〉 − 〈φ|ρ|φ〉
= F (∆̃(ρ), |φ〉) − F (ρ, |φ〉), (12)

where F (ρ, |φ〉) := 〈φ|ρ|φ〉 is the fidelity between the state ρ and the pure state |φ〉. Therefore, the

expected value of the block coherence witness W̃φ is related to these two fidelities.

3 Coherence witness with respect to general measurements

Recently, Bischof et al. [16–19] introduced POVM-based coherence that is defined as follows.
Let E be a set of n positive operators E := {Ei}ni=1 with

∑n
i=1 Ei = 1. The corresponding measure-

ment operator of each Ei is defined as Ai, such that Ei = A†
iAi holds. Thus, a state δ̄ is incoherent with

respect to the general measurement E if and only if

Eiδ̄Ei′ = 0, ∀i 6= i′. (13)
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Moreover, this is equivalent to [16]

Aiδ̄A
†
i′ = 0, ∀i 6= i′. (14)

Therefore, any POVM-based incoherent state δ̄ should satisfy

δ̄ =
∑

i

Eiδ̄Ei := ∆̄(δ̄), (15)

where ∆̄ is defined as
∆̄(ρ) :=

∑

i

EiρEi. (16)

It is noteworthy that Eq. (15) can be easily proved from the definition of POVM-based incoherent state
because for any POVM-based incoherent state δ̄, we can obtain that

δ̄ =

(
∑

i

Ei

)
δ̄


∑

j

Ej




=
∑

i

Eiδ̄Ei +
∑

i6=j

Eiδ̄Ej

=
∑

i

Eiδ̄Ei, (17)

where we have used Eiδ̄Ej = 0, ∀i 6= j.

Theorem 2. (a) For any Hermitian operator A, we can construct a POVM-based coherence witness
W̄A as follows:

W̄A = ∆̄(A)−A. (18)

(b) An arbitrary Hermitian operator W̄ is a POVM-based coherence witness if and only if ∆̄(W̄ ) > 0.
Proof. (a) We show that W̄A is a POVM-based coherence witness. Because A is a Hermitian operator,
W̄A must be Hermitian. For any incoherent state δ̄ with respect to {Ei}, δ̄ =

∑
i Eiδ̄Ei holds; thus,

Tr(δ̄W̄A) = Tr[δ̄∆̄(A)]− Tr[δ̄A]

= Tr

[
δ̄
∑

i

EiAEi

]
− Tr[δ̄A]

= Tr

[
∑

i

Eiδ̄EiA

]
− Tr[δ̄A]

= 0, (19)

implying that W̄A is a POVM-based coherence witness.
(b) First, if ∆̄(W̄ ) > 0 holds, then for any POVM-based incoherent state δ̄ we obtain

Tr[δ̄W̄ ] = Tr[∆̄(δ̄)W̄ ]

= Tr[∆̄(W̄ )δ̄]

> 0. (20)

Thus, W̄ is a POVM-based coherence witness.
Conversely, we prove that if Tr[δ̄W̄ ] > 0, then ∆̄(W̄ ) > 0. For any quantum state ρ, we obtain

Tr[ρ∆̄(W̄ )] = Tr[∆̄(ρ)W̄ ]

= Tr[δ̄ρW̄ ]

> 0, (21)

where δ̄ρ := ∆̄(ρ) is a POVM-based incoherent state. Thus, ∆̄(W̄ ) is positive-semidefinite, that is,
∆̄(W̄ ) > 0.

Therefore, we prove that W̄ is a POVM-based coherence witness if and only if ∆̄(W̄ ) > 0.
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Remark 2. Based on Theorem 2(a), we can also construct a POVM-based coherence witness W̄σ by
choosing A = σ where σ is an arbitrary density matrix,

W̄σ = ∆̄(σ)− σ. (22)

Moreover, if σ is a pure state |φ〉, we obtain that

W̄φ = ∆̄(|φ〉〈φ|) − |φ〉〈φ|, (23)

and

Tr[ρW̄φ] = Tr[ρ(∆̄(|φ〉〈φ|) − |φ〉〈φ|)]
= Tr[ρ∆̄(|φ〉〈φ|)] − Tr[ρ|φ〉〈φ|]
= F (∆̄(ρ), |φ〉) − F (ρ, |φ〉), (24)

where it demonstrates the relationship of the POVM-based coherence witness W̄φ and the fidelity between
the state ρ (or ∆̄(ρ)) and the pure state |φ〉.

