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Dear editor,

In the past two decades, scholars have begun to use system

dynamical models and state motions to study the safety of

a system to realize the analysis, diagnosis, and control of

system safety. This safety is called state safety, which is

different but closely related to state stability. State safety

means a system ẋ = f(x) with a set C called safe. If for any

initial x(t0) ∈ C, the solution x(t) will stay in the set C all

time, indicating that state safety focuses on both the results

and the entire process. Under this definition, several barrier

functions (BFs) are proposed and have become the hot ones

for studying state safety in robotics and automation control,

e.g., [1–5], which belong to the integer-order system.

However, for fractional-order systems, the research field

of their safety analysis and control is still an “uncultivated

land”. In the past decades, fractional-order differential

equations have been used to describe systems more accu-

rately than integer differential ones [6]. Therefore, it is

essential to extend and migrate the state safety theories

to fractional-order systems due to their different laws of

integration and differentiation from integer-order systems.

Thus, this study is a preliminary attempt at some safety

analysis and control problems through BFs for such sys-

tems. Our main contributions in this study are presented as

follows. The less-zero BF [1] and exponential-alpha BF [2]

are extended to the fractional-order field. Under Caputo’s

description of Caputo’s fractional derivative, we proposed

the above two Caputo’s BFs. Then, we used these to present

analysis and diagnosis theorems of state safety for fractional-

order nonlinear dynamic systems, which guarantees that all

states will keep in an available state set.

Model and methodology. This study mainly presents an

extension of safety theories through BFs [1, 2] for Caputo’s

fractional-order nonlinear dynamical systems with the order

α satisfying α ∈ (0, 1). Thus, a Caputo’s fractional-order

system (CFOS) with Definition 2 [7] can be expressed as

CDαx(t) = f(x(t)) (1)

with α ∈ (0, 1). For the CFOS (1), there is an available

state set C, where every state indicates that the system is in

a safe operating state, defined by

C = {x ∈ R
n : h(x) > 0} , (2)

∂C = {x ∈ R
n : h(x) = 0} , (3)

Int(C) = {x ∈ R
n : h(x) > 0} (4)

for a continuously differentiable function h : Rn → R. If any

state is outside of set C, it satisfies ∀x ∈ R
n \ C, h(x) < 0.

The definition of set C mainly consisting of (2)–(4) are fol-

lowed by [3, 4].

Definition 1. Given a CFOS (1) with an available set

C defined by (2)–(4), satisfying x(t0) ∈ C, if the set C is

forward invariant, the CFOS (1) is safe.

Next, we will propose two Caputo’s BFs. One is Ca-

puto’s less-zero BF via Theorem 1, and the other is Caputo’s

exponential-beta BF via Theorem 2.

Theorem 1. For a CFOS (1) with a set C defined by (2)–

(4) for some continuously differentiable function h : Rn → R,

∀x(t0) ∈ Int(C), if there exists a Caputo’s less-zero BF

B : C → R satisfying

B(x) = −β(h(x)), (5)

CDαB(x(t)) 6 0, (6)

where β is a locally Lipschitz class K function, the set C is

forward invariant, and the CFOS (1) can be said to be safe.

Proof. Using fractional-order integral for (6), we have

Iα(CDαB) 6 Iα0. According to Lemma 3 [7] and Theo-

rem 2.4 [8], we obtain B(x(t)) − B(x(t0)) 6 0 ⇒ B(x(t)) 6
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B(x(t0)) ⇒ h(x(t)) > h(x(t0)) > 0. It means for any

x(t0) ∈ Int(C), the set C is forward invariant. Therefore,

the CFOS (1) is safe.

Theorem 2. For a CFOS (1) with a set C defined by (2)–

(4) for some continuously differentiable function h : Rn → R,

∀x(t0) ∈ Int(C), if there exists a Caputo’s exponential-beta

BF B : C → R satisfying

B(x) = −γ(h(x)), (7)

CDαB(x(t)) 6 λ sgn(B)|B(x(t))|β , (8)

where γ is a locally Lipschitz class K function, λ ∈ R and

∀c > 0, β ∈ (0, c) with c a finite large real number. The set

C is forward invariant and the CFOS (1) can be said to be

safe.

