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Abstract This study reviews the recent progress of high-dimensional quantum information processing
with photons. We �rst introduce the basic language of high-d imensional quantum information, including
the representation of quantum dits (qudits), unitary opera tions of qudit states, and the general format of
quantum algorithms with qudits. We discuss experimental im plementations of high-dimensional quantum
information processing and quantum computing in photonic s ystems, particularly in integrated quantum
photonic platforms. We also discuss how qudit-based quantu m photonic devices and systems can be adopted
for further improving qubit-based quantum computation and quantum simulation.
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1 Introduction

Quantum information science and technologies promise the revolution of conventional information tech-
nologies. In the past decades, it has witnessed the closure of loopholes in Bell tests [1,2], the establishment
of long-distance secured quantum communications [3, 4], and the realization of quantum computational
advantages [5, 6]. Despite signi�cant progress in two-dimensional quantum bit (qubit ) systems, another
major focus has expanded to high-dimensional quantum dit (qudit) technologies and devices [7{ 10].
Encoding and processing high-dimensional quantum information could provide unique advantages, for
example, stronger violation of Bell's non-locality [11,12], quantum communications with higher capacity
and noise-resistance [13, 14], and quantum computations with improved e�ciency and accuracy [15{ 18].
Theoretically, high-dimensional quantum information processing is universal in the circuit model [19,20]
and measurement-based model [21{ 23], and the adiabatic qudit-computing model has also been pro-
posed [24, 25]. Physically, qudit-based quantum computing can be implemented in the physical systems
of photons [26, 27], trapped ions [28], superconductors [29, 30], and solid-state systems [31]. Photons
represent a natural carrier of high-dimensional quantum information, by encoding the qudit states in
a variety of degrees of freedom (DoF) such as path [32, 33], frequency [34, 35], orbital angular momen-
tum [7,36], multitude spatial mode [37,38], and time-bins [14]. The development of integrated quantum
photonics [39{ 41] enables the realization of the quantum computing system on a photonic chip, thus pro-
viding a scalable, programmable, and stable quantum photonic platform for high-dimensional quantum
information processing.

In this article, we review the progress of high-dimensional quantuminformation processing in photonic
systems. In Section 2, we introduce the de�nitions of qudit states, single-qudit, and multi-qudit gates, a
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universal gate sets for qudit-based quantum computing. In Section 3, we introduce the on-chip implemen-
tations of photonic path-encoded qudit states and quantum gates, such as the structure of linear-optical
circuits for single-qudit and multi-qudit gates. Section 4 introduces how to improve quantum information
processing with the assistance of qudit states, including Hamiltonianlearning, simpli�cation of quantum
gates using qudits, the linear combination of unitary operations, and quantum error correction assisted by
qudits. Section 5 introduces the generalized quantum algorithms for qudits, such asthe Deutsch-Jozsa
algorithm, Bernstein-Vazirani algorithm, phase estimation, and order �nding algorithms. The experi-
mental realizations of qudit-based quantum computing algorithms are discussed. Finally, in Section 6,
we summarize and look forward to the content of this review.

2 High-dimensional quantum states and gates

We need generalized quantum states and gates in higher dimensions to process quantum information at
more than two levels. For two-dimensional quantum information processing, we often use the concept
of qubits to represent the fundamental quantum unit. In high-dimensional systems, the generalized idea
with dimensions greater than two is called qudit. In 3- and 4-dimensional cases, it can also be called
qutrit and ququart [ 42].

This section will describe the theoretical generalization and characterization of high-dimensional quan-
tum states and gates. We will see the conception of quantum states and operations on single and multiple
qudits, which can realize universal qudit-based quantum computing. The characterization scheme for
high-dimensional quantum states will also change.

2.1 Single-qudit gates

A single qubit state of j 2i can be written asj 2 i = a0 j0i + a1 j1i , where ja0j2 + ja1j2 = 1. And we have a
generalized single qudit state ofj d i =

P d� 1
i =0 ai ji i , where complex coe�cients satisfy the normalization

condition
P d� 1

i =0 jai j2 = 1. In vector representation, these quantum states can be expressed as vectors in
Hilbert space expanded byfj 0i ; j1i ; : : : ; jd � 1ig as

j 2i =

"
a0

a1

#

; j d i =

2
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6
6
6
6
4
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a1

...

ad� 1

3

7
7
7
7
7
5

: (1)

Implementing the task of high-dimensional quantum information processing, relies on thed-dimensional
unitary operations to transform qudit states.

For d = 2, the gates implemented on the qubit states can be representedin the compact forms such as
X 2 ji i = ji � 2 1i and Z2 ji i = ( � 1)i ji i where � 2 means addition module 2. They are the PauliX 2 and
Z2 gates which can be written in the 2� 2 matrix form:

X 2 =

"
0 1

1 0

#

; Z2 =

"
1 0

0 � 1

#

; H2 = F2 = 1p
2

"
1 1

1 � 1

#

; (2)

whereH2 represents the Hadamard gate (equivalent to the Fourier gateF2 when d = 2) for qubits. Their
generalizations in d dimensions can be written in the d � d matrices as below and their corresponding
function as X d ji i = ji � d 1i and Zd ji i = ! i ji i [43], where � d means addition moduled that is a direct
generalization of the two-dimensional cases.
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where hij = ( � 1)i � j , i � j denotes the bitwise inner product of i and j expressed in the binary repre-
sentation [44], and ! = e2� i=d is the dth root of unity. Note that the generalized Hadamard gate Hd

is di�erent from the generalized Fourier Fd gate. The Hd gate can be regarded as the outer product of
H2, which can be written as H2n = H 
 n

2 . The Fd gate represents its Fourier transform format and it is
described by! suitable for any d. For qubits, a similar operation F2n acting on n qubits is also called
the quantum Fourier transform (QFT).

2.2 Multi-qudit gates

The task of quantum information processing and the realization of universal quantum computation re-
quire the entangling operations between multiple particles. The controlled-NOT (CNOT) gate plays an
important role in multi-qubit quantum operations and it is a basic entan gling gate in two dimensions.
The CNOT gate (i.e., C2X 2) is de�ned as C2X 2 ji i j j i = ji i j i � 2 j i where the stateji i is the control qubit
and jj i is the target qubit. There are various generalizations of the high-dimensional CNOT gate. One of
them is CdX d ji i j j i = ji i j i � d j i [45, 46]. The operation X i

d is performed on the target qudit jj i , which
is entangled and determined by the state of control qudit ofji i . In general, a controlled-unitary gate for
qudits is de�ned as

CdUd ji i j j i = ji i U i
d jj i : (5)

It can also be written in the matrix form as

CdUd = Cd[I d; Ud; U2
d ; : : : ; Ud� 1
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where Cd[I d ; Ud; U2
d ; : : : ; Ud� 1

d ] is the abbreviation, and the items in brackets represent the operations
performed on the target qudit when the control qudit state is j0i ; j1i ; : : : ; jd � 1i , respectively. That is,
the state of the control qudit determines the power of the operation U. If the control qudit is in the state
j0i , I d is carried out, which is the d � d identity matrix.

Another frequently used generalization of CNOT (Muthukrishan-Stroud gate) is de�ned below [45]:

Cd[I d2 � d; Ud] =

"
I d2 � d

Ud

#

: (7)

It means that only when the control qudit is jd � 1i , the unitary operation Ud will be carried out on the
target qudit. Otherwise, no operation will be added.

Universal qudit-based quantum computing onn qudits with a local dimension of d can be described
as U 2 U(dn ). It has been shown that the setf X ( l )

d ; Zd; Cd[I d2 � d; Rd]g is su�cient to construct U [20],
providing a universal gate set for qudits. Any qudit-based unitary operation can be approximated by
using the matrix product in this universal gate set. The controlled gate Cd[I d2 � d; Rd] is de�ned in (7),
where Rd represents single-qudit gate of eitherX ( l )

d or Z ( � )
d as

X ( l )
d (x; y) =

2

6
6
6
6
6
4

I l � 1

xp
j x j 2 + jy j 2

� yp
j x j 2 + jy j 2

y �
p

j x j 2 + jy j 2

x �
p

j x j 2 + jy j 2

I d� l � 1

3

7
7
7
7
7
5

; Z ( � )
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ei(1 � sgn( d� 1� l ) � ) jl i hl j ; (8)
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Figure 1 (Color online) Duality quantum computing circuit [ 48]. j 	 i is the target quantum state in the data register, and j0i
represents the control qudit in the auxiliary register. V and W are d-dimensional unitary transformations. U0 ; U1 ; : : : ; U d � 1 are
operations performed on j 	 i when the state of the control qudit matches the number shown i n the circles, respectively. The d
possible outputs in the auxiliary register correspond to li nearly combined unitary operations of L k implemented on the data register
with di�erent coe�cients.

where x and y are complex numbers.
In addition, one can extend the controlled qudit gate to systems with di�erent dimensions as

Cd1

h
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The dimension of the control and target qudit is d1 and d2, and U (1)
d2

; U (2)
d2

; : : : ; U(d1 )
d2

are d1 unitary
operations in dimensiond2.

