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Abstract The geometric phase has the intrinsic property of being resistant to some types of local noises

as it only depends on global properties of the evolution path. Meanwhile, the non-Abelian geometric phase

is in the matrix form, and thus can naturally be used to implement high performance quantum gates,

i.e., the so-called holonomic quantum computation. This article reviews recent advances in nonadiabatic

holonomic quantum computation, and focuses on various optimal control approaches that can improve the

gate performance, in terms of gate fidelity and robustness. Besides, we also pay special attention to its

possible physical realizations and some concrete examples of experimental realizations. Finally, with all

these efforts, within state-of-the-art technology, the performance of the implemented holonomic quantum

gates can outperform the conventional dynamical ones, under certain conditions.

Keywords quantum computation, geometric phases, quantum gates, optimal control

Citation Liang Y, Shen P, Chen T, et al. Nonadiabatic holonomic quantum computation and its optimal control.

Sci China Inf Sci, 2023, 66(8): 180502, https://doi.org/10.1007/s11432-023-3824-0

1 Introduction

Quantum computation has the potential ability to solve certain hard problems, such as large integer
factorization [1] and fast searching [2], in a way that is much faster than any known classical computers.
The practical application of quantum computation requires precise quantum gates, in terms of fidelity
and robustness, which is challenging with current technology, as the needed quantum evolution will be
inevitably disturbed due to various control errors and the environment-induced decoherence effect. It is
well-known that the geometric phase only depends on the global properties of the evolution path and is
independent of the evolution speed. Therefore, quantum computation based on geometric phases [3–6],
i.e., geometric quantum computation [7,8], has become one of the inherently robust fault-tolerant quantum
computation schemes. To date, geometric quantum computation is proposed based on cyclic/non-cyclic
Abelian/non-Abelian adiabatic/nonadiabatic geometric phases.

Here, we term the quantum computation based on the non-Abelian geometric phase as holonomic
quantum computation (HQC) [8–10]. As detailed in Section 2, early HQC proposals were based on the
adiabatic evolution of quantum systems with degenerate eigenstates, which is restricted by the cyclic
evolution condition. The physical implementation of HQC has been proposed in many quantum systems,
such as trapped ions [11], atoms [12], superconducting quantum circuits [13,14], and semiconductor quan-
tum dots [15]. However, implementing adiabatic HQC is difficult, and achieving high quality quantum
gates with this method seems challenging in typical solid-state quantum systems. Firstly, the evolution
process needs to be slow enough to meet the adiabatic condition [16], where decoherence will lead to
considerable error. Secondly, manipulation of the complex energy level structure is required for HQC,
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which is experimentally demanding. Thus, only recently, the elementally adiabatic holonomic quantum
gates have been demonstrated with trapped ions [17] and cold atomic gas [18].

As presented in Section 3, the main theoretical obstacle of slow evolution can be resolved by using
nonadiabatic evolution, i.e., the nonadiabatic holonomic quantum computation (NHQC) [19, 20], which
can combine advantages of both gate speed and universality, and it is currently essential as the coherent
times of typical solid-state quantum systems are still limited. Therefore, after the original NHQC scheme
based on three-level quantum systems [19, 20], many alternatives of NHQC have been proposed theoret-
ically [21–31] and demonstrated experimentally [32–36], in various quantum systems. However, earlier
NHQC schemes required concatenating two separate cycles to realize arbitrary single-qubit gates, which
doubled the exposure time of the quantum system to its environment, and thus increase the decoherence-
induced gate error. To simplify the strategy, the single-loop/shot protocol of NHQC was proposed [37–42]
and experimentally demonstrated in various quantum systems [43–48], which can realize the arbitrary
single-qubit gate with only one cyclical evolution, and thus shorten the gate time. Besides, the NHQC
has also been extended to other cases.

Due to the cyclic evolution condition in obtaining geometric phases, a holonomic quantum gate usually
needs a much longer gate-time, compared with its dynamical counterpart. Therefore, it is necessary to fur-
ther speed up the evolution and thus improve the fidelity of the holonomic quantum gate. So, in Section 4,
we review different methods for speeding up the gate for NHQC. Firstly, incorporating the time-optimal
control technology, by solving the quantum brachistochrone equation [49–52], into the NHQC scheme
is straightforward [53–56], which can optimize the gate time under the set conditions. Secondly, as a
longer evolution path usually means more gate time, various methods for shortening the evolution path
are also proposed [57–60]. Besides, the shortcut to adiabaticity (STA) [61] technique is a successful
method for fast quantum dynamics, and thus is also proposed to be incorporated into NHQC [62–66]
with experimental verifications [67, 68].

It is well-known that high-fidelity and robust solutions are necessary conditions for quantum computa-
tion. As discussed in Section 5, benefiting from the compatibility of NHQC, the fidelity and robustness of
quantum gates can be further improved by incorporating error suppression and optimization techniques.
Decoherence-free subspaces (DFS) [23,27,29–31,53,69–77] are the preferred solution for resisting the col-
lective environment-induced dephasing. Other solutions, such as noiseless subsystems [25] and dynamical
decoupling [57,78], can also provide similar results. To enhance the robustness of systematic Rabi error,
researchers have proposed optimization schemes such as pulse shaping [79–86], composite pulse [87, 88],
and dynamically corrected gates [89–91].

To sum up, NHQC is a highly promising approach to quantum computation with the potential to
enhance fault-tolerance and improve resistance against certain types of errors. Therefore, the development
of NHQC has garnered great interest within the quantum computation community. Currently, we already
see indications that NHQC can outperform conventional dynamical quantum computation strategies.
Despite its potential, NHQC is still in its nascent stages, and there are several challenges that must be
overcome before its full potential can be realized.

2 Adiabatic HQC

2.1 The adiabatic non-Abelian geometric phase

In its early stage, HQC is a strategy that ensures flexible information processing through all-geometric
and adiabatic control. It encodes quantum information in a set of degenerate eigenstates of the Hamil-
tonian that depends on parameters, and then adiabatically drives these states to evolve cyclically in the
parametric space. This results in quantum computation being robust to control errors as transformations
within the eigenspace are geometric and rely on the global properties of the evolution path.

We consider a Hamiltonian, denoted by Hλ(t), which depends on a control parameter λ(t) and has R
distinct eigenvalues {εi}Ri=1, each with a degeneracy of {ni}. The spectral λ-dependent resolution can be

written as Hλ(t) =
∑R

i=1 εi(λ)
∏

i(λ), where
∏

i(λ) denotes the projector over the eigenspace spanned by

{|Φj
i (λ)〉}ni

j=1, with a common eigenvalues εi(λ). The evolution state |Ψ(t)〉 satisfies the time-dependent
Schrödinger equation

i
∂

∂t
|Ψ(t)〉 = Hλ(t)|Ψ(t)〉. (1)



Liang Y, et al. Sci China Inf Sci August 2023 Vol. 66 180502:3

When the control parameter λ(t) is restricted to adiabatic and cyclic conditions, i.e., ~λ̇/λ≪ mini6=j |εj−
εi| and λ(0)=λ(T ), any initial state |Ψ(0)〉 will be mapped, after the period T , onto |Ψ(T )〉 = U(T )|Ψ(0)〉,
where U(T ) =

⊕R
l=1 e

iDl(T )ΓAl
(λ). Here Dl(T ) =

∫ T

0
εl(λt)dt is the dynamical phase, and

ΓAl
(λ) = P exp

∫

λ

Al ∈ U(nl) (l = 1, . . . , R) (2)

is the holonomy, with P being the path ordering. The elements of Al are

(Al,µ)
α,β = 〈Φα

l (λ)|
∂

∂λµ
|Φβ

l (λ)〉, (3)

where (λµ)
d
µ=1 are the local coordinates on the control parameter space. For nl > 1 the holonomy ΓAl

(λ)
is referred to non-Abelian geometric phase [4, 7].

2.2 Holonomic quantum gates

Adiabatic HQC was proposed in trapped ions systems [11,92,93], which controlled transitions between four
energy levels by using a tripod configuration with three separate laser pulses. Later, it had been expanded
to various systems, including atomic/atomic ensemble [12,94–96], superconducting [13,14,97–103], Bose-
Einstein condensates [104], semiconductor systems [15, 105–109], spin chains [110–112], neutral particle
[113], and optical system [114]. In addition to the four-level tripod model, other models can also achieve
adiabatic HQC [115, 116]. To improve its fault tolerance performance, one can encode the information
into subsystems [117, 118], adopt the error correction coding [119–124], and expand adiabatic HQC into
the topological regime [125,126]. Geometric phases in open quantum systems have been examined when
considering the interaction between a quantum system and its environment [127,128], and the robustness
has been analyzed [129–132].

