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Appendix A Notations used in the body of this paper

e U denotes the disjoint union of sets.

e Ay :={8l:=Col;j(I,):j=1,---,p}. For example, §} :=[100]",63:=[010]",685:=[001]", Ag:={8] :j=1,2,3}.

o Lirxh = {[5;1 (S;ch] ::5k[i1 ih]:ij S {1,-“ ,k},j: 1,--- ,h}.

e N ={z1,z2, - ,%,} denotes a set of n nodes, and M = {x;y,Tiy, - ,Ti, } € N, 1< m < n. Denote the state of node
x; by ¢, where ¢; € Az, i = 1,--- ,n. Then, the natural projection from N to M, denoted by on,pm : Aan — Agm, is
defined as on v (X]_q15) = K}"’Zlgij. In addition, for a nonempty ordered set N = {a1, - ,as} € Ajn, on,m(N') :=
{on,m(a1), - ,onnm(as)}; for a set group N/ = {N; € A}, : N/ #0,i=1,--- ,h}, onu(N") == {on,Mm(N]) 1 i =
1,---,h}.

Appendix B Proofs in the body of the letter
Appendix B.1 Proof of Corollary 1

When Z; = ), this theorem becomes Theorem 3.3 in [1]. Thus, we only consider Z; # § in the following proof.
When & = 1, by Definition 1, a¢ = 62% is reachable from a? = 5;\71:% at the first step, if and only if there exists 3;(0) := 6gmi c

Aym, such that

St = Fib5h, b, 620
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it is easy to see that
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Hence, the conclusion is true for k = 1.
Assuming the truth of the conclusion for k = s > 1, we prove the truth of the conclusion for K = s + 1. When kK = s + 1, we
divide the proof into two steps. Firstly, there exists 627,/” € Agyn; such that 6;% is reachable from 6;\72 at the s-th step. Secondly,

52}#/ is reachable from 555'” at the first step. Then, we have [R;(s)]¢;,x;, > 0 and [M;]e,, ¢, > 0. Therefore,

[Ri(s + 1o, .,

(M M;(0)]g, A,
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[Mile,; ¢c; [Ri(s)]¢; x; > 0.

Therefore, the conclusion is true for k = s + 1.
By induction, the conclusion is true for any positive integer k.
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Appendix B.2 Proof of Theorem 1

A d 0

(Sufficiency) From condition (i) and Corollary 1, subnetwork ¥; is reachable from Ozg = 527117', to aj = 62}17: at the k-th step,
i=1,2,---,p. Then, for any subnetwork ¥;, ¢ € ®2, one can obtain ;.

By condition (ii) and Definition 2, there exists at least one k-matchable control sequence, denoted by {wf’c‘ 11 € Pa}, where
wih € Qy, a5 € {1, ,b;} and ¢; € {1,---,|QF7|}.

Then, for this k-matchable control sequence, one can obtain a control sequence driving BCN (1) from z° to x4 at the k-th step,
denoted by u = {u(t) : t = 0,--- ,k — 1}, where u(t) = x7_ u;(t). In fact, if u; € U;, then {u;(t) : t =0,--- ,k — 1} can be
constructed as {u;(t) :t=0,--- ,k —1} = O'ZiUUi,{uj}(w?i “t). Therefore, under the control v = {u(t) : t =0,--- ,x — 1}, BCN

(1) is reachable from z° to z¢ at the r-th step.
(Necessity) If BCN (1) is reachable from x° to 2 at the k-th step, then there exists at least one control sequence {u(t) : t =
0,---,k — 1} satisfying x(r; 2%, u) = 2?. Denote the corresponding state trajectory by {z(t) : t = 0,--- ,x}, where x(0) = 63,

d _ <95
to aj 752,,.

z(k) = 5§n. Obviously, subnetwork X;, ¢« € ®; is reachable from ag = 5;}1 ”

P at the k-th step, and the state trajectory
11 1} L. .

— o0 = 65, }, where 52"% = ox,x,;(z(t)), t = 0,1,---, k. In addition, under the following control

sequence, subnetwork ¥;, i € ®5 is reachable from a! = 5;‘% to a? = 52;{% at the k-th step:

i

ool 19 i
is T; = {627%. — 52"7‘,

wit = {a(t) =0, 5 —1}, (B1)

where 1, (t) = vi(t) X Bi(t), vi(t) = ox,z, (2(t)), and B;(t) = ou,u, (u(t)). Then, by Corollary 1, [R;(k)]e,,x; >0,V i=1,2,---,p.
Therefore, condition (i) holds.