4 Possible experimental realization for witnesses and examples

Many experiments have measured the fidelity F = 〈φ|ρexp|φ〉 between the experimental state ρexp and
the target pure state |φ〉 [25]. For bipartite and multipartite systems, fidelities can be measured by
decomposing the operator |φ〉〈φ| as the sum of the tensor products of local observables. Therefore, we
can measure witnesses (11) and (23) in the same manner.

In the following, we present examples of N -qubit W states |WN 〉 obtained from real experimental data,
where

|WN 〉 = (|0 · · · 001〉+ |0 · · · 010〉+ · · ·+ |10 · · · 0〉)/
√
N. (25)

We used the block coherence witness (11) to detect the block coherence of the W states. In [25], N -qubit
W states (4 6 N 6 8) must be experimentally generated by trapped ions, with fidelities between the
experimental states and perfect W states F4 = 0.846, F5 = 0.759, F6 = 0.788, F7 = 0.763, F8 = 0.722
for the 4-, 5-, 6-, 7- and 8-ion W states, respectively. Moreover, the numerical values of the density
matrices of the experimental states with 4 6 N 6 8 are presented in [25]. It is important to note
that the experimental states have local phases, and the local phases can be found by maximizing the
fidelity F = 〈W̃N |ρexp|W̃N 〉 where |W̃N 〉 is W states containing local phases, as shown in [25]. After
choosing local unitary transformations based on the local phases, we can transform ρexp to ρ′exp such that

F = 〈W̃N |ρexp|W̃N 〉 = 〈WN |ρ′exp|WN 〉. We consider the following reference subspace projectors P with

P0 = |φ−〉〈φ−|,
P1 = |φ+〉〈φ+|,
P2 = |0 · · · 010〉〈0 · · ·010|,
· · · ,
PN−1 = |010 · · ·0〉〈010 · · ·0|,

PN = 1−
N−1∑

i=0

Pi,

where |φ±〉 := (|00 · · · 01〉 ± |10 · · · 0〉)/
√
2, Thus, our block coherence witness is given by

W̃ = ∆̃(|WN 〉〈WN |)− |WN 〉〈WN |

=

N∑

i=0

Pi|WN 〉〈WN |Pi − |WN 〉〈WN |. (26)

From Table 1, we can see that −Tr(ρ′expW̃ ) is always greater than zero, which means that all experimental
states in [25] are block-coherent under the above reference subspace projectors P .
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Table 1 Results of the block coherent witness (26) for 4–8 qubit W statesa)

|WN 〉 4 5 6 7 8

FN 0.846 0.759 0.788 0.763 0.722

〈∆̃(|WN 〉〈WN |)〉 0.321 0.207 0.173 0.141 0.119

−Tr(ρ′
expW̃ ) 0.525 0.552 0.615 0.622 0.603

a) The fidelity FN is the result of the overlap 〈WN |ρ′
exp|WN 〉 according to [25]. The values 〈∆̃(|WN 〉〈WN |)〉 and −Tr(ρ′

expW̃ )

are obtained from the density matrices of the experimental states in [25]. It is observed that −Tr(ρ′
expW̃ ) is always greater than

zero.

5 Quantum parameter estimation task with degenerate Hamiltionians

In quantum metrology, one of the main tasks is to improve the accuracy of parameter estimation in
a quantum channel, which is different from the standard quantum limits [26, 27]. Quantum coherence
plays a fundamental role in quantum parameter estimation [28]. For unitary evolution with a degenerate
Hamiltonian, we propose a simple application of quantum block coherence and find that the quantum
Fisher information is strongly related to block coherence.