Although the theory of adiabatic HQC has been well developed, its implementation remains chal-
lenging due to difficulties in controlling the complex energy level structure and achieving high-quality
manipulation under the required slow adiabatic evolution. So far, there have been very few experiments
that have achieved adiabatic holonomic gates [17,18]. In [17], single-qubit adiabatic holonomic gates can
be achieved by using a four-level system of trapped 40Ca+ ions that were connected by three oscillating
fields. Using quantum state tomography (QST), the fidelities of x and z gates with π rotation, and the
Hadamard gate were estimated to be 0.965, 0.931, and 0.965, respectively. The infidelities of quantum
gates were largely due to imperfect initialization and analysis. The study also explored its robustness
against variations in parameters. In addition, Ref. [18] realized non-Abelian SU(2) geometrical transfor-
mations acting on the dark states of the system and demonstrated the non-Abelian characteristics by
cycling the relative phase of the tripod beams in the strontium-87 atom laser cooling gas.

3 NHQC

To relieve the constraint imposed by the adiabatic condition, which slows down the speed of evolution,
the NHQC was proposed [19, 20] using a three-level quantum system, and has since become the subject
of numerous studies and evaluations.

3.1 Nonadiabatic non-Abelian geometric phase

We consider an N -dimensional quantum system controlled by the Hamiltonian H(t). Suppose there is a
time-dependent L-dimensional subspace S(t) = Span{|ϕk(t)〉}Lk=1 undergoes the cyclic evolution around
a smooth path C, i.e., S(τ) = S(0). Here |ϕk(t)〉 satisfy the Schrödinger equation i|ϕ̇k(t)〉 = H(t)|ϕk(t)〉.
We can introduce a set of auxiliary vectors {|νk(t)〉}Lk=1 of S(t) along the smooth path C, with the
property that |νk(τ)〉 = |νk(0)〉 = |ϕk(0)〉, which do not have to be solutions of the Schrödinger equation.
Therefore, the evolution states |ϕk(t)〉 can be expressed as

|ϕk(t)〉 =
L
∑

l=1

|νl(t)〉Clk(t), k = 1, 2, . . . , L, (4)
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where Clk(t) are the time-dependent coefficients. The unitary evolution operator at τ becomes

U(τ) =
∑

k

|ϕk(τ)〉〈ϕk(0)| =
L
∑

l,k=1

Clk(τ)|νl(0)〉〈νk(0)|, (5)

which means that at the moment when the condition of cyclic evolution is met, the matrix element of
the evolution operator is Clk(τ). Moreover, combining (4) and the Schrödinger equation, we can obtain

Ċlk(t) = i

L
∑

m=1

[Alm(t)−Klm(t)]Cmk(t). (6)

Then,

U(τ) = C(τ) = T exp

{

i

∫ τ

0

[A(t) −K(t)]dt

}

, (7)

with Alm(t) = i〈νl(t)|ν̇m(t)〉 and Klm(t) = 〈νl(t)|H(t)|νm(t)〉 being elements of L×L Hermitian matrices.
Here Alm(t) represents the geometric component because it is independent of the Hamiltonian and only
depends on the Hilbert space structure, and Klm(t) denotes the dynamical component.

To understand the meaning ofA, we choose another set of auxiliary vectors {|ν′k(t)〉}Lk=1, with |ν′k(τ)〉 =
|ν′k(0)〉 = |ϕk(0)〉. There is an unitary operator V(t), which is constrained by the boundary condition

V(τ) = V(0) = I, can make the transformation of |ν′k(t)〉 =
∑L

l=1 |νl(t)〉Vlk(t). By using these new

vectors, we can obtain A′
lm(t) = i〈ν′l(t)|ν̇′m(t)〉, which meets A′

lm = (V†AV)lm + i(V†V̇)lm, where V† is
the Hermitian conjugate of V . This indicates that A transforms as a proper vector potential, and Alm is
the element of holonomy matrix generalizing the Wilczek-Zee holonomy [4] to the nonadiabatic case.

3.2 The NHQC scheme

To construct universal gates with speed and built-in fault-tolerant features, the NHQC based on the
nonadiabatic non-Abelian geometric phases was proposed. For universal NHQC, the following cyclic
evolution condition and parallel transport condition are necessary [19, 20], i.e.,

L
∑

k=1

|ϕk(τ)〉〈ϕk(τ)| =
L
∑

k=1

|ϕk(0)〉〈ϕk(0)|, 〈ϕk(t)|H(t)|ϕl(t)〉 = 0, k, l = 1, 2, . . . , L. (8)

In these conditions, the unitary transformation U(τ), as defined in (7), takes the form U(τ) =
T exp[i

∫ τ

0 A(t)dt]. This transformation is a nonadiabatic holonomic gate that acts on the L-dimensional
computational subspace S(0). It is clear that the evolution operator U(τ) acting on the computational
space depends only on the subspace determined by {|ϕk(t)〉}Lk=1, and not on the selection of auxiliary
vectors. From another perspective, U(τ) depends solely on the evolution path of the quantum state, and
not on the specific details of the evolution, which makes it resistant to various types of control errors.
This property enables us to construct universal gates with both speed and built-in fault-tolerant features.

The initial NHQC schemes [19,20] implemented by using the resonance three-level model, as illustrated
in Figure 1(a), with ∆ = 0. The qubit consists of two ground states, denoted as |0〉 and |1〉, with an excited
state labeled as |e〉. The corresponding driving fields are denoted as Ω0(t) = Ωr(t)ω0 and Ω1(t) = Ωr(t)ω1,
respectively. In the interaction picture, the Hamiltonian is expressed as

Hr(t) = Ω0(t)|e〉〈0|+Ω1(t)|e〉〈1|+H.c.

= Ωr(t)|e〉〈b|+H.c., (9)

where |b〉 = ω∗
0 |0〉+ ω∗

1 |1〉 is the bright state. Then, the evolution of the quantum system can be viewed
as a Rabi oscillation between the bright state |b〉 and the excited state |e〉, with a Rabi frequency of Ωr(t).
The dark state |d〉 = −ω1|0〉+ω0|1〉 is decoupled from the dynamics. When the cyclic evolution condition
∫ τ

0
Ωr(t

′)dt′ = π is satisfied, the system completes a cyclic evolution and returns to the computation space

spanned by |0〉 and |1〉. By setting ω0 = sin(θ/2)eiφ and ω1 = − cos(θ/2), the evolution operator at the
final moment is expressed as U(τ) = exp(−iπn · σ/2), which is a rotation operation around the axis
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Figure 1 (Color online) (a) Illustration of the construction of single-qubit nonadiabatic holonomic quantum gates, with |0〉 and

|1〉 representing the encoding space, and state |e〉 representing the auxiliary level. The detuning, represented by ∆, is zero in

the case of resonant coupling. (b) Evolution path with two loops. (c) Evolution path with a single loop, with γ representing the

geometric phase.

n = (sin θ cosφ, sin θ sinφ, cos θ) by an angle π. However, an arbitrary single-qubit gate needs to be
constructed by two sequential rotations here, as the obtained geometric phase is fixed. As depicted in
Figure 1(b), the starting and ending points of each loop are the bright state |b〉.

The NHQC has shown great promise as a method for quantum computation in reducing excessively
long evolution times and withstanding local fluctuations. This has been experimentally verified in a su-
perconducting circuit [32] and a liquid nuclear magnetic resonance (NMR) system [33], where single-qubit
gates have been performed with fidelities exceeding 95%. They also provided evidence for the non-Abelian
character of the implemented holonomic quantum operations. Besides, the holonomic controlled NOT
gates with an average fidelity of 93.12% are also demonstrated in [33]. The experimental demonstra-
tions of NHQC gates in superconducting qubit and liquid NMR systems are significant milestones in
the development of NHQC. Afterward, NHQC has been successfully implemented in various physical
systems [34–36,133, 134].

3.3 The single-shot/loop NHQC

In early NHQC schemes, two separate continuous evolution operators were necessary to perform an
arbitrary single-qubit gate, leading to increased errors due to decoherence. To remove this obstacle,
researchers have developed improved methods that allow for the realization of arbitrary single-qubit
gates through a single-loop evolution.