It is worth noting that the duality quantum computation proposed b y Long [47] can also be realized in
this way. We can add a qudit in dimensiond1 to control the unitary operations in d2-dimensional Hilbert
space (regardless of the number of particles) to construct the quantum circuit as shown in Figure 1. The
V and W unitary operations are de�ned as

V =
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; W =
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: (10)

After the quantum operations in Figure 1, the state of the system can be written as

d� 1X

i =0

d� 1X

k=0

wk;i vi; 0Ui j	 i j ki =
d� 1X

k=0

L k j	 i j ki ; (11)

where L k =
P d� 1

i =0 wk;i vi; 0Ui is the duality quantum gate [48], which is a linear combination of unitary
operations (LCU). The LCU circuit could allow quantum simulation [ 49{ 53], secure computing [54],
solving linear systems of equations with Harrow-Hassidim-Lloyd algorithm (HHL) [ 55], simulation of the
Yang-Baxter equation [56], and passive quantum error correction [57].

2.3 Quantum tomographies for qudit states and gates

The density matrix completely quanti�es a quantum state or quantu m system [58]. So as the high-
dimensional states and systems. To reconstruct the density matrix of the qudit states, the quantum state
topographical measurement is required. Any high-dimensional quantum evolution can be represented
as a process matrix under the operator-sum representation. One can obtain the process matrix that
characterizes its dynamics, through quantum process tomography.
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The Pauli matrices form the basis of the Hilbert space of two-dimensional systems. When generalizing
to high-dimensional quantum systems ind-dimension, the Hilbert space is represented by a number ofd2

Gell-Mann matrices of Gi (i = 0 ; 1; : : : ; d2 � 1) [43]. The density matrix � d of a d-dimensional single-qudit
state can be expressed as

� d =
d2 � 1X

i =0

tr( � dGi )Gi

d
: (12)

By preparing many copies of the same state, and measuring the probabilities on the basis ofGi , one can
obtain the reconstructed density matrix of the qudit state.

For the qudit operation in d dimension, we can also generalize the operator-sum representation as

Ed(� d) =
d2 � 1X

i =0

d2 � 1X

j =0

� ij Gi � dGy
j ; (13)

where � ij is the quantum process matrix. For quantum process tomographyof operations with a size of
dn , we usually need to measure the outputsEd(� i ) corresponding tod2n linearly independent input states
� i , i = 0 ; 1; : : : ; d2n � 1 and use these results to obtain� ij [59].

What we described above are the most basic methods for reconstructing quantum states and processes.
However, it remains not scalable for high dimensional and multipartitequantum systems, as there are too
many measurements to be performed. Recently, more e�cient approaches have been proposed, such as
quantum state tomography by compressed sensing [60], and two-base measurement [61]. To characterize
the process matrix, one can obtain the upper and lower limits of the process �delity, by estimating
complementary classical �delities [62].

3 High-dimensional photonic quantum logics

In addition to theoretical support, we need experimental implementations for high-dimensional quantum
information processing. In integrated quantum photonics, the quantum states are often encoded by the
photon's spatial position. Interferometers can be used to manipulate these states.

In this section, we will see that integrated quantum photonics provides a good solution for generating
and operating qudit states. The optical implementation of multi-qudit gates is still one of the research
focuses now. The advantage of higher detection rates with quditshas been observed on the integrated
quantum photonics platform.

3.1 Single-qudit gates

We �rst discuss the integrated-optical realization of arbitrary sin gle-qubit operations and then arbitrary
single-qudit operations. Arbitrary single-qubit gates can be realized with a Mach-Zehnder interferometer
(MZI) and two additional phase shifters. It consists of three phase shifters and two 50:50 beamsplitters.
Phase shifters are usually realized by electro-optics or thermo-optics [63]. Typical integrated beamsplitters
are based on the directional couplers (DC) or multi-mode interferometers (MMI). For a 50:50 beamsplitter,
its unitary is given as

Ummi =
ei � BS

p
2

"
1 i

i 1

#

; (14)

where � BS denotes a global phase. The unitary operation of an MZIUmzi (� ) and the MZI with a Z-phase
T(�; � ) as shown in Figure2(c) can be derived as

Umzi (� ) =
e2i � BS

2

"
1 i

i 1

# "
e2i � 0

0 1

# "
1 i

i 1

#

=
ei(2 � BS � � )

2

"
ei � � e� i � iei � + ie � i �

iei � + ie � i � e� i � � ei �

#

=
ei(2 � BS � � )

2

"
2i sin� 2i cos�

2i cos� � 2i sin�

#

= e i(2 � BS + �
2 � � )

"
sin � cos�

cos� � sin �

#

;

(15)

T(�; � ) = e i(2 � BS + �
2 � � )

"
sin � cos�

cos� � sin �

# "
ei � 0

0 1

#

= e i(2 � BS + �
2 � � )

"
ei � sin � cos�

ei � cos� � sin �

#

; (16)
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(c)

(d) (e)

(a)

(b)

(f) (g)

Figure 2 (Color online) The photonic realization of programmable hi gh-dimensional state preparation, operation, and project ion.
(a) A triangular scheme for arbitrary single-qudit unitary operations. (b) A squared scheme for arbitrary single-qudi t unitary
operations [ 65]. (c) A tunable beamsplitter realized by an MZI and a phase, r epresenting the crossing that forms the meshes in (a)
and (b). (d) and (e) Simpli�ed mesh for arbitrary single-qud it preparation and measurement. Yellow lines represent pha se shifters,
and black lines represent the path of photons or optical wave guides [ 66]. (f) A general schematic diagram of the generation and
manipulation of two-photon multidimensional entangled st ates [32]. (g) The microscopic image of the integrated photonic chip can
generate, control, and analyze programmable up to 15-dimen sional two-photon entangled states.

where T(�; � ) is su�cient to build arbitrary SU(2) unitary transformation of qubits [ 39]. Moreover, a
network of MZIs and phase shifters allows the realization of arbitrary single-qudit gates. Reck et al. [64]
�rst proposed a triangular mesh of 2 � 2 beamsplitters and phase shifters to implement any unitary
operations, as shown in Figure2(a). Then it was improved by Clements et al. [65] with a squared mesh of
beamsplitters and phase shifters, as shown in Figure2(b). Both meshes needd2 � d 50:50 beamsplitters,
and d2 � 1 phase shifters in total.

Arbitrary single-qudit state preparation and projective measurement can be realized using the unitary
operation as shown in Figures2(a) and (b). A single-qudit state preparation P and measurementM
with dimension d can be expressed as

P =

2

6
6
6
6
6
4

p0 � � � � �

p1 � � � � �
...

...
...

pd� 1 � � � � �

3

7
7
7
7
7
5

; M =

2

6
6
6
6
6
4

m0 m1 � � � md� 1

� � � � � �
...

...
...

� � � � � �

3

7
7
7
7
7
5

: (17)

One notices that only one column in the preparation operatorP and only one row in the measurement
projector M are needed. They do not matter with the � elements, which implies a simpli�cation of their
circuits, as shown in Figures2(d) and (e) [66]. A binary tree mesh of d � 1 MZIs allows the control of
amplitudes, and an array of d � 1 phase shifters allows the control of phases, forming the single-qudit
preparation P. Totally d� 1 MZIs and d� 1 additional phase shifters are required. The reversed structure
forms the single-qudit projector M . However, such a projector can only return the measurement outcomes
on one basis each time. Using the full unitary, one can get thed measurement outcomes at a time.