5.1 Quantum parameter estimation with block coherent states

We now consider a d-dimensional Hilbert space, assuming that H is a degenerate Hamiltonian,

H =
n∑

s=1

ks∑

g=1

Es|s, g〉〈s, g|, (27)

where H has n different eigenvalues {Es}ns=1 and each eigenvalue Es has ks degenerate eigenstates
{|s, g〉}ks

g=1. Here, the index s is for the s-th different eigenvalue, and the index g denotes the g-th
Es (the total number of the same eigenvalue Es is ks). |s, g〉 is the eigenstate corresponding to the
eigenvalue, that is, the gth Es. According to the definition of block coherence, we can naturally choose
the degenerate subspaces of H in (27) as reference subspaces. Therefore,

Ps =

ks∑

g=1

|s, g〉〈s, g| (28)

is the sth subspace projector, where every pure state in this subspace is an eigenstate of H with an
eigenvalue of Es.

Proposition 1. With a degenerate Hamiltonian H in (27), we choose {Ps}ns=1 in (28) as the reference
subspace projector P. The output state ρout = UϕρinU

†
ϕ := ρϕ is used to estimate the unknown parameter

ϕ in the black box in Figure 1, if and only if ρin and ρout have nonzero block coherence under the reference
subspaces P.
Proof. For an arbitrary input state, ρin can be expressed in terms of the eigenstates of H (27), that is,

ρin =
∑

s,s′

∑

g,g′

ρ(s,g),(s′,g′)|s, g〉〈s′, g′|, (29)

where ρ(s,g),(s′,g′) := 〈s, g|ρin|s′, g′〉 with
∑

s,g ρ(s,g),(s,g) = 1. Thus, the corresponding output state

ρout = UϕρinU
†
ϕ := ρϕ can be expressed as follows:

ρout = UϕρinU
†
ϕ

=
∑

s,s′

s6=s′

∑

g,g′

ρ(s,g),(s′,g′)e
−i(Es−Es′)ϕ|s, g〉〈s′, g′|

+
∑

s

∑

g,g′

ρ(s,g),(s,g′)|s, g〉〈s, g′|. (30)

We can see that ρout depends on ϕ if and only if there exists a nonzero ρ(s,g),(s′,g′) with s 6= s′, that is,
ρout and ρin have nonzero block coherence under the reference subspaces.
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ρ
in

ρ
out

U
φ 
= e−iHφ

Black box

Figure 1 The black box implements a unitary evolution Uϕ = e−iHϕ on the input state ρin, and the unknown parameter ϕ of the

black box must be estimated by measuring ρout = UϕρinU
†
ϕ := ρϕ. Assuming that the Hamiltonian H is degenerate and already

known, the quantum parameter estimation task is to estimate the unknown parameter ϕ from the output state ρout.

Remark 3. It is important to note that witnesses for standard coherence may be useless in estimating
the unknown parameter when the Hamiltonian H is degenerate, even though the input state has standard
coherence. Consider the following special case: we use an input state that is block-incoherent, but its
density matrix contains off-diagonal nonzero elements in some degenerate subspaces under the chosen
eigenvectors of H as the reference basis, that is, this input state contains standard coherence but no
block coherence. The expected values of standard coherence witnesses have no information regarding the
parameter, and they cannot be estimated by measuring the witnesses of standard coherence, even though
the input state contains standard coherence.

5.2 Quantum Fisher information of block incoherent states

The quantum Fisher information Fq can be obtained for an arbitrary output state ρϕ according to [29–32]

Fq = Tr[ρϕL
2
ϕ]

=
∑

m,n

4cm

(
cn − cm
cn + cm

)2

|〈m|H |n〉|2, (31)

where H is the corresponding Hermitian Hamiltonian, and the output state ρϕ = UϕρinU
†
ϕ =

Uϕ(
∑

n cn|n〉〈n|)U †
ϕ, ρin =

∑
n cn|n〉〈n|. cn and |n〉 are the eigenvalues and eigenvectors of ρin, re-

spectively. The symmetric logarithmic derivative operator is Lϕ = Uϕ(−2i
∑

m,n
〈m|[H,ρin]|n〉

cn+cm
|m〉〈n|)U †

ϕ

[29–32]. Furthermore, we discuss quantum Fisher information with a block-incoherent state.