One such approach is to utilize detuned laser pulses in a three-level Λ system to achieve quantum gates,
known as single-shot NHQC [37–39, 42]. As illustrated in Figure 1(a), the transitions between ground
states and the excited state are driven by Ω0(t) and Ω1(t), with a detuning of ∆. In the interaction
picture, the Hamiltonian can be written as

Hss(t) = [Ω0(t)|0〉〈e|+Ω1(t)|1〉〈e|+H.c.]−∆|e〉〈e|. (10)

By setting Ω0(t) = Ωss cosα cos γ, Ω1(t) = Ωsse
iβ sinα cos γ, and ∆ = −2Ωss sin γ, the Hamiltonian

becomes

Hss(t) = Ωss sin γ(|e〉〈e|+ |b〉〈b|) + Ωss[cos γ(|e〉〈b|+ |b〉〈e|) + sin γ(|e〉〈e| − |b〉〈b|)], (11)

where |b〉 = cosα|0〉 + eiβ sinα|1〉 is the bright state, and |d〉 = sinα|0〉 − eiβ cosα|1〉 is the dark state
decoupled from the dynamics. Here α, β, and γ are time-independent parameters. When the evolution
period T = π/Ωss, the evolution operator under the basis vector |b〉, |e〉, and |d〉 can be written as
Uss(T ) = e−iφ|e〉〈e|+ e−iφ|b〉〈b|+ |d〉〈d|, with φ = π sin γ + π. In the computation space spanned by |0〉
and |1〉, the evolution operator can be recast as U(T ) = exp[−iφ(|b〉〈b| − |d〉〈d|)/2].

It is important to note that both Ω0,1(t) and ∆ are dependent on the frequency and amplitude of the
laser. This results in a time-dependent synchronous variation between the laser fields and the detuning,
making it difficult for pulse waveforms other than square waves to meet these requirements. This is one
limitation of this scheme. Furthermore, due to the restriction tan γ = ∆/(−2

√

|Ω0|2 + |Ω1|2), the rotation
angle in the evolution operator can only be within a specific range limited by the system parameters,
which is the other limitation of the scheme.
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The single-shot NHQC was first demonstrated experimentally in an NMR system [43]. They con-
structed the Rx(π/2), Rz(π/2), Rx(π), and Rz(π) gates and tested the corresponding gate fidelities,
which were 98.07%, 98.29%, 99.68%, and 99.75%, respectively, using QST. Subsequently, arbitrary single-
qubit gates were obtained in a nitrogen-vacancy center in diamond [44]. However, the gate fidelities there
are limited by additional errors, such as excited state occupation and crosstalk between driving fields.
Additionally, all single-qubit Clifford gates were experimentally demonstrated in a three-level supercon-
ducting Xmon qutrit [135]. Characterized by both QST and randomized benchmarking (RB), all gate
fidelities exceed 99%. Furthermore, the geometric spin in a degenerate subspace of a spin-1 electronic
system under zero field in a nitrogen-vacancy center in a diamond can also be used as a platform for
implementing the single-shot NHQC [45].

The single-shot method may simplify the original two-loop NHQC scheme somewhat, but it is not
compatible with pulse shaping and presents some practical difficulties. Hence, the single-loop NHQC
(SL-NHQC) [40,41] is a better alternative, as it is compatible with various optimization techniques. This
is made possible by using resonant-driven multiple pulses. The key idea behind the multi-pulse method is
to divide a single-loop into segments to generate a holonomic gate. The Hamiltonian in this multi-pulse
approach is

Hsl(t) = Ω0(t)e
−iφ0 |0〉〈e|+Ω1(t)e

−iφ1 |1〉〈e|+H.c.

= Ωsl(t)e
−iφ0 |b〉〈e|+H.c., (12)

with Ωsl(t) =
√

Ω0(t)2 +Ω1(t)2. The dynamics of the system is equivalent to a resonant coupling between
the bright state |b〉 = sin(θ/2)|0〉 − cos(θ/2)eiφ|1〉 and the excited state |e〉, while the dark state |d〉 =
cos(θ/2)e−iφ|0〉+sin(θ/2)|1〉 is decoupled from the dynamics of the system, with tan(θ/2) = Ω0(t)/Ω1(t),
and φ = φ0 − φ1 + π.

We divide the evolution period into two equal intervals [40, 41]. In the first interval t ∈ [0, T/2], we
set φ0 = 0, which reduces the Hamiltonian to H1 = Ωsl(t)(|b〉〈e| + |e〉〈b|). Under the condition that
∫ T/2

0 Ωsl(t)dt = π/2, the evolution operator in the first interval is U1 = |d〉〈d| − i(|b〉〈e| + |e〉〈b|). In the
second interval t ∈ [T/2, T ], the parameter turns to be φ0 = π − γ, and the corresponding Hamiltonian

is H2 = −Ωsl(t)(e
iγ |b〉〈e| + e−iγ |e〉〈b|). With the condition

∫ T

T/2
Ωsl(t)dt = π/2, the evolution operator

is given by U2 = |d〉〈d| + i(eiγ |b〉〈e| + e−iγ |e〉〈b|). At the final moment, the evolution operator in the
computation space is obtained as

Usl(T ) =





cos
γ

2
− i sin

γ

2
cos θ −i sin

γ

2
sin θeiφ

−i sin
γ

2
sin θe−iφ cos

γ

2
+ i sin

γ

2
cos θ



 = exp
(

−i
γ

2
n · σ

)

, (13)

which is a rotation operation around the axis n = (sin θ cosφ, sin θ sinφ, cos θ) by an angle of γ. Thus,
the arbitrary single-qubit gates can be constructed by choosing different values of parameters θ, φ, and
γ. The corresponding evolution path is just a single-loop on the Bloch sphere, as depicted in Figure 1(c).

Single-qubit gates in the single-loop scheme have been experimentally demonstrated in both supercon-
ducting transmon qubit and a microwave photonic qubit [46]. As shown in Figure 2, characterized by
RB, the average gate fidelity in the transmon qubit is found to be 99.6%, which represents a significant
improvement compared to single-shot NHQC. In addition to single-qubit gates, nontrivial two-qubit gates
of NHQC have also been demonstrated in geometric spin qubits [136].

3.4 Extensions of NHQC

The conventional NHQC must adhere to two conditions: the cyclic evolution condition and the parallel
transport condition. This results in a decrease in the freedom of parameters, ultimately limiting its
widespread practical applications. For maintaining the geometric robustness of NHQC and relaxing the
restrictions on parameters, researchers have made some extensions.

Firstly, the extension to the unconventional NHQC case, which is based on the unconventional geomet-
ric phase, eases the restriction of the parallel transport condition. This is because it allows for a non-zero
dynamical phase by requiring the dynamical phase to be proportional to the geometric phase, thereby
maintaining the same geometric properties as the pure geometric phase. The unconventional geomet-
ric phase was first introduced [137] to create a geometric gate, and has then been expanded to include
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Figure 2 (Color online) RB of the single-qubit holonomic gates on a transmon qubit. (a) Sequence of both a reference RB

experiment and an interleaved RB experiment; (b) sequence fidelity as a function of the gate length m [46] Copyright 2018

American Physical Society.

the implementation of NHQC [53–55, 138]. From the evolution operator in (7), we can choose another
set of auxiliary vectors {|νk[λa(t), ηb(t)]〉}Lk=1, which has two sets of independent parameters λa(t) and
ηb(t) (a, b = 1, 2, . . . , n). Then, the geometric component Alm(t) becomes Alm(t) = Aλ

lm + Aη
lm, where

Aλ
lm =

∑

a i〈νl(t)| ∂
∂λa

|νm(t)〉(dλa/dt) and Aη
lm =

∑

b i〈νl(t)| ∂
∂ηb

|νm(t)〉(dηb/dt). We set the dynamical

part Klm(t) to be offset by the geometric part Aη
lm at each moment, i.e., Klm + Aη

lm = 0. As a result,
the evolution operator in (7) becomes U(τ) = Pexp

(

i
∮

Aλadλa
)

, which is an unconventional holonomy.
Here P is the path ordering along the closed path, and Aλa is the non-Abelian connection. In this case,
the dynamical component Klm(t) 6= 0, so we call it unconventional nonadiabatic holonomy.