e ) 13 1 aq
Denote the state trajectory corresponding to w?“cl by T:l = {529” — 52,1,” — e = 612';‘; }. Then
19
O)n; = 0x,x,;(2(1)), (B2)
s IHCI iy A ,
t=20,1,---,k Set T," := {529"1"621"1""' 0ym; @ =1,2,---,p, and for any i € ®1, a; = 1. For any i € {1,2,---,p},
j € ®2, i # j, denote Y = {yi,jr i jr € {1,--- ,pi},r = 1,--- ,pl}, whose elements keep the order in Yj. Then, for any
s J
i€ {1,2,--+,p}, j € P2, i # j, on one hand, by (B2), o Yj(Tial) = {Mi;lyih (t) : t = 0,--+,Kk — 1}; on the other hand,
. v
ajicj v} f10. ajsCj
by (B1), o, Ly, zi(w; ) = {><r=1yij (t) : t =0,--- ,k — 1}. Therefore, Oy yvi (T;") =0, Ly, zi(w; ) holds for any
J 3“4 ' s e [ RS J V] -
i€ {1,2,---,p}, j € ®3, i # j. By Definition 2, {wf"’c" 14 € &2} is a k-matchable control sequence, that is, M # @, which

implies that condition (ii) holds.
Appendix B.3 Proof of Proposition 2

On one hand, assume that large-size BCN (2) is reachable from 20 = 6;n to z? = 6§n at the k-th step. Then, at least one control
sequence can be obtained, denoted by {u(t) : ¢t = 0,--- ,x — 1}, and the corresponding state trajectory is {z(t) : t = 0,--- , Kk},
where z(0) = z°, z(k) = z?%. For any partition E satisfying Assumption 1, assume that = contains p subnetworks, denoted by f)i,
i =1,2,---,p. In addition, for each subnetwork $3;, denote the parameters by X.;, Ui, Zi, f’i, iy M, Giy Di, &? =0x.x, (zo) =

X . 0; 2 . RN - 2 U .
8y, and af = ‘Tx,)‘(i(xd) = 0,h; - Denote @1 := {ie{1,2,---,p}:Z; UU; =0} and &3 := {1,2,---,p} \ ®1. Then, by virtue

of the necessity part of Theorem 1, for each subnetwork 3, i € &4, it is obvious that 3; is reachable from d? = 6;}11 to df = 522%;

at the x-th step; for each subnetwork i]i, i € <i>2, one can obtain that $; is reachable from éc? = 5;\,‘11 to d'ii = 622’1' at the x-th step

under control sequence ;" := {@;(t) : ¢ =0,--- ,x — 1}. Thus, by Corollary 1, one can conclude that condition (i) in Theorem
1 holds. In addition, one can verify that {u}?’c’ 14 € ®o} is a k-matchable control sequence. Thus, condition (ii) in Theorem 1
holds.

On the other hand, given a partition Z (here, we assume that the parameters of E is the same as the above E) satisfying
Assumption 1, and suppose that the condition (i) and condition (ii) of Theorem 1 are satisfied. Then, according to Definition 2,
one can obtain a k-matchable control sequence, denoted by {wiai’ci NS &’2} In addition, based on the sufficiency part of Theorem
1, from the above k-matchable control sequence, a control sequence u = {u(t) : t = 0,--- ,x — 1} driving BCN (2) from z° to ¢
at the k-th step can be obtained. Therefore, by resorting to the first part of this proof, it is easy to see that for any other partition
=’ satisfying Assumption 1, the conditions in Theorem 1 are still satisfied.

Appendix C Algorithm of obtaining an acyclic aggregated graph which satisfies Assump-
tion 1
Consider large-size BCN (1) and denote the network graph of (1) by G = (N, E).

Algorithm C1 The algorithm of obtaining an acyclic aggregated graph which satisfies Assumption 1.

e Step 1: Obtain all strongly connected components of G, and consider each one as a super node;

e Step 2: If there exists at least one state node in every super node, then an acyclic aggregated graph which satisfies Assumption
1 is obtained and stop. Otherwise, arbitrarily choose a super node N; contains no state node, and go to Step 3;

e Step 3: Choose another super node N; satisfying the condition that there exists an edge from some v, € N; to some v; € Nj.
Then, combine N; and N; to form a super node and go back to Step 2.
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Appendix D Computational complexity analysis of Theorem 1

Given an aggregation of large-size BCN (2) which contains p subnetworks. For subnetwork 3;, i = 1,2, .-, p, there exist at most

2#(Mmi+4i) control sequences which can drive ; from af to af at the k-th step. Let ¢ := . max }{mi + ¢; }. Then, in order to
i€{1,2, ,p

verify the reachability of BCN (2) via Theorem 1, one needs to handle matrices of sizes 2™ x 2mitni =12 ..., pand enumerate

at most 2°°¢ combinations of control sequences. Therefore, the time complexity of Theorem 1 is exponential in the number of
nodes. However, the establishment Theorem 1 makes it possible to verify the reachability of large-size BCNs in the following two
special cases: (i) Note that it is feasible to verify the reachability of each subnetwork. When there exists a subnetwork which is
not reachable, the original large-size BON is not reachable. (ii) When |Q;]| is very small, say |Q;| < 2%, it is possible to verify
the k-matchable condition. In the future, we devote to reducing the computational complexity of Theorem 1 for the application to
general large-size BCNs.