3.2 Two-qudit and multi-qudit gates

Although arbitrary single-qudit operations can be constructed, the realization of two-qudit operations is
still challenging. The high-dimensional entangled states can be generated through a structure of entangled
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(a)

(b)

(d) (e)

(f) (h)(g)

(c)

(i)

Figure 3 (Color online) Multi-qudit entangling gates. (a) A two-qub it controlled- Z gate, consisting of 3 recon�gurable MZIs
with � 1 = � 2 = � 3 = arccos(1/3) [ 68]. (b) A scheme of multi-qudit arbitrary controlled-unitar y gate, using the scheme of
entanglement-based \space expansion-local operation-co herent compression" [ 66]. O i;j ( i = 1 ; : : : ; n , j = 1 ; : : : ; d ) are arbitrary
d-dimensional unitary operation. P i are arbitrary single-qudit state preparation. M i are arbitrary single-qudit state projections.
(c) The schematic diagram of arbitrary two-ququart control led-unitary implemented on a silicon-photonic chip. Inser ts show the
�delity of the 5 single ququart gates in addition to the resis tance and modulation visibility distribution of the thermo -optic phase
modulators. (d) The truth table of C4 X 4 gate, measured in two complementary sets of linearly correl ated basis. (e) Measured
process matrix of C4 X 4 by complete quantum process tomography. The direct product of Pauli matrices forms the basis. (f) A
scheme of realizing qudit-based controlled-unitary by enc oding qudits in time-bin and frequency-bin degrees of freed om (DoFs) of
photons [ 27]. Phase modulator and pulse shaper are used to implement the entangling gate. (g) and (h) The measured truth table
of the two generalized qudits-based controlled- X gates. (i) Generation of multi-qudit cluster states, by enc oding states in time-bin
and frequency-bin DoFs of photons that are generated in an in tegrated microring resonator [ 26].

photon-pair sources as shown in Figure2(f). It yields a multidimensional entangled state of the form:

j	 i d =
n � 1X

k=0

ck jki r jki b ; (18)

where corner marksr and b denote the red (signal) and blue (idler) photons in Figure2(f) and ck can
be controlled by the intensity of the purple (pump) light. This is equiva lent to the interaction between
two qudits and an experimental demonstration has been realized onthe silicon-photonic chip shown in
Figure 2(g) with dimensions up to 15 [32]. However, the structure that can be used for programmable
qudit-based quantum circuits has not yet been demonstrated.

For photonic qubits, the Knill-Laamme-Milburn (KLM) scheme allows t he post-selection of the CNOT
gate [67], as shown in Figure3(a) [68]. Similar con�gurations for CdX d with additional ancillary photons
have been proposed for qudits [69]. Still, the generalization of the KLM scheme in higher dimensions
and how to reduce the number of ancillary photons and increase thesuccess probability of the gates
remain an open question. Meanwhile, the generalization of high-dimensional entangled Greenberger-
Horne-Zeilinger (GHZ) states and cluster states has been made in frequency-bins and time-bins [26,27],
which show the advantages of qudits with increased capacity and noise robustness, but realizing arbitrary
controlled-unitary operations for qudit states that can be reprogrammable, is challenging.

Recently, by transforming entanglement to entangling operation, and using the approach of \space
expansion-local operation-coherent compression", it provides the solution of realizing arbitrary controlled-
unitary operations for qudit [ 66]. It makes use of the entangled high-dimensional GHZ states (Fig-
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ure 3(b)), which can be expressed as

jGHZi n +1 ;d =
1

p
d

d� 1X

i =0

jii � � � i| {z }
n +1

i : (19)

For simplicity, we here discuss the case ofn = 1. For n > 1, the scheme works similarly. As shown
in Figure 3(b), the Hilbert space to encode the target qudit is �rstly expanded to d using the qudit
generator P and the input state j i is encoded in this process throughP ji i = ji;  i , returning a state
of 1p

d

P d� 1
i =0 ji i j i;  i . In the local operation process, each input state is followed by a local arbitrary

single-qudit operator Oi acting on j i , yielding 1p
d

P d� 1
i =0 ji i Oi ji;  i . Finally, the superposition between

the statesOi ji;  i needs to be ensured in the coherent compression status. By performing Hadarmard Hd

on all the qudit states ji i in Oi ji;  i , the output state of the system becomes 1p
d

P d� 1
i =0 ji i Hd 
 Oi ji;  i .

After post-selection projection of the target state Hd ji i at j0i we get the �nal state:

1
p

d

d� 1X

i =0

ji i j 0i h0j Hd 
 Oi ji;  i =
1
d

d� 1X

i =0

ji i Oi j i ; (20)

which is the controlled-unitary operations in the d dimension, i.e.,Cd[O0; O1; : : : ; Od� 1]. When scaling to
n > 1, it requires the generation of multi-photon entanglement in high dimensions [70,71], and muit-qudit
controlled-unitary operations can be obtained as shown in Figure3(b).

A programmable high-dimensional quantum processor based on theabove scheme has been imple-
mented on a silicon-photonic chip [66]. Arbitrary 4-dimensional controlled-unitary operation is realized
using \space expansion-local operation-coherent compression"as shown in Figure3(c). The photonic
quantum processor implements the high-dimensionalC4X 4 (see results in Figure3(d)), C4Z4, and C4H4

gates. The process �delities of all gates are characterized using the two complementary sets of linear cor-
related basis truth table measurements [62]. The complete process matrix of theC4X 4 gate is also shown
in Figure 3(e), which is measured by quantum process tomography through 256 quantum state tomogra-
phies. The success probability of this qudit-based controlled operation (Figure 3(b)) is 1=d, independent
of the number of qudits. It is worth noting that the photon count r ate observed in high-dimensional
quantum states is six orders of magnitude higher than that of two-dimensional counterparts of the same
size in Hilbert space [72].

Alternatively, one can utilize multiple DoFs of a single photon to encodequdits and achieve entan-
gling operations between these states. By encoding quantum information of a single photon in the
two DoFs of frequency-bin and time-bin, quantum operations between these two qudit states are re-
alized (Figure 3(f)) [ 27]. The 3-dimensional Muthukrishan-Stroud gate C3[I 6; X 3], 3-dimensional and
16-dimensionalC3X 3,C16X 16 gates are demonstrated by this scheme. The truth tables of theC3[I 6; X 3]
and C3X 3 gates are shown in Figures3(g) and (h). Moreover, the concept of cluster state quantum
computation can also be extended to high-dimensional systems [18,73]. By using the time and frequency
DoFs of single-photons generated in an integrated microring resonator, as shown in Figure3(i), Reimer
et al. [26] realized the cluster state of 4 qutrits and demonstrated the useof a high-dimensional cluster
state for quantum information processing.

4 Qudits-assisted quantum information processing

There are theoretical and experimental protocols for high-dimensional quantum information processing
described in Sections 2 and 3. In this section, we introduce how to improve the abilities of quantum
information processing with the assistance of high-dimensional quantum states.

We will cover some representative studies, including but not limited to integrated quantum photonics.
These studies show us that high-dimensional quantum systems allowquantum information to be encoded
more freely, simplifying the quantum computing process. A certain number of photons can encode more
quantum information. We can also see that adding auxiliary qudit to a quantum computing system can
achieve an LCU.
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Figure 4 (Color online) Simplifying quantum logics with the assista nce of qudits and implementing the LCU in photonic systems.
(a) Quantum circuit of the To�oli gate, that is constructed b y single-qubit and two-qubit gates. The circuit can be simpl i�ed by
qutrit [ 74]. (b) and (c) Experimental setups for the photon sources and entangling gates. (d) A simpli�ed circuit for implementing
the To�oli gate. PBS1 and PBS2 swap j0i and j2i . Detection of a photon at D1 heralds a successful implementa tion, and the
circuit implements a To�oli gate when R = I . (e) Experimental setups for realizing the two-qubit LCU of adding control to
arbitrary 2-dimensional unitary operations [ 75]. The unitary operations in the �gure are set to A 1 = jH i 1r hH j ; A 2 = I; B 1 =
jH i 1b hH j ; B 2 = U . (f) The generalized LCU circuits of the experiment. (g) The quantum circuit of quantum Fredkin gate.
(h) Conceptual diagram of the physical implementation of a q uantum Fredkin gate [ 76].

4.1 Simplifying quantum logics for the KLM computing model

The combination of one-qubit and two-qubit gates allows the circuit model of universal quantum com-
puting, however how to cascade these quantum logical gates e�ciently remains challenging in photonic
systems. It can simplify quantum logics by introducing qudits. For example, the To�oli gate can be
simpli�ed by inducing qudits, as shown in Figure 4(a). The To�oli gate typically requires 6 CNOT gates.
With qudits, the number of CNOT gates, however, can be reduced to three [74].

The quantum circuit and experimental setup are shown in Figures4(b){(d). The two conditional gates
are the CNOT and Controlled-Z (CZ) gates. The construction of the To�oli gate using qutrit needs
three two-qubit gates. However, the last two-qubit gate is replaced by a non-deterministic gate in this
experiment. Namely, the photon detection at D1 heralds a successful implementation of the last two-qubit
gate. The two polarization beam splitters (PBSs) in Figure 4(d) swap the state in j0i and j2i , and all the
other gates only a�ect the state in the subspace spanned byj0i and j1i . Before entering the PBS1, the
Hilbert space of the input photon is spanned byjH i and jV i , where H and V represent horizontal and
vertical polarization. The PBS1 then moves the information in jH i into another spatial mode. After the
PBS1, the basis of Hilbert space isjH; t i ; jV; ti ; jH; bi ; jV; bi , forming a four-level system, yet only three
of them are used to carry information. By doing this, a qutrit is built u tilizing di�erent polarization and
spatial modes of a photon.