On the other hand, due to the limitation of the cyclic evolution, the NHQC has a strict limit on the
evolution time. Therefore, researchers extended it to the non-cyclic evolution case to relax the condition
of cyclic evolution [139]. With the help of dynamical invariants, they obtained the evolution operator at
the last moment as Unc(T ) =

∑

n=0,± eiαn |ϕn(T )〉〈ϕn(0)|, where |ϕn(t)〉 are the eigenstates of invariant,
and αn are the Lewis-Riesenfeld phase. The key idea of this approach is to divide the evolution path into
two equal parts and change the driving parameters at the midpoint to swap the two orthotropic channels
|ϕ±(t)〉 so as to remove the dynamical phase.

Note that, although the three-level Λ system is the typical building block for NHQC, exploring NHQC
beyond the three-level setting can expand the Hilbert space and reduce the circuit complexity for quantum
algorithm [140–142].

4 Speeding up holonomic quantum gates

High-fidelity quantum gates are a necessary component for achieving quantum computation. However,
quantum systems are inevitably impacted by environment-induced decoherence, causing a reduction in
gate fidelity. While NHQC can improve the gate fidelity by using pulses that are short compared to
the decay time scale, this requires extremely high pulse intensities and rapid pulse changes, making it
challenging to implement experimentally. Hence, to improve the fidelity of the holonomic gate within
the range of pulse intensities that can be achieved experimentally, new optimization methods have been
explored, such as time-optimal control NHQC and short-path NHQC.

4.1 NHQC with the time-optimal control technique

Although the NHQC scheme reduces the evolution time to some extent, it is still important to further
shorten it to minimize the decoherence-induced errors because the coherence times of quantum systems
are limited. By solving the quantum brachistochrone equation [49–52], the time-optimized technology
provides a way to achieve the NHQC with the shortest time [53–55]. However, due to additional con-
straints, the resulting geometric phase is of an unconventional nature as described in Subsection 3.4.
Thus, we call this scheme the time-optimal unconventional NHQC (TO-UNHQC). The shortest time
can be obtained by solving the time-dependent Schrödinger equation in conjunction with the quantum
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brachistochrone equation, i.e.,

i∂F/∂t = [HT , F ], (14)

where F = ∂Lc/∂HT , Lc =
∑

j µjfj(HT ), and µj is the Lagrange multiplier.
To implement the TO-UNHQC, we consider a three-level system as shown in Figure 1(a). The Hamil-

tonian of the system is

HT (t) =
ΩT (t)

2
e−iφ(t)

(

sin
θ

2
eiφ1 |0〉+ cos

θ

2
|1〉

)

〈e|+H.c. (15)

In the physical system, the energy bandwidth must also be taken into account, meaning that the condition

f1(HT ) ≡ 1
2 [Tr(H

2
T )−

Ω(t)2

2 ] = 0 needs to be satisfied. Additionally, since the independent σz operation
cannot be implemented directly in the experiment, the constraint of f2(HT ) ≡ Tr(HTσz) = 0 must also
be satisfied. By solving the Schrödinger equation and quantum brachistochrone equation, and setting
ΩT (t) = Ω0, we can obtain the minimum-time solution to this method as φ(t) = 2(γ − π)t/τ , with a
minimum evolution time τ = 2

√

π
2 − (π− γ)2/Ω0. This evolution time decreases as the geometric phase

γ decreases. As shown in Figure 3, the TO-UNHQC scheme possesses the shortest evolution time and
shorter evolution path compared to the conventional NHQC.

Recently, the TO-UNHQC has been successfully implemented in an Xmon-type superconducting cir-
cuit [143]. The experiment results demonstrate the superiority of TO-UNHQC in terms of gate operation
time and its lower sensitivity to detuning error compared to conventional NHQC. They achieved a fidelity
of 99.51% for a single qubit gate using interleaved RB. Moreover, they implemented a two-qubit holonomic
control-phase gate, and proved it more robust against certain control noises than the conventional SL-
NHQC. Subsequently, fast and high-fidelity implementation of NHQC using the time-optimal method
was proposed in a hybrid spin register in diamond [144]. With the help of time-optimal control, the
gate-fidelities of the single-qubit gate and two-qubit gate there can exceed 99.2% and 96.5%, respectively.

4.2 NHQC with path-optimization

Path optimization is an alternative efficient way to speed up holonomic quantum gates by shortening
the evolution path. The first step for optimizing the path is made by the single-loop scheme [41], which
reduces the two loops required to construct an arbitrary holonomic gate in the original plan to just one
loop, cutting the evolution path and time in half. However, in the single-loop scheme, regardless of the
type of rotation gate, the evolution path on the Bloch sphere always has to go from the North Pole to
the South Pole and then back to the North Pole, resulting in the same evolution time for all rotation
operations. This makes the path to be much longer than that of the corresponding dynamical gate.

To break this limitation, a shortened path scheme is proposed [57], which further shortens the evolu-
tion path of a quantum system by segmentally selecting the parameters of the non-resonant three-level
Hamiltonian. The Hamiltonian in the jth segment is given by Hj = ∆j |e〉〈e|+Ωj [exp(iφj)|e〉〈b|+H.c.],
where all the parameters are time-independent. The key to the design of the path-shortening scheme
is to establish the connection conditions that must be met between the segment parameters while sat-
isfying the constraints of the cyclic condition and the parallel evolution condition. For example, we set
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ϑj =
√

(∆j/2)2 +Ω2
jτj (j = 1, 2), and tan ηj = 2Ωj/∆j , with τj being the evolution period of the jth

section. If the condition | sinϑ1 sin η1| = | sinϑ2 sin η2| is met, the phase parameter φ2 can be adjusted
so that the quantum system satisfies both the cyclic and the parallel evolution condition throughout the
entire evolution process. The improvement of the path-shortening scheme is that it relaxes the restriction
of Σjϑj = π in the previous scheme to Σjϑj < π, thereby shortening the evolution path of the system
and reducing the operation time of the quantum gate.

Subsequently, a general way to construct NHQC is proposed [58] via inverse engineering. This method
can be used to construct the Hamiltonian that implements arbitrary L-dimensional holonomic quantum
gates. To implement an L-dimensional holonomic gate, we select a set of auxiliary vectors {|µk(t)〉}L+1

k=1

that satisfy the cyclic condition |µk(0)〉 = |µk(τ)〉, and set the Hamiltonian of the system to be

HS(t) =

[

i

L
∑

i=1

〈µi(t)|µ̇L+1(t)〉|µi(t)〉〈µL+1(t)|+H.c.

]

+
[

i〈µL+1(t)|µ̇L+1(t)〉 − ζ̇(t)
]

|µL+1(t)〉〈µL+1(t)|, (16)

where ζ(t) is a time-dependent real function with ζ(0) = 0. In this case, the subspace SL(t) =
Span{|φk(t)〉}Lk=1 spanned by solutions of the Schrödinger equation can readily fulfill the cyclic and
parallel transport conditions, where |φk(t)〉 are solutions of the Schrödinger equation with initial con-
dition |φk(0)〉 = |µk(0)〉. By denoting the computational subspace as SL(0) = Span{|φk(0)〉}Lk=1, the
evolution operator U(τ) = T exp[i

∫ τ

0
A(t)dt] acting on the computational subspace is a path-dependent

holonomic gate, with Aij(t) = i〈µi(t)|µ̇j(t)〉. The structure of the auxiliary vectors {|µk(t)〉}L+1
k=1 dictates

the path of evolution in the parameter space. This implies that there are multiple paths for the same
rotation operation. It is noteworthy that these paths need not necessarily traverse the South Pole, which
distinguishes it from the single-loop scheme and is also crucial for path optimization.

We recently constructed the shortest-path NHQC (S-NHQC) scheme [59], as shown in Figure 4, where
the path is a circle in the parameter space. To create arbitrary single-qubit gates, we choose a set of
auxiliary vector as

|µ1(t)〉 = cos
θ

2
|0〉+ sin

θ

2
eiϕ|1〉,

|µ2(t)〉 = cos
α(t)

2

(

sin
θ

2
e−iϕ|0〉 − cos

θ

2
|1〉

)

+ sin
α(t)

2
eiβ(t)|e〉,

|µ3(t)〉 = sin
α(t)

2
e−iβ(t)

(

sin
θ

2
e−iϕ|0〉 − cos

θ

2
|1〉

)

− cos
α(t)

2
|e〉,

(17)

where θ, ϕ are time-independent parameters used to define the rotation axis. α(t), β(t) denote the
time-dependent polar angle and azimuthal angle of a spherical coordinate system, with α(τ) = α(0) = 0.
The subspace SL(0) = Span{|µ1(0)〉, |µ2(0)〉} denotes the computational space, and |µ3(t)〉 serves as an
auxiliary vector. From (16), we can derive

HS(t)= ∆(t)|e〉〈e| +
{

ΩS(t)e
−i[β(t)+χ(t)]|µ2(0)〉〈e|+H.c.

