
SCIENCE CHINA
Information Sciences

July 2023, Vol. 66 179204:1–179204:2

https://doi.org/10.1007/s11432-021-3413-x

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 info.scichina.com link.springer.com

. LETTER .

Consensus of hybrid linear multi-agent systems with
periodic jumps

Ying ZHANG1,3 & Youfeng SU2*

1Center for Discrete Mathematics, Fuzhou University, Fuzhou 350116, China;
2College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China;
3School of Mathematics and Statistics, Fuzhou University, Fuzhou 350116, China

Received 19 July 2021/Revised 16 October 2021/Accepted 23 December 2021/Published online 7 December 2022

Citation Zhang Y, Su Y F. Consensus of hybrid linear multi-agent systems with periodic jumps. Sci China Inf

Sci, 2023, 66(7): 179204, https://doi.org/10.1007/s11432-021-3413-x

Dear editor,

Multi-agent systems have attracted extensive attention in

control communities due to their wide range of applications,

such as multiple spacecraft systems [1] and wireless sen-

sors [2]. The consensus problem, which aims to drive the

states of all agents to a common trajectory asymptotically, is

one of the most fundamental cooperative control problems.

So far, most results on consensus problem mainly focused

on either continuous-time or discrete-time multi-agent sys-

tems individually [3–6]. In modeling real-world phenomena,

it is more usual to consider a type of system that exhibits

characteristics of both continuous-time (flow) dynamics and

discrete-time (jump) dynamics, called the hybrid system [7].

A detailed review is given in Appendix B.

This study aims to investigate the consensus problem for

hybrid linear multi-agent systems with periodic jumps over

a directed communication graph. The distinguishing fea-

tures for studying this class of multi-agent systems are of

two aspects. On one hand, many interesting mechanical

systems, such as multiple spinning and bouncing disks [8]

and multiple RC circuits [9], can neither be modeled by the

continuous-time model nor the discrete-time model individ-

ually, but have to be described in the hybrid sense. Hence,

our study provides a systematic method for consensus prob-

lems of these practical multi-agent models. On the other

hand, several control areas can be embraced by a hybrid

system [7], such as sampled-data control systems and peri-

odic impulsive systems. Hence, our study also gives a unified

synthesis process for these consensus scenarios.

Technically, we establish the consensus protocol in the

hybrid sense, containing both flow and jump dynamics. The

technical novelties are of two aspects. Firstly, both the hy-

brid distributed state feedback and output feedback control

laws are developed so as to deal with the hybrid structure of

the plant, which is stabilizable and detectable in the hybrid

sense, while neither its flow dynamics nor jump dynamics

need to be stabilizable and detectable. In particular, a novel

hybrid distributed observer combining both continuous out-

put and discrete output is developed without requiring ei-

ther of them to be detectable. Secondly, novel feedback and

observer gain assignment algorithms that involve the mod-

ified H∞ type Riccati inequality are proposed, where the

obligatory elementary transformation is included, and prop-

erties of controllable and observable subspaces are utilized.

The main contributions are detailed in Appendix D.

Problem formulation. Consider a class of hybrid linear

multi-agent systems governed by the flow dynamics

τ̇ = 1, ẋi = Axi +BuFi, i = 1, . . . , N, (1a)

whether (τ, xi) ∈ [0, τd]× Rn and the jump dynamics

τ+ = 0, x+

i = Exi + FuJi, i = 1, . . . , N, (1b)

whether (τ, xi) ∈ {τd} × Rn, where τ ∈ R, xi ∈ Rn,

uFi ∈ Rm1 , and uJi ∈ Rm2 are the clock variable, state,

flow input, and jump input of the i-th subsystem, respec-

tively. A ∈ Rn×n, B ∈ Rn×m1 , E ∈ Rn×n, and F ∈ Rn×m2

are all constant matrices. τd > 0 is a known constant that

represents the dwell-time between two consecutive jumps.

All solutions to system (1a) and (1b) are defined on the

common hybrid time domain T := {(t, k) : t ∈ [tk, tk+1], k ∈

N, tk := kτd}. The measurable outputs of system (1a) and

(1b) are defined as

yFi(t, k) := CF xi(t, k), (1c)

yJi(k) := CJxi(tk , k − 1), i = 1, . . . , N, (1d)

where yFi(t, k) ∈ Rq1 , yJi(k) ∈ Rq2 , CF ∈ Rq1×n, and

CJ ∈ R
q2×n are constant matrices. Four motivating ex-

amples are collected in Appendix C so as to illustrate the

practical motivation of the hybrid system (1). The informa-

tion exchange among agents is described by a directed com-

munication graph G = (V , E) with the normalized weighted

adjacency matrix Ω = [ωij ] ∈ RN×N , where their definitions

can be found in Appendix E.

Problem 1 (Hybrid consensus). Given the hybrid lin-

ear multi-agent system (1) with a directed communication

graph G, find a distributed dynamic feedback control pair
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(uFi, uJi) such that, for any initial conditions, the closed-

loop system has the property that limt+k→∞(xi(t, k) −

xj(t, k)) = 0, i, j = 1, . . . , N .