4.2 Implementing the LCU quantum computing model

The LCU circuits can be realized with pre-entanglement in the photonic systems [75,76]. Zhou et al. [75]
demonstrated an entanglement-based version in a photonic system, realizing a range of di�erent two-qubit
gates with high �delities by LCU.

The quantum operation starts from the 2-qubit entangled state generated by the type-I spontaneous
parametric-down conversion (SPDC) process: (1=

p
2)(jH1r H2r i + jH1bH2bi ). After expanding the photons

from the single polarization state to another superposition state (which can be polarization or spatial
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modes) we get
1

p
2

(j� i 1r j	 i 2r + j� i 1b j	 i 2b); (21)

where j� i and j	 i can be arbitrary single-qubit states. The unitary operations in Figure 4(e) are set to
A = A1 
 A2 = jH i 1r hH j 
 I and B = B 1 
 B 2 = jH i 1b hH j 
 U, resulting in the output state:

� jH i 1r j	 i 2r + � jH i 1b U j	 i 2b : (22)

Finally, the red and blue modes are mixed on the beamsplitters to remove the path information with a
success probability of 1/2 (two photons exit at 1 and 1 or 10 and 20) and get

1
p

2
(� jH i j 	 i + � jH i U j	 i ); (23)

which results the C2U2 gate with the control qubit �p
� 2 + � 2

j0i + �p
� 2 + � 2

j1i and target qubit j	 i . In a

more general form as shown in Figure4(f), we can achieve the quantum state:

1
p

2
(A j�	 i 1r; 2r + B j�	 i 1b;2b) BS�!

1
2

(A + B ) j�	 i ; (24)

which is a linear combination A + B of unitary operations A and B . Moreover, if the two photons exit
at 1 and 20 or 10 and 2. Another combination A � B is achieved.

In the work by Patel et al. [ 76], a quantum Fredkin gate (Figure 4(g)) is built following the above
scheme. Firstly, two SPDC photon sources generate polarization spatial entangled Bell state:

j	 +
1 i =

�
1=

p
2
�

(jH i 1B jV i 2B + jV i 1R jH i 2R ) ; (25)

j	 +
2 i =

�
1=

p
2
�

(jH i 1Y jV i 2Y + jV i 1G jH i 2G ) : (26)

j	 +
1 i and j	 +

2 i correspond to red-blue lines and yellow-green lines in Figure4(h), respectively. Secondly,
photons in paths 2R, 2B, 1G, and 1Y are rearranged by PBS (not shown in Figure 4(h)). Combining
this with postselection of fourfold coincidence events (detector C; T1; T2 and Trigger in Figure 4(h)), a
4-photon entangle state is generated:

(j11i B j11i G j00i R j00i Y + j00i B j00i G j11i R j11i Y ) =
p

2; (27)

where j11i X represents a photon occupying mode 1X and another photon occupying 2X and X can be
B, R, G, or Y. Then one can encode the qubit information in the polarization of photons in each path
mode and generate arbitrary separable 3-qubit statej� i j  i j � i as the input quantum state in Figure 4(g).
Since we only encode the information in polarization, photons in the same path mode (1R1B, 2R2B, and
1G1Y) should have the same polarization. Thus the real 4-photon input quantum state is

�
j� i C

1B j i T1
2B j� i T2

1G jH i Tr
2G + j� i C

1R j i T1
2R j� i T2

1Y jV i Tr
2Y

�
=
p

2: (28)

The superscript of each photon state represents its corresponding qubit: control qubit C, target qubit
T1; T2 shown in Figure 4(g) are encoded in 1R1B, 2R2B, and 1G1Y, respectively. Trigger qubit Tr does
not encode qubit information, but will be used to trigger the fourfold coincidence event.

In the quantum gate part, an SWAP operation is implemented between 2B and 1G via rearrangement
of the path. Then, the path information is erased by nonpolarizing beam splitter (NPBS) before de-
tector T 1; T2, and Trigger, while PBS before detector C converts the path information into polarization
information, thus realizing a control gate. If we set j� i = � jH i + � jV i , the quantum state will become

� jHi C j i T1 j' i T2 + � jVi C j' i T1 j i T2 ; (29)

which is the expected output state of quantum Fredkin gate with input state ( � jH i C + � jV i C ) j i T 1 j� i T 2 .
Here we have discussed the realization of LCU using photonic qubits.Now we will describe its imple-

mentation in integrated quantum photonics with qubits and qudits.
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A silicon-photonic quantum processor, as shown in Figure5(a), allows the implementation of a two-
qubit LCU as

(j0i Û j i + j1i V̂ j i )=
p

2; (30)

where U and V are two 2-dimensional unitary operations. It makes use of the \space expansion-local
operation-coherent compression" on the spatial modes to realizethe quantum circuit as shown in Fig-
ure 5(c) [77]. The LCU-based quantum processor has enabled the experimental demonstration of quantum
Hamiltonian learning (QHL) [ 77]. The QHL has been proposed for the quantum characterization, valida-
tion, and veri�cation (QCVV) of quantum devices and systems [78]. The validation of calculated results
of complicated quantum systems remains intractable since it is exponentially hard for classical computers.
Utilizing quantum computers provides an e�cient solution for QCVV. T wo main algorithms of quantum
likelihood estimation and its interactive version are performed on theLCU quantum simulator. To test
the QHL, the quantum simulator was used to simulate an electron spinof a nitrogen-vacancy center in
a diamond with the Hamiltonian in the form of Ĥ (f ) = �̂ x f=2. The Rabi parameter f can be simulated
and learned through the Bayesian inference between the quantumsimulator and the spin system, see
Figure 4(b).

Moreover, the LCU circuit together with the Cartan (also known as the KAK) decomposition [79] allows
the implementation of arbitrary two-qubit processing [80], that only requires single-qubit operation and
pre-entanglement. The KAK decomposition can decompose arbitrary two-qubit gate U 2 SU(4) into the
LCU of single-qubit operations:

U =
3X

i =0

� i P1� i Q1 
 P2� i Q2 =
3X

i =0

� i A i 
 B i ; (31)

where P and Q are single-qubit gates, � i are identity and Pauli gates in f I 2; X 2; Y2; Z2g. The LCU
circuit shown in Figure 5(d) has an intrinsic success probability of 1/64. Figure 5(e) also shows the
schematic of the photonic chip implementing the space expansion-local operation-coherent compression
on two ququarts, which can be used to implement the KAK decomposition. An array of four spontaneous
four-wave mixing (SFWM) photon-pair sources generates a pair ofsignal and idler photons in two-ququart
state as � 0 j1a i j 1ei + � 1 j1bi j 1f i + � 2 j1ci j 1g i + � 3 j1d i j 1h i . Each photon experiences the initial qubit
state preparation into � 0 j1a ; � 1i j 1e; � 2 i + � 1 j1b; � 1 i j 1f ; � 2 i + � 2 j1c; � 1 i j 1g; � 2 i + � 3 j1d; � 1i j 1h ; � 2 i and
quantum evolution Pi � j Qi where i represents signal or idler andj represents the path, resulting in the
state of � 0A0 
 B0 j1a ; � 1 i j 1e; � 2 i + � 1A1 
 B1 j1b; � 1 i j 1f ; � 2i + � 2A2 
 B2 j1c; � 1i j 1g; � 2i + � 3A3 

B3 j1d; � 1 i j 1h ; � 2i . Then, signal and idler photons are projected onto the basis (j1a i + j1bi + j1ci + j1d i )=2
and (j1ei + j1f i + j1g i + j1h i )=2, respectively, and as a result, we obtain the two-qubit operationof
P 3

i =0 � i A i 
 B i j� 1 i j � 2i .