Proposition 2. Consider a degenerate Hamiltonian H in (27) and the quantum parameter estimation
task in Figure 1; in this case, one can choose the degenerate subspaces of H as the reference subspaces.
If the input state ρin is a block-incoherent state, the quantum Fisher information for the output state is
Fq = 0.
Proof. Consider an arbitrary block-incoherent state as the input state ρin,

ρin =
∑

i

∑

g,g′

ρ(i,g),(i,g′)|i, g〉〈i, g′|

=
∑

i

∑

g̃

A
(i)
g̃ |i, g̃〉〈i, g̃|, (32)

where the second equation holds, because we diagonalize ρin in each subspace. Thus, the eigenvalues of

ρin are {A(i)
g̃ } with the corresponding eigenvectors {|i, g̃〉}. The output state ρϕ can be expressed as

ρϕ = UϕρinU
†
ϕ

= Uϕ

∑

i

∑

g̃

A
(i)
g̃ |i, g̃〉〈i, g̃|U †

ϕ, (33)

where Uϕ = e−iHϕ denotes a unitary operator. Furthermore, the symmetric logarithmic derivative
operator Lϕ can be expressed as [29–32]

Lϕ = Uϕ


−2i

∑

i,j

∑

g̃,h̃

〈i, g̃|[H, ρin]|j, h̃〉
Ai

g̃ +A
(j)

h̃

|i, g̃〉〈j, h̃|


U †

ϕ
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= Uϕ

(
− 2i

∑

i,j

∑

g̃,h̃

A
(j)

h̃
−A

(i)
g̃

A
(i)
g̃ +A

(j)

h̃

〈i, g̃|H |j, h̃〉|i, g̃〉〈j, h̃|
)
U †
ϕ.

Finally, we obtain the quantum Fisher information Fq as

Fq = Tr(ρϕL
2
ϕ)

= 4
∑

i,j

∑

g̃,h̃

A
(i)
g̃

∣∣〈i, g̃|H |j, h̃〉
∣∣2
(
A

(j)

h̃
−A

(i)
g̃

A
(i)
g̃ +A

(j)

h̃

)2

= 4
∑

i,j
i6=j

∑

g̃,h̃

A
(i)
g̃

∣∣〈i, g̃|H |j, h̃〉
∣∣2
(
A

(j)

h̃
−A

(i)
g̃

A
(i)
g̃ +A

(j)

h̃

)2

+4
∑

i

∑

g̃,h̃

A
(i)
g̃

∣∣〈i, g̃|H |i, h̃〉
∣∣2
(
A

(i)

h̃
−A

(i)
g̃

A
(i)
g̃ +A

(i)

h̃

)2

= 0, (34)

where we used 〈i, g̃|H |j, h̃〉 = 0 with i 6= j, and 〈i, g̃|H |i, h̃〉 = Eiδg̃h̃.

Remark 4. When the input state is a block-incoherent state, the quantum Fisher information of the
output state is equal to zero, which means that the parameter cannot be estimated from the output state;
that is, the output state contains no information about the parameter. This is in agreement with the
results of Proposition 1.

6 Discussion and conclusion

Besides the Fisher information estimation mentioned in the above example, when performing quantum
coherence operations on any degenerate quantum system, we must also consider the measure of coher-
ence. In the practical systems, degeneracy is a common situation and has been widely reported in the
microscopic field, e.g., orbital degenerate states and spin states in λ-type and chainlike structured atomic
systems [33], and near-degenerate states in few-electron ion system [34]. Moreover, degeneracy exists in
macroscopic systems, e.g., macroscopically degenerate states in intrinsic quasi-crystals [35], and allegedly
appears during the conversion or transition of black holes [36]. In addition, degeneracy plays an important
role in both quantum computing and quantum network construction [37, 38]. It is often used as a pro-
tected qubit in a fault-tolerant quantum operation [37]. Moreover, it can also be used as a control device
to control the coherence between quantum systems [39]. The study of degeneracy and near-degeneracy
also plays an important role in the discussion of topological structures and phase transitions [40–42] and
involves determining how to correctly measure the coherence of degenerate quantum systems. Therefore,
our coherence detection scheme has potential value in the measurement and application of degenerate
states.

In conclusion, we have discussed witnesses for block and POVM-based coherence. The necessary
and sufficient conditions for arbitrary block and POVM-based coherence witnesses have been obtained.
Furthermore, we have shown that block-coherent states can be used in a quantum-parameter estimation
task with a degenerate Hamiltonian if the input state is block coherent. The quantum Fisher information
of block-incoherent states is equal to zero, in agreement with the results from the block coherence witness.
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