Appendix E Examples
Appendix E.1 An example used to illustrate how Corollary 1 and Proposition 1 work
Consider the following BCN:

z1(t+ 1) = z1(¢)V(z2(t) A z3()),
z2(t 4+ 1) = w2 () Vas(t),

z3(t + 1) = ~z3(t),

z4(t + 1) = z5(¢) A u(t),

N (E1)
z5(t + 1) = x4 (t)Vu(t)Vaa(t),
z6(t + 1) = zs(t)Vas(t),
z7(t +1) = w6 () Vas(t),
wg(t+1) = 7(t),
where z;, ¢ = 1,---,8 and u denote states and control input, respectively. Fig. 1 shows an aggregation of BCN (E1). Denote

the subnetwork corresponding to N; by ¥;, ¢ = 1,2,3. Letting 2z = 5526,wd = 5%?2 and k = 3, we consider the reachability of
subnetworks X1, 32 and X3, respectively.

Fig. 1: Aggregation of BCN (E1).

For subnetwork 31, the state trajectory from o = &3 to af = 8§ is T} = {05 — 65 — 8% — 65}.

Consider subnetwork 35, we have Z = {z2}, Yo = {z5}. Calculating F» and splitting F> into 4 equal blocks, we have
[M22 M3(0)]1,4 = 4 > 0. By Corollary 1, subnetwork X5 is reachable from ag to ozg at the third step. By calculation, all possible
state trajectories of o are Ty = {8 — 05 — 85 — 03}, T2 = {65 — 63 — 65 — 8;} and T3 = {5 — 01 — 63 — 61} In
addition, by resorting to Proposition 1, the set of control sequences is

Q2 = {{8},63,83},{5}, 63, 033, {63, 63, 83}, {63, 3, 63} }.

Subnetwork X3 is reachable from ag = 5§ to ag’ = 53 at the third step, and the corresponding state trajectories are T31 = {6; —
63 — 52 — 62}, T32 = {5§ — 52 — 65 — 53}‘ In addition, the set of control sequences is Q3 = {{Ei, 52, 62}, {SZ, 52, 541}}.

Appendix E.2 An example used to show how Theorem 1 works

Consider the BCN model of Pseudomonas aeruginosa QS system [2]. Given an aggregation shown in Fig. 2. Verify whether or not

the Pseudomonas aeruginosa QS system is reachable from z° = 6?2;%;?6 to z¢ = 5%2?%%6 at the second step.



Wang S L, et al. Sci China Inf Sci 4

Fig. 2: Aggregation of Pseudomonas aeruginosa QS system.

Since [M1M1(0)]3,2 = 1 > 0, subnetwork ¥; is reachable from 62 to 62’ at the second step. The corresponding state trajectory
and the set of control sequences are T7 = {67 — §; — 63} and Q; = {{6%, 5%}}, respectively. By calculation, subnetwork 3, is
reachable from a(i’ to a? at the second step, ¢ =2,3,---,8.

By Definition 2, one can obtain 64 different 2-matchable control sequences. Therefore, the Pseudomonas aeruginosa QS system
is reachable from z° to % at the second step. By Remark 1, the set of control sequences is

U:{{&jzg,éizg}:i:&-.- .8,13,---,16,21,--- ,24,29, - - ,32;]’:72,80}.

Appendix E.3 An example used to show the necessity of verifying x-matchable condition

Consider the Boolean network model of colitis-associated colon cancer with 70 nodes and 153 edges [3]. The network graph of
colitis-associated colon cancer network is shown in Fig. 3.
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Fig. 3: Network graph of colitis-associated colon cancer network.

Colorectal cancer is one of the most common malignancies. It is shown that colorectal cancer is closely correlated with inflam-
mation. The modeling and analysis of colitis-associated colon cancer network establish a framework for the study of inflammation-
associated cancer [3]. Note that the existing results on colitis-associated colon cancer network are mainly based on experiments,
and it is meaningful to develop a mathematical tool for the study of colitis-associated colon cancer network.