4.3 Implementing the cluster-state quantum computing mode l

In the measurement-based quantum computation model [73], di�erent types of graph states correspond to
the implementation of di�erent computational tasks. Measurement-based quantum computation (MBQC)
with quantum error correction (QEC) can be realized by replacing physical qubits with logical qubits
generated by stabilizer code. These require a highly entangled graph state. An eight-qubit graph state
is generated on a silicon-photonic chip with two pairs of entangled qudits [81]. The scheme of this graph
state chip is shown in Figure5(f). The key point here is that each qudit is equivalent to 2 qubits, between
which arbitrary two-qubits entangling operations can be implemented. The entangling between qudits is
realized by fusing photons with a probabilistic entangling gate. It thus forms an eight-qubit graph state.
The MBQC has been implemented on the photonic chip, which can create the Pauli gates by a sequence
of measurements and o�-line feed-forwards. The QEC scheme hasbeen implemented on the photonic
chip using graph state and repetition codes. A graph state with more physical qubits is needed, forming
a new graph state. The quantum teleportation task is implemented to demonstrate its performance, and
the ancillary physical qubit is replaced by a repetition code logical qubit (Figure 5(g)). When some of
the physical qubits in repetition code are a�ected by phase error,the �delity of quantum teleportation
is shown in Figures5(g) and (h). As the number of physical qubits in the repetition code increases, the
�delity also becomes higher.
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(g) (h)
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Figure 5 (Color online) Implementing the LCU and measurement-based quantum computing models with the assistance of qudits.
(a) Schematic of a two-qubit LCU silicon-photonic chip that allows Hamiltonian learning and QCVV of quantum computatio n [77].
(b) Bayesian interface between an unknown quantum system (a n electron spin in NV center in diamond) and a quantum simulat or
(a silicon-photonic chip). (c) The LCU circuit implemented on the photonic chip. (d) An LCU circuit for implementing the
KAK decomposition of two-qubit gates. The �rst row of ULC represents � 0 ; � 1 ; � 2 ; � 3 . (e) A two-qubit silicon-photonic chip
using LCU and KAK [ 80]. Four SFWM entangled photon pair sources generate the high -dimensional Bell state � 0 j 1a i j 1e i +
� 1 j 1b i j 1f i + � 2 j 1c i j 1g i + � 3 j 1d i j 1h i . The entanglement is transformed into the LCU. (f) An eight- qubit graph-state photonic
quantum computing chip [ 81]. An array of SFWM photon-sources generates two pairs of quq uart Bell states, i.e., A-B and C-D.
Entangling gates are performed between A-D and B-C, resulti ng in a four-party four-dimensional state. (g) Measured �de lities of
quantum teleportation, when the middle qubit is a logical qu bit generated by repetition code using 1( jB 3 i ), 3( jB 5 i ) and 5( jB 7 i )
qubits. Phase errors are added to some of the physical qubits in the repetition code in (g), and added to all physical qubit s in the
repetition code in (h).

5 Qudits-based quantum computation

The studies using high-dimensional systems to assist quantum information processing have demonstrated
the capabilities of qudit systems. Corresponding to the current attempts using qudits to study new
quantum algorithms, the generalization of existing quantum algorithms from two-dimensional to high-
dimensional can also lead to new applications.

This section introduces the high-dimensional quantum algorithms and their experimental implementa-
tions based on high-dimensional quantum photonic devices and systems. These algorithms can demon-
strate the multidimensional nature of qudit, allowing more informatio n to be input and extracted during
the algorithm's operation, resulting in shallower circuit depths, higher computational accuracy, and bet-
ter error resistance. While replacing quantum circuits with qudit, we can also extend the problem solved
by the algorithm itself to high-dimensional situations, leading to a broader range of applications.

5.1 Generalized d-ary Deutsch-Jozsa and Bernstein-Vazirani algorithms

The generalizedd-ary Deutsch-Jozsa algorithm can determine a multi-valued function f : f 0; 1; : : : ; d �
1gn ! f 0; 1; : : : ; d � 1g is constant or balance, by using only one single query of the quantumoracle [82].
Classically, it however requiresdn � 1 + 1 queries to �nd out. The quantum circuit for the d-ary Deutsch-
Jozsa algorithm is shown in Figure6(a). For the constant function, 8x 2 f 0; 1; : : : ; d � 1g, f (x) = C; C 2
f 0; 1; : : : ; d � 1g. This algorithm makes use ofn qudits as the x register to encode the input variablex
of the function, another qudit as the y register to be controlled upon the value of the functionf (x). The
initial state was j	 0i = j0i 
 n j1i . Starting from the n F̂d gates, the state of the registers becomesj	 1i =
(1=

p
dn +1 )

P dn � 1
x =0 jxi

P d� 1
y=0 ! y jyi . After the implementation of the oracle as Uf jxi j yi = jxi j y � d f (x)i ,

the state evolves into

j	 2i =
1

p
dn +1

dn � 1X

x =0

jxi
d� 1X

y=0

! y jy � d f (x)i =
1

p
dn +1

dn � 1X

x =0

! � f (x ) jxi
d� 1X

y=0

! y jyi : (32)
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 6 (Color online) The d-ary Deutsch-Jozsa and Bernstein-Vazirani algorithms. (a ) Quantum circuit. The x register consists
of n qudits, and the y register consists of 1 qudit. Operation Ûf makes use of the x register as the control, and the y register as
the target to perform the controlled oracle operation Ûf j x i j y i = jx i j y � d f (x ) i . By projecting on the quantum state j0i , it is
possible to distinguish whether the value of the function is constant (e) or balance (b){(d), (f){(h). (b){(h) Probabil ity distribution
measured for 7 cases with n = 1 for 4-dimensional function f (x ). Only the constant function case leads to a deterministic r esult
at j0i , whereas no other cases can be measured at j0i . (c), (e), (g) and (i) The measured outputs for four-dimensi onal Bernstein-
Vazirani algorithm. Only one measurement is needed to disti nguish these 4 cases. The de�nition of �delities in the �gure s is
(
P p

pi qi )2 where pi and qi are theoretical and measured distributions, respectively .

One notices that although the target qudit state (1=
p

d)
P d� 1

y=0 ! y jyi after the Uf operation has undergone
the state transformation, the overall quantum state after transformation is added with only the phase of
! � f (x ) than before.

After the oracle implementation, we perform F̂ 
 n
d on the x register, and then we get the state:

j	 3i =
1

p
d2n +1

dn � 1X

x =0

! � f (x )
dn � 1X

z=0

! z�x jzi
d� 1X

y=0

! y jyi : (33)

At this stage, we measure thex register on a computational basis. It can be seen from (33) that the
coe�cient of the state jzi is Cj zi = d� n P dn � 1

x =0 ! z�x � f (x ) : If f (x) is constant Cj 0i = 1, and we will get
the result j0i . If f (x) is balance, Cj 0i = 0, we will not get the measurement result at j0i . These imply
that one measurement returns su�cient information to distinguish whether the function is constant or
balanced from dn !

dn � 1 !d d + 1 cases.
The d-ary Bernstein-Vazirani algorithm, similar to the Deutsch-Jozsa algorithm, can also be general-

ized [83] and implemented using quantum circuits and input states shown in Figure 6(a). Its oracle is
de�ned as U0

f jx0; x1; : : : ; xn � 1 i j yi = jxi j y � d f (x0; x1; : : : ; xn � 1)i , where f (x0; x1; : : : ; xn � 1) is a multi-
value function with n inputs x0; x1; : : : ; xn � 1 ranging from 0 to d � 1. Similar to the previous discussion,
we derive the output states of

j	 0
2i =

1
p

dn +1

d� 1X

x 0 =0

d� 1X

x 1 =0

� � �
d� 1X

x n � 1 =0

! � f (x 0 ;x 1 ;:::;x n � 1 ) jx0; x1; : : : ; xn � 1 i
d� 1X

y=0

! y jyi ; (34)

j	 0
3i =

1
p

d2n +1

d� 1X

x 0 ;z0 =0

d� 1X

x 1 ;z1 =0

� � �
d� 1X

x n � 1 ;zn � 1 =0

!
P n � 1

i =0 z i x i � f (x 0 ;x 1 ;:::;x n � 1 ) jz0; z1; : : : ; zn � 1i
d� 1X

y=0

! y jyi :

(35)
We also obtain the coe�cient of the state jz0; z1; : : : ; zn � 1i :

Cj z0 ;z1 ;:::;z n � 1 i =
1
dn

d� 1X

x 0 =0

d� 1X

x 1 =0

� � �
d� 1X

x n � 1 =0

! z0 x 0 + z1 x 1 + ��� + zn � 1 x n � 1 � f (x 0 ;x 1 ;:::;x n � 1 ) : (36)

Letting the coe�cient jCj z0 ;z1 ;:::;z n � 1 i j = 1, we have f (x0; x1; : : : ; xn � 1) =
P n � 1

i =0 zi x i � d A, where A 2
f 0; 1; : : : ; d � 1g; zi 2 f 0; 1; : : : ; d � 1g; i = 0 ; 1; : : : ; n � 1. It implies that if f (x) is of that form, which is
called the a�ne function, we have the measurement result in jz0; z1; : : : ; zn � 1i for sure and thus implies
we can get the a�ne coe�cients z0; z1; : : : ; zn � 1 through one step of measurement (A is lost as a global
phase).
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Figure 7 Quantum circuits of phase estimation and order �nding algor ithms using qubits [ 58]. (a), (b) The quantum circuit
of the quantum phase estimation algorithm. ju i is the eigenstate of U . They can be divided into the �rst and second registers.
The �rst register consists of t qubits, and the second register is used to encode the eigenst ate ju i . (c) The quantum circuit of the
quantum order �nding algorithm. By selecting a speci�c U introduced in the main text and changing the input eigenstat e ju i to
quantum state j1i , the quantum phase estimation circuit is converted into the quantum order �nding circuit.