}

(18)
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with
∆(t) = −β̇(t) [1 + cosα(t)] ,

ΩS(t) =
1

2

√

[

β̇(t) sinα(t)
]2

+ α̇2(t),

χ(t) = arctan
{

α̇(t)
/

[

β̇(t) sinα(t)
]}

,

ζ̇(t) =
1

2
β̇(t)[3 + cosα(t)].

(19)

To generate the nonadiabatic holonomic gate with the shortest path, we provide a general set of
parameter forms of α(t) and β(t) that can be used to create a circular path, i.e.,

β(t) = β0 + π sin2
(

πt

2τ

)

, α(t) = 2 arctan[ℓ sin(β(t) − β0)] (20)

with ℓ =
√

2πγ − γ2/(π−γ), and the geometric phase γ =
∫ τ

0 β̇(t)[1−cosα(t)]dt/2. The circular paths of
different holonomic gates are shown in Figure 4(a), it can be observed that the smaller the rotation angle,
the shorter the circular evolution path. In addition, as depicted in Figure 4(b), the smaller the rotation
angle, the shorter the evolution time. Benefiting from the shortened evolution path, the robustness of
the gates here is also improved compared to the SL-NHQC, as demonstrated in Figure 5.

4.3 NHQC based on shortcuts to adiabaticity

While NHQC speeds up gate operations compared to adiabatic HQC, it lacks robustness to systematic
errors and requires more precise control in experiments. To tackle these problems, researchers suggested
the STA based NHQC [61–66,68, 73, 81, 145,146].

The STA based on the transitionless driving technique is to seek a transitionless Hamiltonian that can
drive the system to evolve accurately at any desired rate along the adiabatic channel. The transitionless
driving Hamiltonian can be written as [62]

Ht = Ht0 +Ht1 =
∑

n,k

En|ϕn
k 〉〈ϕn

k |+ i
∑

n,k,l

(|ϕ̇n
k 〉〈ϕn

k | − 〈ϕn
k |ϕ̇n

l 〉|ϕn
k 〉〈ϕn

l |), (21)

where Ht0 =
∑

n,k En|ϕn
k 〉〈ϕn

k | is the target Hamiltonian, Ht1 = i
∑

n,k,l(|ϕ̇n
k 〉〈ϕn

k | − 〈ϕn
k |ϕ̇n

l 〉|ϕn
k 〉〈ϕn

l |) is
the extra Hamiltonian term that enables the dynamical evolution of the system to proceed entirely along
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an adiabatic channel driven by Ht0. |ϕn
k 〉 are a set of degenerate eigenstates of Hamiltonian Ht0, with

the corresponding eigenvalues En.

When a generic system of four bare states is considered [62], in the interaction picture, the Hamiltonian
is Ht0 = Ωt0|e〉(fe0〈0|+ fe1〈1|+ fe2〈2|) + H.c., where fek are the time-dependent control parameters for
transitions between |k〉 ↔ |e〉 (k = 0, 1, 2). The qubit information is stored in the dark state subspace to
prevent any dynamical contribution, and the adiabatic holonomic quantum gate can be obtained through
the implementation discussed in [11]. To speed up the adiabatic evolution, an additional Hamiltonian term
Ht1 is added to the target Hamiltonian Ht0. Specifically, when constructing the phase-shift gate UP =
exp(iγ1|1〉〈1|), the Hamiltonian can be rephrased asHt0 = Ωt|e〉(− sin(θ/2)exp(iϕ)〈1|+cos(θ/2)〈2|)+H.c..
The shortcut to this phase-shift gate is realized by adding an extra Hamiltonian term Ht1. To simplify
the form of Ht1, we divide the evolution process into three steps, resulting in an “orange slice” path
on the parameter sphere. In the first step, the evolution path starts at the North Pole and follows the
longitude to the South Pole. We choose ϕ = 0 and Ht1 = θ̇/2|2〉〈1|+ H.c., so Ht = Ht0 +Ht1 becomes
a ∆-like Hamiltonian. In the second step, we keep θ = π while varying ϕ from 0 to ϕ1, creating a total
Hamiltonian that is just a transition between |e〉 and |1〉 with detuning ϕ̇. Finally, we keep ϕ1 constant
and return to the North Pole along the longitude. In this case, the total Hamiltonian is of the same form
as the first step. Due to the additional Hamiltonian term Ht1, the evolution can proceed rapidly along
the dark state channel without having to satisfy the adiabatic condition.

The STA-based NHQC has been demonstrated experimentally [67] in a three energy levels system with
a superconducting qubit in a scalable architecture. In their scheme, all single-qubit holonomic gates can be
achieved nonadiabatically through a single-loop evolution. Characterized by QST, the fidelities of the X ,
H , and X(π/2) gates were found to be FX = 96.6%±0.8%, FH = 97.6%±1%, and FX(π/2) = 96.4%±1%,
respectively. The errors were attributed to higher energy level contributions, decoherence, and control
pulse errors.

5 Enhancing the robustness of holonomic gates

As outlined in Section 4, the holonomic gate fidelity can be improved through the time-optimal technique
and short-path schemes, but these schemes only slightly increase the gate robustness against error. To
enhance the gate robustness, optimization methods such as pulse shaping, composite pulse, and dynamical
corrected can be used. However, these schemes come at the cost of increased evolution time, leading to a
decrease in maximum achievable fidelity. The NHQC with the composite dynamical decoupling scheme,
based on the shortest path, can be an alternative that significantly improves both fidelity and robustness.

5.1 NHQC with encoding

Quantum computation will inevitably suffer from noises, making it difficult to scale up in experiments. To
overcome this constraint, error correction and fault tolerance strategies are crucial for achieving scalable
quantum computation in the future. One effective approach is the combination of NHQC with DFS which
protects quantum gates from both manipulation errors and decoherence [20, 23, 27, 29–31]. We consider
a quantum system interacting with the environment and the total Hamiltonian is

HSB = HS ⊗ IB + IS ⊗HB +HI , (22)

where IS and IB are the identity operator of a quantum system and its environment, HS andHB represent
the Hamiltonian of the system and the environment, respectively. The interaction Hamiltonian between
the quantum system and its environment is represented by HI =

∑

a Sa ⊗Ba, with Sa and Ba being the
operators for the system and environment. We suppose that there is an eigenspace S = Span{|ψk〉}nk=1

spanned by the degenerate eigenstates, and Sa|ψk〉 = λa|ψk〉, HS |ψk〉 ∈ S. Therefore, the quantum
state starting from S will not be affected by environmental noise, i.e., S is a DFS. Furthermore, if an
L-dimensional subspace SL = Span{|ψj〉}Lj=1 (SL ⊂ S) exists and satisfies both the cyclic evolution
condition and parallel evolution condition, a nonadiabatic holonomic gate acted on this subspace can be
constructed by encoding the qubit within SL.

It was first proposed to combine DFS with NHQC in [20]. The quantum system there consists of N
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physical qubits interacting with a phase-shifting environment. The system Hamiltonian is

Hdf =
1

2

N
∑

k<l

[Jx
kl(σ

x
kσ

x
l + σy

kσ
y
l ) + Jy

kl(σ
x
kσ

y
l − σy

kσ
x
l )], (23)

where Jx
kl and Jy

kl are controllable coupling constants between qubits, the first and second terms are
XY and Dzialoshinski-Moriya interaction terms, respectively. σα

k (α = x, y, z) is the Pauli operator that
operates on the kth qubit. The interaction between the system and the environment is described by
the Hamiltonian HI = (Σkσ

z
k) ⊗ B, where Σkσ

z
k is the collective spin operator for the system, and B is

the corresponding operator for the environment. For a system with three physical qubits, the subspace
S = Span{|100〉, |010〉, |001〉} is a three-dimensional DFS. We can choose SL = Span{|010〉, |001〉} to be
the computational space and denote the logical qubits as |0〉L = |010〉 and |1〉L = |001〉. The remaining
vector |100〉 acts as the ancillary qubit. The parameters of Hamiltonian are set as

Jx
12 = −Jx

13 = J(t) cos(φ/2), Jy
12 = Jy

13 = −J(t) sin(φ/2). (24)

When
∫ τ

0 J(t)dt = π/
√
2 is satisfied, the evolution operator acting on the computational space is a

nonadiabatic holonomic gate. However, this approach requires using two non-commuting one-qubit gates
to achieve an arbitrary one-qubit gate, which results in a long evolution time. To shorten the evolution
time, researchers combined the use of DFS and a single-loop implementation to construct the nonadiabatic
holonomic gate within one loop in various physical systems [31, 53, 69–77, 147], such as superconducting
circuit, quantum dots, trapped ions, nitrogen-vacancy centers, and cavity QED.