Assumption 1. Each subsystem of the hybrid linear

multi-agent system (1) is stabilizable and detectable.

Assumption 2. The communication graph G contains a

directed spanning tree.

Both Assumptions 1 and 2 are very mild. In particular,

Appendix F has shown PBH tests for the stabilizability and

detectability of hybrid system (1), which indeed cover the

standard stabilizability and detectability PBH tests for the

linear time-invariant system (see Appendix J).

Distributed dynamic state feedback control. Assume that

for each agent, the full states of itself and its neighbors are

available for feedback. We consider the distributed dynamic

state feedback control law with flow dynamics

τ̇ = 1, ξ̇i = −ATξi, (2a)

whether (τ, xi, ξi) ∈ [0, τd]× Rn × Rn, jump dynamics

τ+ = 0, ξ+i = eA
TτdK̄F

N∑

j=1

ωij(xi − xj), (2b)

whether (τ, xi, ξi) ∈ {τd} × R
n × R

n, and controller output

uFi = BTξi, uJi = KJ

N∑

j=1

ωij(xi − xj), (2c)

where K̄F and KJ are determined by Algorithm H1 of Ap-

pendix H.

Distributed dynamic output feedback control. Assume

that for each agent, only the outputs of itself and its neigh-

bors are available for feedback. We consider the distributed

dynamic output feedback control law with flow dynamics

τ̇ = 1, ˙̂xi = Ax̂i+BuFi, ζ̇i = CT
FϕFi−ATζi, ξ̇i = −ATξi,

(3a)

whether (τ, x̂i, ζi, ξi) ∈ [0, τd] × R
n × R

n × R
n, where

ϕFi =
∑N

j=1
ωij(CF x̂i−yFi−CF x̂j+yFj), jump dynamics

τ+ = 0, x̂+

i = Ex̂i + FuJi + L̄F eA
Tτdζi + LJϕJi,

ζ+i = 0, ξ+i = eA
TτdK̄F

N∑

j=1

ωij(x̂i − x̂j), (3b)

whether (τ, x̂i, ζi, ξi) ∈ {τd} × R
n × R

n × R
n, where ϕJi =∑N

j=1 ωij(CJ x̂i − yJi −CJ x̂j + yJj), and controller output

uFi = BTξi, uJi = KJ

N∑

j=1

ωij(x̂i − x̂j), (3c)

where K̄F and KJ are the same as those in (2), and L̄F and

LJ can be determined by Algorithm H2 of Appendix H.

Here observers with the states x̂i in (3) are of the hybrid

form containing both flow and jump dynamics.

With real matrices Ã, B̃v , Ā, C̄v, and complex numbers

λi, i = 2, . . . , N , defined in Algorithms H1 and H2, the main

theorem is given as follows.

Theorem 1. Assume that Assumptions 1 and 2 hold. Let

δc = sup
δ>0

{δ|∃P > 0 s.t.

ÃTPÃ− P − (1− δ2)ÃTPB̃v(B̃
T
v PB̃v)

−1B̃T
v PÃ < 0}.

If there exists αc ∈ R satisfying the inequality |1− αcλi| <

δc, Problem 1 is solved by the distributed dynamic state

feedback control law (2). In addition, let

δo = sup
δ>0

{δ|∃Q > 0 s.t.

ĀQĀT −Q− (1 − δ2)ĀQC̄T
v (C̄vQC̄T

v )−1C̄vQĀT < 0}.

If there exists αo ∈ R satisfying the inequality |1− αoλi| <

δo, Problem 1 is solved by the distributed dynamic output

feedback control law (3).

The proof of Theorem 1 can be found in Appendix I. The

validity of Algorithms H1 and H2 is discussed in Remarks 3

and 4 of Appendix H, respectively. The robustness of our

design is discussed in Remark 8 of Appendix I. Two corollar-

ies of Theorem 1 are given in Appendix J, which provide the

solvability of the sampling consensus problem of continuous-

time linear multi-agent systems and the consensus problem

of discrete-time linear multi-agent systems, respectively. As

a practical application, the consensus of four bouncing disks

moving on a horizontal plane between parallel walls is given

in Appendix K to illustrate the proposed consensus algo-

rithms.

Conclusion. The consensus problem for a class of hy-

brid linear multi-agent systems has been studied. By uti-

lizing the modified H∞ type Riccati inequalities, both dis-

tributed dynamic state feedback and distributed dynamic

output feedback control laws have been presented to solve

this problem. Our results extend the consensus studies

from purely continuous-time or discrete-time multi-agent

systems to hybrid multi-agent systems. Future studies will

focus on the hybrid linear multi-agent systems subject to

jointly-connected switching communication graphs. The hy-

brid multi-agent systems with nonlinear dynamics and time-

varying periods are the other two significant future exten-

sions.
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