In the colitis-associated colon cancer network, “APC” denotes an input node, “Proliferation”, “Apoptosis” denote two output
nodes, and the remaining ones are state nodes. According to [3], the output dynamics of colitis-associated colon cancer network is

Proliferation(t) = (FOS(¢t) A CYCLINDI1(¢)) A =(P21(t) V CASP3(t)), (B2)
Apoptosis(t) = CASP3(t),

Given Xp=(1011010111111011111111111111111101111111110111011111111111111011110)
and X4=(11111101111101110101110100111101111011101011010000111111111101
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11011). According to (E2), it is easy to verify that state Xy corresponds to “Proliferation” being “ON” and “Apoptosis” being
“OFF”, while state X4 corresponds to “Proliferation” being “OFF” and “Apoptosis” being “ON”. In the following, we investigate
the 3-step reachability of colitis-associated colon cancer network from state X to state X4 based the aggregation method. For full
names and Boolean logical rules of nodes in colitis-associated colon cancer network, please refer to [3].

Choose the aggregation shown in Fig. 3, where the whole BCN is partitioned into 17 small-size subnetworks (Table 1), denoted
by ¥;,t=1,2,---,17.

Table 1: Notations of each subnetwork in aggregation.

X, Z; UU;

= THI1, IL4, IL12, IL10 TREG, TH2, TGFB, MAC, IFNG, CTL

Sy TREG, MAC, IL6, DC, CCL2 NFKB, TNFA, IL10, IFNG

=3 FAS, TH2, TGFB, IFNG, CTL TREG, TH1, IL4

2, | CFLIP, IKB, NFKB, SMAD, SMAD7, TGFR IKK, JUN, TGFB

o CcoX2, IKK, PGE2, S1P AKT, SPHK1, TNFR

Sg EP2, GP130, JAK, PI3K, RAS, STAT3 PGE2, PTEN, IL6

o BCATENIN, CYCLIND1, GSK3B, JUN AKT, EP2, ERK, JNK, STAT3

g ERK, FOS MEK

Sg CASP3, CASP9, CYTC CASPS8, IAP, MOMP, P21

=19 ASK1, JNK, P21 CASP3, GSK3B, MEKK1, P53, ROS, SMAD
211 ATM, MDM2, P53, PTEN AKT, GSK3B, JNK, JUN, NFKB, ROS
PP BAX, CASP8, TBID AKT, BCL2, CFLIP, FADD, P21, P53, PP2A
Si3 MEK, ROS, SOD NFKB, RAF, STAT3, TNFR

Sig AKT, BCL2, PP2A CASP3, CERAMIDE, NFKB, P53, PI3K, STAT3
S5 CERAMIDE, RAF, SMASE, SPHK1 ERK, FADD, P53, RAS, TNFR

216 IAP, MOMP, SMAC BAX, BCL2, CERAMIDE, NFKB, STAT3, TBID
Sy FADD, MEKK1, TNFR, TNFA CERAMIDE, FAS, TGFR, MAC

Firstly, we consider the reachability of subnetworks. Take subnetwork ¥z as an example. We have aj = 83,, ad = 515 and
v3(0) = 3. Since [MZM3(0)]1s,1 = 2 > 0, by Corollary 1, af is reachable from af at the third step. Similar to subnetwork 23,
one can verify that subnetwork X; is reachable from af to a¢ at the third step, i € {1,2,---,16} \ {3}.

Next, we check the 3-matchable condition. For subnetwork ¥4 with ag = 631.2, ai = 631,3 and v4(0) = 5;, there exists one state
trajectory from az to ai at the third step as T41 = {5é4 — 622 — 522 — 5§i}. In addition, the set of control sequences is

Qu = {{65, 04,04}, {08,036}, {0}, 62, 04}, {08, 04, 6}, {04, 68, 83}, {64, 03, 63}, {03, 63, 63}, {68, 54, 62} }.

Considering subnetwork X3, there exists one state trajectory from ag to ozg at the third step, that is, Tsl = {5%2 — 5;3 — 6%3 —
538}, Then, we have Ty = {83,, 039,053 }.

It is easy to see from Table 1 that Y34 = ZZ’ = {TGFB}. By a simple calculation, for a3(2) = égg, one can obtain that
UX3,Y34({a3(2)}) = {62}. However, for v4(2) = &3 and v4(2) = &3, it holds that 024722({74(2)}) = {63}. Then, for each
wy € Q4q, we have T xg. v (T?,l) #+ 024122(7114). Therefore, according to Definition 2, the colitis-associated colon cancer network is
not 3-matchable. Thus, the CACC network is not reachable from X to X4 at the third step.