The experimental implementation of the generalizedd-ary Deutsch-Jozsa and Bernstein-Vazirani algo-
rithms for the n = 1 case has been realized on a programmable qudit-based quantum processor [66]. The
experimentally obtained probability distributions are shown in Figures 6(b){(h), corresponding to the
constant functions (Figure 6(e)) and balance functions (Figures6(b){(d) and (f){(h)). The Bernstein-
Vazirani algorithm in 4 dimensions also has been implemented in the experiment, and the four probability
distributions in Figures 6(c), (e), (g) and (i) correspond to the 4 cases of a�ne functions, respectively. It
can be seen from the �gures that only one measurement is requiredto derive the expression of the a�ne
function.

5.2 Generalized d-ary quantum phase estimation and order �nding algorithms

The quantum phase estimation and order �nding algorithms are famous for their applications in molecular
simulations [84] and solving prime factorization problems [85], respectively. These algorithms can also
be implemented using qudits and outperform the qubit cases. We �rst introduce the algorithms in the
conventional qubit case, then extend it to the qudit case, and then discuss experimental implementations
of the algorithms.

Figures 7(a) and (b) show the original quantum phase estimation algorithm with qubits. It makes
use of t qubits as the �rst register to get the estimated phase information, that can be written as
U jui = e2� i ' jui and ' = 0 :' 1 ' 2 � � � ' t in the binary representation [58]. The second register is used
to encode states to be estimated. As shown in Figure7(b), in the �rst stage of the algorithm, the H 
 t

gates in the �rst register prepare an input state as (1=
p

2t )( j0i + j1i )
 t jui . The C2[I 2; U2j
] operation is

performed between thej th qubit in �rst register and the second register ( j = 0 ; 1; : : : ; t � 1). Then the
states in the �rst register can be written as

1
2t= 2

�
j0i + e2� i(2 0 ' ) j1i

� �
j0i + e2� i(2 1 ' ) j1i

�
� � �

�
j0i + e2� i(2 t � 1 ' ) j1i

�
=

1
2t= 2

2t � 1X

k=0

e2� i ' k jki : (37)

Performing the inverse QFT on this state returns the state of 2� t= 2 P 2t � 1
k=0 e2� i ' k jki F T y

���! j ' i . The overall
phase estimation procedure is shown in Figure7(a).

The quantum order �nding algorithm can be generated from the quantum phase estimation algorithm.
Given positive integersx and N , x < N , with no common factors, the order ofx modulo N is de�ned to
be the least positive integerr satisfying xr = 1 mod N . By selecting the unitary U in C2[I 2; U2j

] as the
operation U(x) jyi = jxy mod N i and jui = j1i , we get the circuit in Figure 7(c). Here its eigenstates
jus i = 1p

r

P r � 1
k=0 exp[� 2� isk

r ] jxk mod N i with eigenvalues exp[2� is
r ] satisfying 1p

r

P r � 1
s=0 jus i = j1i , so that

each time it probabilistically outputs a result s
r (s = 0 ; 1; : : : ; r � 1) in the set f 0

r ; 1
r ; : : : ; r � 1

r g. The classical
continued fraction algorithm then returns the correct factor r when s and r are coprime. At this point,
if r is even andxr= 2 6= � 1(modN ), we can calculate two greatest common divisors gcd(xr= 2 � 1; N ) and
gcd(xr= 2 + 1 ; N ). The algorithm then becomes Shor's prime factorization algorithm. We can determine
either of them is a non-trivial factor of N .
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(a)

c(c)(b)

(d)

Figure 8 (Color online) The d-ary quantum phase estimation and order �nding algorithms. (a) Quantum circuit. The role of P
is to transform the quantum state in the y register to the eigenstate of O. The Ẑ d gate feeds back a corresponding phase shift on
the quantum state of the x -register based on previous measurements. (b) Eigenvalue p hase measurements for the four eigenstates
of the Ẑ 4 gate with ququarts. (c) 12-bit precision measurement resul ts for the phase of an eigenvalue of a random matrix Ûrandom ,
measured with ququarts. (d) Use the high-dimensional quant um order �nding algorithm to calculate the function of order 4. The
�gure shows the four output results of the algorithm on the ei genvalues f 0

64 = 0 ; 16
64 = 1

4 ; 32
64 = 1

2 ; 48
64 = 3

4 g.

Kitaev's scalable implementation of these two algorithms in binary has been reported in several leading
quantum platforms [86{ 89]. Their generation to d-ary is shown in Figure 8(a) [66]. In the x register,
the Fd takes the input qudit state into 1p

d

P d� 1
x =0 jxi . In the y register, the P operation produces the

required eigenstatej� i input satisfying O j� i = exp[2� i� ] j� i , where � can be written in d-ary as � =P m
i =1

� i
di = 0 :� 1� 2 � � � � m 0� � � and � s 2 f 0; 1; : : : ; d � 1g denotes thes-dit phase value. The eigenphase is

thus approximated with an accuracy of m-dit. The algorithm is iterated m times to obtain the phase� .
Kitaev's algorithm computes each dit backwardly from the least signi�cant dit from s = m to 1. In the

�rst iteration, that is, s = m, we performed thed-ary CdÔ
dm � 1

, then obtained the state as

1
p

d

d� 1X

j =0

ei j 2� �d m � 1

jj i j � i =
1

p
d

d� 1X

j =0

e
i j 2 � � m

d jj i j � i =
1

p
d

d� 1X

j =0

ei j 2� 0:� m jj i j � i : (38)

Applying an inverse F y gate on the x-register qudit, it returns a compact output state as

1
d

d� 1X

n =0

d� 1X

j =0

e
i j 2 � ( � m � n )

d jni = j� m i : (39)

Thus, the m-th dit of the eigenphase � m can be extracted deterministically with a d-ary accuracy,
� m 2 f 0; 1; : : : ; d � 1g, by measuring the ancillary x-register qudit in the computational basis. In

the following iteration ( s = m � 1; m � 2; : : : ; 1), the state of the x-register qudit after the CdÔ
ds � 1

logic gate can be derived as 1p
d

P d� 1
j =0 ei j 2� (0 :� s � s +1 :::� m ) jj i . The Zd(! s) rotation (de�ned as Zd(� s) =

diag[1; ei2 � � s ; : : : ; ei2 � (d� 1) � s ]) with an angle of ! s =
P m � s

i =1
� � s + i

d1+ i = � 0:0� s+1 � s+2 : : : � m is implemented
in the x-register, which is determined by previous measurement outcomes. This process thus returns the
output x-register state of j� s i .

In this way, the d-ary phase estimation algorithm iteratively computes all m dits of the eigenphase
backwardly, where each dit is estimated with thed-ary accuracy thus resulting in a log2(d) improvement of
computational accuracy or log2(d) speedup of computational time with the same computational precision.
At the �rst measurement, since we measure the value of the last dit, there is no previous measurement
result to perform Zd correction for this dit. The measurement error is the largest at this point and
may a�ect subsequent measurements with iteration. Using qudit is an excellent way to alleviate this
problem: each iteration gets more information, which helps us distinguish between di�erent results, and
the cumulated error in each step is controlled within 1/d. Figure 8(c) shows the measurement distribution
at 12 times of ququarts iterations with the eigenvalue e2� i � (0 :200213101102) that is chosen randomly. In
Figure 8(b), it shows the measured eigenvalues that correspond to the four eigenvectorsfj 0i ; j1i ; j2i ; j3ig
of the phase gateẐ4.



Chi Y L , et al. Sci China Inf Sci August 2023 Vol. 66 180501:16

The d-ary Kitaev's order �nding algorithm is also logical with this generalizat ion. One can �nd that
the unitary operation U(x) jyi = jxy mod N i and initial state jui = j1i do not change under di�erent
dimensions except the way the information was encoded. The eigenstates jus i and the result set are also
the same. Furthermore, in d dimensions, we can getd outcomes for each measurement. Figure8(d)
shows the measurement distribution at 3 times of ququarts iterations (43 = 64 results). The �rst peak
represents the eigenstate with eigenvalue 0, followed by16

64 = 1
4 , 32

64 = 1
2 and 48

64 = 3
4 . The results 1/2 and

0 cannot get the correct order because they are reducible. Whenthe measurement results correspond to
1/4 and 3/4, the correct order r = 4 can be obtained.

6 Discussion and conclusion

This paper summarizes recent progress in realizing high-dimensionalquantum information processing
in photonic systems. The concept and algorithm of high-dimensionalquantum computing are briey
introduced. The realization of high-dimensional quantum information processing in an integrated quan-
tum photonic system is discussed. We discuss how to enhance the capability of quantum information
processing with the indirect use of qudit systems, and we also discuss how to improve the computational
accuracy and e�ciency with the direct use of qudit systems. The Deutsch-Jozsa, Bernstein-Vazirani,
quantum phase estimation, and order �nding algorithms in high dimensions and their realizations have
been discussed.