Proof. The proof can be divided into two parts as β ∈

(0, 1], and β > 1.

(I) Assume β ∈ (0, 1]. Let W (t) = B(x(t)). By Lem-

ma 3 [7], Theorems 2.2 and 2.4 [8], we have W (t) 6 W (t0)+
λ

Γ(α)

∫ t

t0
sgn(W )|W (τ)|β(t − τ)α−1dτ 6 sgn(W (t0))|W (t0)|β

+ λ
Γ(α)

∫ t

t0
sgn(W )|W (τ)|β(t − τ)α−1dτ 6 sgn(W (t0))

exp[ λ
Γ(α+1)

(t − t0)α] 6 0. Thus, the set C is forward

invariant.

(II) Assume β > 1. (a) λ > 0. By Lemma 3 [7], and The-

orem 2.4 [8], we have B(x(t)) 6 B(x(t0)) +
λ

Γ(α)

∫ t

t0
sgn(B)

·|B(x(tτ))|β(t− τ)α−1dτ 6 B(x(t0)). Thus, the set C is for-

ward invariant. (b) λ < 0. Let λ sgn(B)|B(x(t))|β = φ(−B)

with φ a class K function. Then, we obtain CDαB 6 φ(−B).

Let −B = y; then −CDαy 6 φ(y) ⇒ CDαy > −φ(y). Ac-

cording to the inequalities (27) and (35) in the proof of The-

orem 3.1 [8] and Lemma 1.1, we have y > σ(y0, t− t0), with

σ a class KL function. As y = −B and B = −γ(h), we

have h(x) > γ−1(σ(−B(x(t0)), t − t0)), for all t ∈ I(x(t0)),

where γ−1 is the inverse of γ and a class K function. Since

x(t0) ∈ C, then B(x(t0)) < 0, and h(x(t)) > 0, for all

t ∈ I(x(t0)). Thus, the set C is forward invariant.

In summary, the CFOS (1) is safe with λ ∈ R and

∀c > 0, β ∈ (0, c) with c a finite large real number for

∀x(t0) ∈ Int(C).

Remark 1. Here, the definition of forward invariant can

be seen in [3] and the definitions of class K and KL functions

can be seen in [9].

Example 1. Consider a CFOS as

CDαx1 =
x1 sinx2

2
+ x1 + u1,

CDαx2 =
x2 sinx1

2
+ x2 + u2,

(9)

with α ∈ (0, 1), x = (x1, x2)T and u = (u1, u2)T. Set

C = {x ∈ R
2 : r2 − ‖x‖2 > 0} with h(x) = r2 − ‖x‖2.

Then, we choose α = 0.5 to conduct the simulations with

the common parameter r = 10 and four initial states

(8, 5)T, (9,−3)T, (−6,−7)T, (−4, 8)T. Using Theorem 2, we

can design a controller as u = argminuTu, such that

2xTu 6 − sgn(xTx − r2)|xTx − r2|
1

2 − 2xT[x1 sinx2

2
−

x1,
x2 sin x1

2
− x2]T. Here, set B(x) = −h(x) and β = 1

2
.

The solver of u needs quadratic programs, using “quad-

prog” function in MATLAB. The details of the results can

be shown in Figure 1. Obviously, the safety controller works

well.
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Figure 1 (Color online) Relationship between x and set C with

α = 0.5 for CFOS, where “*” is the initial state. (a) Without

control; (b) using the controller based on Caputo’s exponential-

beta BF.

Conclusion. This study presented extended two Caputo’s

BFs and proposed two kinds of safety criteria for CFOS. Ad-

ditionally, we incompletely verified the validity of the theory

using a simulation example.

Moreover, using Theorem 2, we obtained that when β = 0

and λ < 0, its proof has some doubt because the Caputo’s

derivative is a nonlocal operator. It implies that fractional-

order systems are quite different from integer-order systems,

such that the safety control theory applicable to integer-

order systems is not necessarily applicable to fractional-

order systems. Thus, we need to have more effort for other

extensions of safety control theory in fractional-order sys-

tems, which we have to find another chance to supplement.
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