Aside from the DFS, other quantum error-correcting codes have been designed to protect stored quan-
tum information from noise and decoherence. The binomial code is particularly important in correcting
the dominant photon-loss errors in bosonic modes [148]. To make the quantum computation solutions
more resistant to collective decoherence, one can combine the HQC with passive protection methods such
as noiseless subsystems [25]. Additionally, surface codes are considered promising candidates for achiev-
ing large-scale, fault-tolerant quantum computation and have been used to protect holonomic quantum
gates [149–151].

5.2 NHQC with pulse shaping

It is found that one can design target pulse-shaping NHQC (PS-NHQC) that satisfies both experimental
requirements and enhances the robustness of the proposed scheme. And, the NHQC scheme based on
pulse shaping has been successfully demonstrated experimentally [67, 141, 152, 153].

Pulse shaping is often applied to the Hamiltonian acquired through reverse engineering to enhance its
robustness to systematic Rabi error [79,80,82,85]. The Hamiltonian under consideration has parameters
that must be determined, in the same form as presented in (12), that is,

Hps(t) = Ωps(t)e
−iφ0(t)|b〉〈e|+H.c., (25)

while the phase φ0(t) is time-dependent. The evolution states that fulfill the Shrödinger equation and
are spanned by {|b〉, |e〉} can be described by using two time-dependent angles, χ(t) and ϕ(t), and a
time-dependent global phase, i.e.,

|Ψps(t)〉 = e−i f(t)
2

(

e−iϕ(t)
2 cos

[

χ(t)

2

]

|b〉+ ei
ϕ(t)
2 sin

[

χ(t)

2

]

|e〉
)

. (26)

By solving the Shrödinger equation i|Ψ̇ps(t)〉 = Hps(t)|Ψps(t)〉, the relationships between the parameters
can be obtained as

ḟ(t) = −ϕ̇(t)/ cosχ(t),
χ̇(t) = −2Ωps(t) sin[ϕ(t) + φ0(t)],

ϕ̇(t) = −2Ωps(t) cotχ(t) cos[ϕ(t) + φ0(t)].

(27)

In particular, when χ(t) satisfies the cyclic condition χ(0) = χ(τ) = 0, the evolution state will accumulate
a phase factor that includes both the geometric and the dynamical components after a periodic evolution.
Thus, the holonomic gate can be acquired by eliminating the dynamical phase. Furthermore, the pulse
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shape of Ωps(t) is determined by the free parameters f(t) and χ(t), so we can design a special pulse shape
to suppress the influence of noise or error by choosing appropriate parameters.

For the Rabi error, i.e., Ωps(t) → (1 + ǫ)Ωps(t), the excitation profile at the end of the first interval is

Pǫ =
∣

∣〈Ψps(τ/2)|Ψǫ
ps(τ/2)〉

∣

∣

2 ≃ 1− ǫ2

∣

∣

∣

∣

∣

∫ τ/2

0

e−if χ̇ sin2 χdt

∣

∣

∣

∣

∣

2

(28)

with τ being the total time of the evolution. This shows that the gate is resistant to first-order of Rabi
error. To make it even more robust, we establish χ(t) = π sin2(πt/τ), f(t) = ς [2χ− sin(2χ)], thus

Pǫ ≃ 1− ǫ2 sin2(ςπ)/(2ς)2. (29)

Hence, for a positive integer ς , we can achieve Pǫ = 1, which eliminates the influence of the second-order
systematic Rabi error completely. However, under the limit of a certain maximum of pulse amplitude,
ς > 1 corresponds to a very long evolution time, which will lead to a significant effect of decoherence
and reduce the gate-fidelity. Therefore, we need to determine the optimal value of ς to strike a balance
between fidelity and robustness.

The optimal control of this pulse shaping has been confirmed in a trapped ion system [152], where
they set ς = 1/5. The performance of the implemented holonomic single-qubit quantum gates was
characterized using the interleaved RB method, and the resulting fidelities were FX = 99.10%, FH =
98.90%, FT = 99.20%, and FS = 99.10%, respectively. The study also demonstrated the robustness of the
optimized gates to Rabi error. The pulse shaping NHQC exhibited much greater robustness compared
to the conventional SL-NHQC scheme and even surpassed the dynamical scheme in this aspect.

5.3 NHQC with composite pulse

The composite NHQC (C-NHQC) is a simple and effective method to suppress the influence of Rabi
error, especially for large-angle rotation operations [87, 88]. The central idea of the composite scheme
is to take U(γ/N, θ, φ) as an elementary gate with the rotation angle of γ/N , and then the target gate
U(γ, θ, φ) is achieved by consecutively applying N of these elementary gates, causing the accumulated
geometric phase to be γ, i.e., [U(γ/N, θ, φ)]N = U(γ, θ, φ). Here γ is the rotation angle, and θ and φ are
used to determine the rotation axis.

It is experimentally verified that the C-NHQC scheme is indeed more robust compared to the single-
loop scheme when it comes to Rabi error, as illustrated in Figure 6 [88]. They construct the holonomic
NOT gate and Hadamard gate with two loops (N = 2), and the corresponding evolution operators are
NOT = [U(π/2,π/2, 0)]2 and H = [U(π/2,π/4, 0)]2, respectively. The abnormal behaviors of NOT
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Figure 7 (Color online) Schematic diagram of the evolution paths for a holonomic quantum gate. The evolution path of the

SL-NHQC scheme is shown in (a) for the ideal case and in (b) for the case with the Rabi error. The evolution path of the DC-NHQC

scheme is shown in (c) for the ideal case and in (d) for the case with Rabi error. As demonstrated in (d), the Rabi error can be

effectively corrected by the dynamic correction [89] Copyright 2021 American Physical Society.

gates within a small systematic Rabi error range mainly come from the imperfect state preparation and
measurement which accounts for the dominant error when the Rabi error is small.

Even though the composite pulse enhances robustness against Rabi frequency error, it also prolongs
the evolution time. This is because the evolution time for each cycle remains the same, regardless of
whether the rotation angle is large or small. For instance, when N is 2, U(γ, θ, φ) = [U(γ2 , θ, φ)]

2, the
composite scheme requires twice as much evolution time compared to the single-loop scheme. This makes
the system more vulnerable to environment-related decoherence. This is why the composite scheme has
lower fidelity compared to the single-loop scheme when the decoherence is taken into account.

5.4 NHQC with dynamically correction

With the same purpose as pulse shaping and composite pulse optimization, dynamically corrected NHQC
(DC-NHQC) [89–91] is also an optimization method that improves the gate robustness. The idea of DC-
NHQC is illustrated in Figure 7. Figure 7(a) illustrates the evolution path of the conventional SL-NHQC
without interference from errors. In the absence of noise, the path of the evolution state in the parameter
space travels from the North Pole to the South Pole and then returns to the North Pole after passing
through a phase change at the South Pole. However, when there is systematic Rabi error present, as
expressed by Hǫ

dc(t) = (1+ ǫ)Hsl(t), where ǫ is the error fraction and Hsl(t) is the same form as (12), the
evolution path is no longer a perfect orange-slice path, as shown in Figure 7(b). In this case, when the
systematic Rabi error is small, i.e., ǫ≪ 1, the gate fidelity drops from perfect unity to [89]

F = 1− 1

2

(ǫπ

2

)2

(1− cos γg), (30)

where γg is the pure geometric phase. Thus, due to the Rabi error, the trajectory of the evolution cannot
precisely return to the North Pole in the SL-NHQC scheme.