In terms of theoretical analysis and experimental veri�cation, it h as been found that a more remark-
able Hilbert space can be achieved using qudit. The quantum information can be encoded more freely,
with a higher photon count rate at the same computing power. By adding auxiliary qudit, quantum
circuits can be improved and simpli�ed, and LCU can be implemented, enabling quantum operations in
a broader sense. At the same time, extending traditional quantumalgorithms to higher dimensions can
obtain a more comprehensive range of algorithms and applications. Qudit allows more input, process-
ing, and output of information during the computation, further en abling shallower circuit depth, higher
computational accuracy, better fault tolerance, and more minorcumulative errors.

In terms of technology and architecture, one problem of photonichigh-dimensional quantum informa-
tion processing is the e�cient generation of multi-photon high-dimensional quantum states. Experiments
using photons' multiple DoFs have been realized, and whether they can be scaled up to multi-photon re-
mains a question. Advanced technologies in photon generation and detection are also under development
to obtain more photons and higher dimensions. Given that high-dimensional multi-photon entangled
states can be generated e�ectively, qudit-based quantum computing can be scaled up. More photons and
higher dimensions require us to master more complex integrated photonic quantum chips. The monolithic
or hybrid integration technologies for on-chip quantum state generation, manipulation, and detection pro-
vide the possibility of developing high-dimensional photonic quantum information processing.

Acknowledgements This work was supported by Innovation Program for Quantum Sc ience and Technology (Grant No. 2021-
ZD0301500), National Key R&D Program of China (Grant No. 201 9-YFA0308702), National Natural Science Foundation of Chi na
(Grant No. 61975001), Beijing Natural Science Foundation ( Grant No. Z190005), and Key R&D Program of Guangdong Provinc e
(Grant No. 2018-B030329001).

References

1 Giustina M, Versteegh M A M, Wengerowsky S, et al. Signi�can t-loophole-free test of Bell's theorem with entangled phot ons.
Phys Rev Lett , 2015, 115: 250401

2 Shalm L K, Meyer-Scott E, Christensen B G, et al. Strong loop hole-free test of local realism. Phys Rev Lett , 2015, 115:
250402

3 Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution. Nature , 2017, 549: 43{47
4 Chen Y A, Zhang Q, Chen T Y, et al. An integrated space-to-gro und quantum communication network over 4,600 kilometres.

Nature , 2021, 589: 214{219
5 Arute F, Arya K, Babbush R, et al. Quantum supremacy using a p rogrammable superconducting processor. Nature , 2019,

574: 505{510
6 Zhong H S, Deng Y H, Qin J, et al. Phase-programmable Gaussia n boson sampling using stimulated squeezed light. Phys

Rev Lett , 2021, 127: 180502
7 Erhard M, Krenn M, Zeilinger A. Advances in high-dimension al quantum entanglement. Nat Rev Phys , 2020, 2: 365{381
8 Cozzolino D, da Lio B, Bacco D, et al. High-dimensional quan tum communication: bene�ts, progress, and future challeng es.

Adv Quantum Tech , 2019, 2: 1900038
9 Babazadeh A, Erhard M, Wang F, et al. High-dimensional sing le-photon quantum gates: concepts and experiments. Phys

Rev Lett , 2017, 119: 180510
10 Hu X M, Zhang C, Liu B H, et al. Experimental high-dimension al quantum teleportation. Phys Rev Lett , 2020, 125: 230501
11 Collins D, Gisin N, Linden N, et al. Bell inequalities for a rbitrarily high-dimensional systems. Phys Rev Lett , 2002, 88:

040404



Chi Y L , et al. Sci China Inf Sci August 2023 Vol. 66 180501:17

12 V�ertesi T, Pironio S, Brunner N. Closing the detection lo ophole in Bell experiments using qudits. Phys Rev Lett , 2010, 104:
060401

13 Cerf N J, Bourennane M, Karlsson A, et al. Security of quant um key distribution using d-level systems. Phys Rev Lett , 2002,
88: 127902

14 Islam N T, Lim C C W, Cahall C, et al. Provably secure and high -rate quantum key distribution with time-bin qudits. Sci
Adv , 2017, 3: e170149

15 Campbell E T. Enhanced fault-tolerant quantum computing in d-level systems. Phys Rev Lett , 2014, 113: 230501
16 Bocharov A, Roetteler M, Svore K M. Factoring with qutrits : Shor's algorithm on ternary and metaplectic quantum archi tec-

tures. Phys Rev A , 2017, 96: 012306
17 Gokhale P, Baker J M, Duckering C, et al. Asymptotic improv ements to quantum circuits via qutrits. In: Proceedings of t he

46th International Symposium on Computer Architecture, 20 19. 554{566
18 Wang D S, Stephen D T, Raussendorf R. Qudit quantum computa tion on matrix product states with global symmetry. Phys

Rev A , 2017, 95: 032312
19 Luo M X, Wang X J. Universal quantum computation with qudit s. Sci China-Phys Mech Astron , 2014, 57: 1712{1717
20 Wang Y C, Hu Z X, Sanders B C, et al. Qudits and high-dimensio nal quantum computing. Front Phys , 2020, 8: 479
21 Zhou D L, Zeng B, Xu Z, et al. Quantum computation based on d- level cluster state. Phys Rev A , 2003, 68: 062303
22 Wei T C, A�eck I, Raussendorf R. A�eck-Kennedy-Lieb-Tasa ki state on a honeycomb lattice is a universal quantum compu-

tational resource. Phys Rev Lett , 2011, 106: 070501
23 Paesani S, Bulmer J F F, Jones A E, et al. Scheme for universa l high-dimensional quantum computation with linear optics .

Phys Rev Lett , 2021, 126: 230504
24 Zobov V E, Ermilov A S. Implementation of a quantum adiabat ic algorithm for factorization on two qudits. J Exp Theor

Phys , 2012, 114: 923{932
25 Amin M H S, Dickson N G, Smith P. Adiabatic quantum optimiza tion with qudits. Quantum Inf Process , 2013, 12: 1819{1829
26 Reimer C, Sciara S, Roztocki P, et al. High-dimensional on e-way quantum processing implemented on d-level cluster st ates.

Nat Phys , 2019, 15: 148{153
27 Imany P, Jaramillo-Villegas J A, Alshaykh M S, et al. High- dimensional optical quantum logic in large operational spa ces.

NPJ Quantum Inf , 2019, 5: 59
28 Ringbauer M, Meth M, Postler L, et al. A universal qudit qua ntum processor with trapped ions. Nat Phys , 2022, 18:

1053{1057
29 Cervera-Lierta A, Krenn M, Aspuru-Guzik A, et al. Experim ental high-dimensional Greenberger-Horne-Zeilinger ent anglement

with superconducting transmon qutrits. Phys Rev Appl , 2022, 17: 024062
30 Blok M S, Ramasesh V V, Schuster T, et al. Quantum informati on scrambling on a superconducting qutrit processor. Phys

Rev X , 2021, 11: 021010
31 Choi S, Choi J, Landig R, et al. Observation of discrete tim e-crystalline order in a disordered dipolar many-body syst em.

Nature , 2017, 543: 221{225
32 Wang J W, Paesani S, Ding Y H, et al. Multidimensional quant um entanglement with large-scale integrated optics. Science,

2018, 360: 285{291
33 Li L, Liu Z X, Ren X F, et al. Metalens-array-based high-dim ensional and multiphoton quantum source. Science, 2020, 368:

1487{1490
34 Kues M, Reimer C, Roztocki P, et al. On-chip generation of h igh-dimensional entangled quantum states and their cohere nt

control. Nature , 2017, 546: 622{626
35 Kues M, Reimer C, Lukens J M, et al. Quantum optical microco mbs. Nat Photon , 2019, 13: 170{179
36 Dada A C, Leach J, Buller G S, et al. Experimental high-dime nsional two-photon entanglement and violations of general ized

Bell inequalities. Nat Phys , 2011, 7: 677{680
37 Feng L T, Zhang M, Zhou Z Y, et al. On-chip coherent conversi on of photonic quantum entanglement between di�erent

degrees of freedom. Nat Commun , 2016, 7: 11985
38 Mohanty A, Zhang M, Dutt A, et al. Quantum interference bet ween transverse spatial waveguide modes. Nat Commun , 2017,

8: 14010
39 Wang J, Sciarrino F, Laing A, et al. Integrated photonic qu antum technologies. Nat Photon , 2019, 14: 273{284
40 Elshaari A W, Pernice W, Srinivasan K, et al. Hybrid integr ated quantum photonic circuits. Nat Photon , 2020, 14: 285{298
41 Pelucchi E, Fagas G, Aharonovich I, et al. The potential an d global outlook of integrated photonics for quantum techno logies.