From this example, one can see that for a given aggregation, although all subnetworks are reachable, the whole large-size network
maybe not reachable, which supports the necessity of verifying x-matchable condition.

Appendix E.4 An example used to illustrate Remark 2

Recall the example in Appendix E.1. We check whether or not BCN (E1) is 3-matchable. )

It is obvious that the aggregation given in Fig. 1 is an acyclic aggregation, and it holds that Y,L.’ = ZJ‘ =0,i>j,1,7j=1,2,3.

Since subnctwcirlk p35 heis n2o ir;put7 accordiPlg to thc1 u112iqu1c state trajj:lctory flrong ozi to a;l, that is, Tl1 = {6; — 63 — 5; — 62},
we have Ix1. Y2 (Ty) = {63,63,63}, Ix,.73 (Ty) = {63, 63, 85}, where Ty = {Jg, 05, 05 }-

By enumerating control sequences in 2, one can obtain that only control sequence wg'Q = {62, 62, 52} satisfies UX1~Y12 (’1:'11) =
2y UUy, 7} (wgz) Then, the corresponding state trajectory is T5 = {62 — 62 — 52’ — 6i}. In addition, similar to subnetwork s,
there exists a unique control sequence wg’l = {0%,0%1,01} € Q3 satisfying TxyvP (T} = T 250U3,73 (wg’l).

Then, we just need to consider the matchability between subnetworks 35 and ¥3. Since Txy v (T$) = T 50U3,23 (wg’l), one

can conclude that {wg”z, wg'l} is a 3-matchable control sequence. Therefore, BCN (E1) is 3-matchable.

In order to check the 3-matchable condition of BCN (E1), according to Definition 2, one needs to verify whether or not (9) holds
for any i € {1,2,3}, j € {2,3}, i # j. However, in this example, by virtue of the acyclic aggregation, one just needs to verify the
casesof 1 = 1,5 =2,7=1, 7 =3, and ¢ = 2, j = 3. Thus, acyclic aggregation can reduce the number of times for matchability
when verifying the k-matchable condition.
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Appendix E.5 An example used to show how Algorithm 1 works

Consider the following Boolean model for the lac operon in Escherichia coli [4]:

z1(t+ 1) = —z7(t) A zs(t),

z2(t+ 1) = z1(t),

w3(t + 1) = —u1(t),

z4(t+ 1) = z5(t) A x6(t),

@5 (t + 1) = —ug(t) A z2(t) A usa(t), (E3)
ze(t+ 1) = z1(t),

x7(t+ 1) = —wyq(t) A zs(t),

zg(t+ 1) = za(t) Vas(t) Vao(t),

zo(t+ 1) = —ui(t) A (z5(t) A ua(t)).

Fig. 4 shows an aggregation of BCN (E3). Denote the subnetwork corresponding to N; by 3;, i = 1,2,3. Given z0 = 655):132, K=2
and r = (11,72, -, 7"512)—r € R%'2| where the element rj,j=1,2,---,512 in r is given by the following function:

r;=—j°4+9.8j — 14.

We solve this Mayer-type optimal control problem according to Algorithm 1.

Fig. 4: Aggregation of Boolean model (E3) for the lac operon in Escherichia coli.

Firstly, by Algorithm 1, setting ¢« = 1 and calculating z? satisfying rTzf =max{r; : j =1,2,---,512}, we can obtain zf = 6;’12,
where the lac operon is “on”.

Secondly, verify whether or not BCN (E3) is reachable from 6:;):1”2 to 6?12 at the second step by Theorem 1. On one hand, by a
simple calculation, we can obtain that [MiMi(O)]G,;,A,; > 0,i=1,2,3. On the other hand, we can respectively find all the control

sequences driving a? to a? at the second step, i = 1,2,3 as Q1 = {{6‘81,63}}, Qo = {{(%,6:83}, {6;,62},{62,52},{53,63}}, and
Qs = {{67, 04}, {67, 63}, {67, 63}, {67, 64}, {67, 63}, {67, 68}, {63, 67}, {67, 63} }. Then, it can be verified by Definition 2 that the
control sequence {{53,55}, {53,63}, {6;, 52}} is a 2-matchable control sequence, that is, BCN (E3) is 2-matchable. Therefore,
condition (ii) of Theorem 1 holds. Therefore, BCN (E3) is reachable from z® to z{ at the second step. In addition, the control

sequence u} steering BCN (E3) from z° to ¢ at the second step is {u(0),u(1)} = {53,83}.
By Theorem 2, the optimal control sequence is {u(0),u(1)} = {83,83}.
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