To suppress the influence of systematic Rabi error through dynamical correction, we interpolate two
dynamical processes at the halfway point of each half-evolution path. The sum of the dynamical phases
in these two processes is zero. The first dynamical process is governed by the Hamiltonian

H1(t) = (1 + ǫ)Ωdc(t)e
−i(φ0+π/2)|b〉〈e|+H.c., (31)

which is inserted at time T/4 with
∫ 3T/4

T/4 Ωdc(t)dt = π/2. The Hamiltonian

H2(t) = (1 + ǫ)Ωdc(t)e
−i(φ0−γg−π/2)|b〉〈e|+H.c. (32)

with
∫ 7T/4

5T/4
Ωdc(t)dt = π/2 is inserted at 5T/4 to drive the second dynamical process. The trajectory

on the Bloch sphere is depicted in Figure 7(c) without Rabi error and Figure 7(d) with Rabi error,
respectively. In this case, despite the presence of Rabi error in all the processes, the trajectory can still
approximately return back to the North Pole. The gate fidelity is calculated to be

Fc = 1− 1

2

(ǫπ

2

)4

(1− cos γg), (33)

indicating that the dynamical correction can suppress the error to the fourth-order perturbation, which
greatly enhances the robustness of the Rabi error.
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Figure 8 (Color online) (a) Symmetrical evolution path of the T gate obtained by using the simplest composite dynamical

decoupling pulse with N = 2. The performance of the T gate optimized with different pulse sequences, where (b) represents the

population of the excited state, and (c) depicts the gate fidelity as a function of decoherence. The comparison with the un-optimized

S-NHQC scheme (blue lines), where (d) represents the gate infidelity with respect to systematic Rabi error, and (e) represents the

gate infidelity with respect to detuning error [59] Copyright 2022 American Physical Society.

5.5 NHQC with composite dynamical decoupling

The environment-induced decoherence is one of the obstacles to the realization of high-fidelity and robust
quantum gates. Dynamical decoupling [154] can effectively reduce the impact of decoherence by reversing
the evolution of the quantum system through the use of control pulses at specific times, which can be ap-
plied [57,78] to the NHQC. The physical system under consideration consists of N qubits, and the interac-
tion between the system and the environment is determined by the HamiltonianHI =

∑

k,a σ
a
k⊗Ba

k , where
Ba

k is the environment operator corresponding to the Pauli operator σa
k (a = x, y, z) in the kth qubit. The

impact of environment-induced decoherence can be suppressed through the use of dynamical decoupling
with a decoupling sequence of the decoherence-suppressed being {⊗N

k=1Ik,⊗N
k=1σ

x
k ,⊗N

k=1σ
y
k ,⊗N

k=1σ
z
k}.

However, this decoupling sequence may interfere with the evolution of the quantum system. To make
the decoupling sequence compatible with the system evolution, we chose a Hamiltonian of the form σa

kσ
a
j

(k, j = 1, 2, . . . , N) to implement NHQC.

However, the traditional dynamical decoupling method requires the addition of fast and strong de-
coupling sequences, which can lead to control errors. To address this issue, we proposed a composite
dynamical decoupling NHQC (CDD-NHQC) scheme [59], which does not require the addition of ex-
ternal field control. According to the cyclic and parallel transport conditions, the Hamiltonian of the
single-qubit holonomic gate obtained through inverse engineering is the same as in (16). To decouple the
gate implementation from the environment, the system evolution is divided into N segments, resulting in
U(γ) = UN(γ/N) · · ·U2(γ/N)U1(γ/N). By setting β0 in all even-numbered pulse sequences to β0+π, the
evolution paths are symmetrical about the North Pole on the Bloch sphere, thus effectively suppressing
decoherence.

Figure 8(a) shows the evolution paths of the T gate when N = 2, and Figure 8(b) demonstrates
that the population of the excited state |e〉 decreases as the number of pulse sequences N increases,
reducing decoherence, see Figure 8(c). Additionally, the CDD-NHQC scheme can enhance the robustness
of systematic Rabi error and detuning error. As shown in Figures 8(d) and (e), the robustness of the T
gate to detuning error becomes stronger with increasing N , while the robustness to Rabi error reaches
saturation at N = 2.
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Table 1 Parameters for quantum gates with different optimal strategies

Scheme Hamiltonian Pulse shape Phase Pulse area

SL-NHQC Eq. (12) Ωsl = Ω̄







φ0 = 0, t ∈ [0, T/2],

φ0 = −π/2, t ∈ [T/2, T ]
π

PS-NHQC Eq. (25)















































Ωps(t) =
√

Ω2
R + Ω2

I ,

ΩR = cosϕ sinχḟ − sinϕχ̇,

ΩI = sinϕ sinχḟ + cosϕχ̇,

χ = π sin2[πt/(2τ)],

f = [2χ − sin(2χ)],
∫

T

0
Ωps(t)dt/T = Ω̄



























ϕ̇ = −ḟ cosχ,

ϕ(0) = −π/2,

ϕ(T/2) = −π,

tanφ0 = ΩI/ΩR

2.16π

C-NHQC Eq. (12) ΩC = Ω̄



























φ0 = 0, t ∈ [0, T/2],

φ0 = −π/4, t ∈ [T/2, T ],

φ0 = 0, t ∈ [T, 3T/2],

φ0 = −π/4, t ∈ [3T/2, 2T ]

2π

DC-NHQC Eqs. (12), (31), (32) Ωdc = Ω̄















































φ0 = 0, t ∈ [0, T/4],

φ0 = π/2, t ∈ [T/4, 3T/4],

φ0 = 0, t ∈ [3T/4, T ],

φ0 = π/2, t ∈ [T, 5T/4],

φ0 = −π, t ∈ [5T/4, 7T/4],

φ0 = π/2, t ∈ [7T/4, 2T ]

2π

TO-UNHQC Eq. (15) ΩT = Ω̄ φ = πt/τ 0.43π

S-NHQC Eq. (16)







ΩS(t) =

√

[β̇ sinα]2 + α̇2/2,
∫

T

0
ΩS(t)dt/T = Ω̄



































β = π sin2(πt/2/τ),

α = 2 arctan[l sin β − β0],

l =
√

2πγ − γ2/(π − γ),

χ = arctan{α̇/[β̇ sinα]},
γ = π/2

0.87π

CDD-NHQC Eq. (16)







ΩCD(t) =
√

[β̇ sinα]2 + α̇2/2,
∫

T

0
ΩCD(t)dt/T = Ω̄



























































β = β0 + π sin2(πt/2/τ),

α = 2 arctan[l sin β − β0],

l =
√

2πγ − γ2/(π − γ),

χ = arctan{α̇/[β̇ sinα]},
β0 = 0, t ∈ [0, T ],

β0 = π, t ∈ [T, 2T ],

γ = π/4

1.32π

6 Discussions and conclusions

6.1 Gate performance for different optimal strategies

As discussed above, various optimized schemes are devoted to improving the gate-fidelity and enhancing
the robustness against errors. Here we compare the robustness of the S gate for recently proposed
optimization schemes, using an ideal three-level Λ system, the detailed parameters for each scheme are
shown in Table 1. We introduce the systematic Rabi error, i.e., Ω → (1 + ǫ)Ω, and the detuning error
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Figure 9 (Color online) Performance comparison of S gate of different optimal NHQC schemes with Ω̄ = 2π × 10 MHz.

(a) The gate-fidelity as a function of decoherence. The robustness of S gate with respect to (b) Rabi error and (c) detuning

error. The decoherence rates are chosen to be Γ
−

= Γz = 2π × 3 kHz in (b) and (c).

ηΩ̄|e〉〈e|, where ǫ and η are Rabi error rate and detuning error rate, and Ω̄ is the average value of the Rabi
frequency. The performance of different schemes can be evaluated by the Markovian master equation in
the Lindblad form

ρ̇ = −i[Hi(t), ρ] +
1

2

∑

j=−,z

ΓjL(σj), (34)

where ρ is the density matrix of the quantum system, Hi(t) is the corresponding Hamiltonian in various
schemes, and L(A) = 2AρA − A†Aρ − ρA†A is the Lindbladian operator with σ− = |0〉〈e| + |1〉〈e| and
σz = |e〉〈e| − |1〉〈1| − |0〉〈0|, Γ− and Γz represent the decay and dephasing rates, respectively.

As illustrated in Figure 9(a), the TO-UNHQC scheme (black line) performs better in terms of resisting
decoherence since it achieves gate operation in the shortest time. However, the S-NHQC (dotted cyan
line) and CDD-NHQC (blue line) schemes are more resilient to decoherence, with CDD-NHQC showing
the best results, despite the fact that they require longer evolution times than TO-UNHQC. We believe
that the ability of S-NHQC and CDD-NHQC schemes to resist decoherence is due to the lower population
of excited states compared to the other schemes, as shown in Figures 4 and 8(a). Although the CDD-
NHQC method has a long evolution time, it exhibits strong resistance against environment-induced
decoherence by decoupling its dynamics from the environment. For systems where decoherence is the
main source of error, we can improve fidelity by increasing the number of dynamical decoupling pulse
sequences. Conversely, the C-NHQC, PS-NHQC, and DC-NHQC optimization methods are susceptible
to decoherence because of their longer evolution time.