Nat Rev Phys , 2022, 4: 194{208
42 Brylinski J L, Brylinski R. Universal quantum gates. In: M athematics of Quantum Computation. Boca Raton: Chapman

and Hall/CRC, 2002. 117{134
43 Patera J, Zassenhaus H. The Pauli matrices in n dimensions and �nest gradings of simple Lie algebras of type A n � 1 . J Math

Phys , 1988, 29: 665{673
44 Cereceda J L. Generalization of the Deutsch algorithm usi ng two qudits. 2004. ArXiv: quant-ph/0407253
45 Muthukrishnan A, Stroud C R J. Multivalued logic gates for quantum computation. Phys Rev A , 2000, 62: 052309
46 Di Y M, Wei H R. Synthesis of multivalued quantum logic circ uits by elementary gates. Phys Rev A , 2013, 87: 012325
47 Long G L. General quantum interference principle and dual ity computer. Commun Theor Phys , 2006, 45: 825{844
48 Wei S-J, Wang T, Ruan D, et al. Quantum computing. Sci Sin Inform , 2017, 47: 1277{1299
49 Childs A M, Wiebe N. Hamiltonian simulation using linear c ombinations of unitary operations. 2012. ArXiv: 1202.5822
50 Berry D W, Childs A M, Cleve R, et al. Simulating Hamiltonia n dynamics with a truncated Taylor series. Phys Rev Lett ,

2015, 114: 090502
51 Wei S J, Ruan D, Long G L. Duality quantum algorithm e�cient ly simulates open quantum systems. Sci Rep , 2016, 6: 30727
52 Wei S J, Long G L. Duality quantum computer and the e�cient q uantum simulations. Quantum Inf Process , 2016, 15:

1189{1212
53 Zheng C. Duality quantum simulation of a general parity-t ime-symmetric two-level system. EPL , 2018, 123: 40002
54 Qiang X G, Zhou X Q, Aungskunsiri K, et al. Quantum processi ng by remote quantum control. Quantum Sci Technol , 2017,

2: 045002
55 Wei S J, Zhou Z R, Ruan D, et al. Realization of the algorithm for system of linear equations in duality quantum computing .

In: Proceedings of IEEE 85th Vehicular Technology Conferen ce (VTC Spring), 2017. 1{4
56 Zheng C, Wei S J. Duality quantum simulation of the Yang-Ba xter equation. Int J Theor Phys , 2018, 57: 2203{2212
57 Marshman R J, Lund A P, Rohde P P, et al. Passive quantum erro r correction of linear optics networks through error



Chi Y L , et al. Sci China Inf Sci August 2023 Vol. 66 180501:18

averaging. Phys Rev A , 2018, 97: 022324
58 Nielsen M A, Chuang I. Quantum computation and quantum inf ormation. Am J Phys, 2002, 70: 558
59 Mohseni M, Rezakhani A T, Lidar D A. Quantum-process tomog raphy: resource analysis of di�erent strategies. Phys Rev A ,

2008, 77: 032322
60 Riofr��o C A, Gross D, Flammia S T, et al. Experimental quan tum compressed sensing for a seven-qubit system. Nat Commun ,

2017, 8: 15305
61 Bavaresco J, Valencia N H, Kl•ockl C, et al. Measurements i n two bases are su�cient for certifying high-dimensional en tan-

glement. Nat Phys , 2018, 14: 1032{1037
62 Hofmann H F. Complementary classical �delities as an e�ci ent criterion for the evaluation of experimentally realize d quantum

operations. Phys Rev Lett , 2005, 94: 160504
63 Adcock J C, Bao J M, Chi Y L, et al. Advances in silicon quantu m photonics. IEEE J Sel Top Quantum Electron , 2020, 27:

1{24
64 Reck M, Zeilinger A, Bernstein H J, et al. Experimental rea lization of any discrete unitary operator. Phys Rev Lett, 19 94,

73: 58
65 Clements W R, Humphreys P C, Metcalf B J, et al. Optimal desi gn for universal multiport interferometers. Optica , 2016, 3:

1460{1465
66 Chi Y L, Huang J S, Zhang Z C, et al. A programmable qudit-bas ed quantum processor. Nat Commun , 2022, 13: 1166
67 Knill E, Laamme R, Milburn G J. A scheme for e�cient quantu m computation with linear optics. Nature , 2001, 409: 46{52
68 Silverstone J W. Entangled light in silicon waveguides. D issertation for Ph.D. Degree. Bristol: University of Brist ol, 2015.

121{124
69 Gao X Q, Erhard M, Zeilinger A, et al. Computer-inspired co ncept for high-dimensional multipartite quantum gates. Phys

Rev Lett , 2020, 125: 050501
70 Malik M, Erhard M, Huber M, et al. Multi-photon entangleme nt in high dimensions. Nat Photon , 2016, 10: 248{252
71 Erhard M, Malik M, Krenn M, et al. Experimental Greenberge r-Horne-Zeilinger entanglement beyond qubits. Nat Photon ,

2018, 12: 759{764
72 Adcock J C, Vigliar C, Santagati R, et al. Programmable fou r-photon graph states on a silicon chip. Nat Commun , 2019, 10:

1{6
73 Raussendorf R, Browne D E, Briegel H J. Measurement-based quantum computation on cluster states. Phys Rev A , 2003, 68:

022312
74 Lanyon B P, Barbieri M, Almeida M P, et al. Simplifying quan tum logic using higher-dimensional Hilbert spaces. Nat Phys ,

2009, 5: 134{140
75 Zhou X Q, Ralph T C, Kalasuwan P, et al. Adding control to arb itrary unknown quantum operations. Nat Commun , 2011,

2: 413
76 Patel R B, Ho J, Ferreyrol F, et al. A quantum Fredkin gate. Sci Adv , 2016, 2: e1501531
77 Wang J W, Paesani S, Santagati R, et al. Experimental quant um Hamiltonian learning. Nat Phys , 2017, 13: 551{555
78 Wiebe N, Granade C, Ferrie C, et al. Hamiltonian learning a nd certi�cation using quantum resources. Phys Rev Lett , 2014,

112: 190501
79 Khaneja N, Glaser S J. Cartan decomposition of SU(2n) and c ontrol of spin systems. Chem Phys , 2001, 267: 11{23
80 Qiang X G, Zhou X Q, Wang J W, et al. Large-scale silicon quan tum photonics implementing arbitrary two-qubit processin g.

Nat Photon , 2018, 12: 534{539
81 Vigliar C, Paesani S, Ding Y H, et al. Error-protected qubi ts in a silicon photonic chip. Nat Phys , 2021, 17: 1137{1143
82 Fan Y. A generalization of the Deutsch-Jozsa algorithm to multi-valued quantum logic. In: Proceedings of the 37th Int erna-

tional Symposium on Multiple-Valued Logic (ISMVL'07), 200 7. 12
83 Bernstein E, Vazirani U. Quantum complexity theory. SIAM J Comput , 1997, 26: 1411{1473
84 Aspuru-Guzik A, Dutoi A D, Love P J, et al. Simulated quantu m computation of molecular energies. Science, 2005, 309:

1704{1707
85 Shor P W. Algorithms for quantum computation: discrete lo garithms and factoring. In: Proceedings of the 35th Annual

Symposium on Foundations of Computer Science, 1994. 124{13 4
86 Kitaev A Y. Quantum measurements and the Abelian stabiliz er problem. 2016. ArXiv: quant-ph/9511026
87 Gri�ths R B, Niu C S. Semiclassical Fourier transform for q uantum computation. Phys Rev Lett , 1996, 76: 3228{3231
88 Parker S, Plenio M B. E�cient factorization with a single p ure qubit and log N mixed qubits. Phys Rev Lett , 2000, 85:

3049{3052
89 Dob�s���cek M, Johansson G, Shumeiko V, et al. Arbitrary a ccuracy iterative quantum phase estimation algorithm usin g a single

ancillary qubit: a two-qubit benchmark. Phys Rev A , 2007, 76: 030306


	Introduction
	High-dimensional quantum states and gates
	Single-qudit gates
	Multi-qudit gates
	Quantum tomographies for qudit states and gates

	High-dimensional photonic quantum logics
	Single-qudit gates
	Two-qudit and multi-qudit gates

	Qudits-assisted quantum information processing
	Simplifying quantum logics for the KLM computing model
	Implementing the LCU quantum computing model
	Implementing the cluster-state quantum computing model

	Qudits-based quantum computation
	Generalized d-ary Deutsch-Jozsa and Bernstein-Vazirani algorithms
	Generalized d-ary quantum phase estimation and order finding algorithms