Figure 9(b) depicts a comparison of the robustness of various optimization schemes against Rabi error.
Among these schemes, the PS-NHQC (green line) and DC-NHQC (magenta dot-dashed line) focus on
enhancing the robustness of the systematic Rabi error. As anticipated, they exhibit outstanding resistance
to Rabi error. The C-NHQC (yellow line) is also an optimization scheme for fortifying against Rabi error,
but its effectiveness is not as potent as that of PS-NHQC and DC-NHQC. Nonetheless, it is crucial to
note that decoherence is an inevitable factor in real physical systems, which causes the robustness curves
of PS-NHQC, DC-NHQC, and C-NHQC to decline, particularly for the DC-NHQC scheme. This implies
that high fidelity is compromised in exchange for increased robustness against systematic Rabi error.
Achieving satisfactory results necessitates considering the trade-off between various factors in a physical
implementation. In general, the CDD-NHQC optimization is a sound choice as it balances high fidelity
and robustness. Additionally, it is evident from Figure 9(b) that irrespective of the optimization technique
employed, resistance to systematic Rabi error is improved to some degree in comparison to the traditional
SL-NHQC scheme (red line).

The robustness of the detuning error is demonstrated in Figure 9(c). The CDD-NHQC optimization
surpasses other solutions and is the optimal option for mitigating detuning errors. For physical systems
where the detuning error is the main source of errors, dynamical decoupling pulse sequences can also
be increased to enhance robustness while enhancing maximum fidelity. Except for the CDD-NHQC,
S-NHQC, and TO-UNHQC optimization methods, the robustness of other optimization methods to
detuning error is inferior to the traditional SL-NHQC method. As different physical systems have distinct
primary sources of error, it is preferable to select appropriate optimization procedures based on specific
requirements.
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6.2 Conclusion

In the theoretical design of NHQC, researchers simplified the original two-loop scheme to a single-shot
scheme, decreases the exposure time of holonomic gates to decoherence. Later, researchers replaced
the single-shot solution, which necessitated non-resonant laser pulses, with a single-loop multiple-pulse
solution to overcome the limitations of square pulses and limited-rotation-angle. The traditional NHQC,
which eliminates the dynamical phase, was subsequently extended to unconventional NHQC, in which
the dynamical phase is retained but proportional to the geometric phase. Later on, the cyclic evolution
condition was relaxed, and noncyclic NHQC emerged. More recently, NHQC has been developed beyond
the three-level setting. In short, NHQC represents a promising direction for the development of quantum
computation and has the potential to offer significant advantages over conventional methods.

6.3 Perspectives

While much work remains to be done to fully realize the potential of NHQC, the progress that has been
made so far is very encouraging and holds great promise for the future. Since it was first discovered,
HQC has experienced remarkable growth. It has evolved from the early adiabatic case to NHQC, and
then to the current stage of optimized NHQC. NHQC inherits geometric characteristics while combining
speed with universality, and becomes a promising quantum control solution that has been demonstrated
on various physical platforms. However, quantum computation based on geometric manipulation requires
longer computing time and a more complex physical implementation process than traditional dynamical
schemes, making it challenging for NHQC to surpass the dynamical scheme and hindering its wide
adoption. Therefore, the development of NHQC schemes that are comparable to the dynamical scheme
is crucial for making NHQC widely applicable.

The objective of NHQC optimization is to achieve high-fidelity and robust quantum gates. Certain
optimization schemes focus on speeding up the evolution and enhancing fidelity, such as TO-UNHQC and
S-NHQC. Others aim to improve robustness to Rabi error, such as PS-NHQC, C-NHQC, and DC-NHQC.
There are also optimization schemes that improve both fidelity and robustness, such as CDD-NHQC.
However, the source of errors in quantum systems is complex, and NHQC is susceptible to errors that
can impact both the evolutionary path and the path integral. Therefore, one of the most concerning
issues in this field is how to combine NHQC with other noise resistance schemes and error correction
technologies in quantum information processing to develop a scheme that can resist a variety of errors.

Current experimental research is primarily focused on superconducting circuits, nitrogen-vacancy cen-
ters, NMR, and trapped ion systems. Looking ahead, other physical systems such as nanophotonics and
Rydberg atoms may also become relevant. While experimental fidelities of single-qubit holonomic gates
can exceed 0.99, the fidelities of two-qubit gates remain low, which is insufficient for realizing large-scale
quantum computation. The primary reason is due to crosstalk between qubits and leakage from com-
putational subspace to non-computational subspace. Additionally, energy relaxation and dephasing of
qubits can also contribute to infidelity. Thus, the most significant challenge facing NHQC is to achieve
high-fidelity two-qubit holonomic gates. This is also an urgent problem faced by both geometric quantum
computation and dynamical quantum computation.
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21 Johansson M, Sjöqvist E, Andersson L M, et al. Robustness of nonadiabatic holonomic gates. Phys Rev A, 2012, 86: 062322
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140 Xu G F, Zhao P Z, Sjöqvist E, et al. Realizing nonadiabatic holonomic quantum computation beyond the three-level setting.

Phys Rev A, 2021, 103: 052605

141 Ai M Z, Li S, He R, et al. Experimental realization of nonadiabatic holonomic single-qubit quantum gates with two dark

paths in a trapped ion. Fundamental Res, 2022, 2: 661–666
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147 Mousolou V A, Sjöqvist E. Entangling power of holonomic gates in atom-based systems. J Phys A-Math Theor, 2018, 51:

475303

148 Chen Y H, Qin W, Stassi R, et al. Fast binomial-code holonomic quantum computation with ultrastrong light-matter

coupling. Phys Rev Res, 2021, 3: 033275

149 Zheng Y C, Brun T A. Fault-tolerant holonomic quantum computation in surface codes. Phys Rev A, 2015, 91: 022302

150 Zhang J, Devitt S J, You J Q, et al. Holonomic surface codes for fault-tolerant quantum computation. Phys Rev A, 2018,

97: 022335

151 Wu C, Wang Y, Feng X L, et al. Holonomic quantum computation in surface codes. Phys Rev Appl, 2020, 13: 014055

152 Ai M Z, Li S, Hou Z, et al. Experimental realization of nonadiabatic holonomic single-qubit quantum gates with optimal

control in a trapped ion. Phys Rev Appl, 2020, 14: 054062

153 Dong Y, Zhang S C, Zheng Y, et al. Experimental implementation of universal holonomic quantum computation on solid-

state spins with optimal control. Phys Rev Appl, 2021, 16: 024060

154 Viola L, Knill E, Lloyd S. Dynamical decoupling of open quantum systems. Phys Rev Lett, 1999, 82: 2417–2421

https://doi.org/10.1007/s11467-021-1087-4
https://doi.org/10.1103/PhysRevA.103.052605
https://doi.org/10.1016/j.fmre.2021.11.031
https://doi.org/10.1103/PhysRevA.106.062402
https://arxiv.org/abs/2004.10364
https://doi.org/10.1103/PhysRevResearch.3.043177
https://doi.org/10.1103/PhysRevA.95.062308
https://doi.org/10.1002/qute.201900013
https://doi.org/10.1088/1751-8121/aae78b
https://doi.org/10.1103/PhysRevResearch.3.033275
https://doi.org/10.1103/PhysRevA.91.022302
https://doi.org/10.1103/PhysRevA.97.022335
https://doi.org/10.1103/PhysRevApplied.13.014055
https://doi.org/10.1103/PhysRevApplied.14.054062
https://doi.org/10.1103/PhysRevApplied.16.024060
https://doi.org/10.1103/PhysRevLett.82.2417

	Introduction
	Adiabatic HQC
	The adiabatic non-Abelian geometric phase
	Holonomic quantum gates

	NHQC
	Nonadiabatic non-Abelian geometric phase 
	The NHQC scheme
	The single-shot/loop NHQC
	Extensions of NHQC

	Speeding up holonomic quantum gates
	NHQC with the time-optimal control technique
	NHQC with path-optimization 
	NHQC based on shortcuts to adiabaticity

	Enhancing the robustness of holonomic gates
	NHQC with encoding
	NHQC with pulse shaping 
	NHQC with composite pulse
	NHQC with dynamically correction
	NHQC with composite dynamical decoupling

	Discussions and conclusions
	 Gate performance for different optimal strategies
	Conclusion
	Perspectives


