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The transformer architecture [1] has been widely used for

natural language processing (NLP) tasks. Under the inspira-

tion of its excellent performance in NLP, transformer-based

models [2, 3] have established many new records in various

computer vision tasks. However, most vision transformers

(ViTs) suffer from large model sizes, large run-time memory

consumption, and high computational costs. Therefore, im-

pending needs exist to develop and deploy lightweight and

efficient vision transformers.

Network pruning is a useful technique for striking a bal-

ance between model accuracy, inference speed, and memory

usage. The most time-consuming module in a transformer

is the feed-forward network (FFN), but efforts in pruning

FFN remain scarce. Recent ViT pruning methods [4, 5]

mainly involve recursively sampling informative tokens (or

equivalently, their corresponding image patches) to increase

the inference speed in image classification, which achieves

similar accuracy as that of using all the tokens with less

computation. Unfortunately, these token sampling meth-

ods impede the vision transformers’ generalization ability

on downstream tasks. In addition, this type of sampling is

also difficult to apply to NLP tasks, which limits the appli-

cation domain of these methods.

Hence, we believe that successfully accelerating and slim-

ming vision transformers requires a unified approach that si-

multaneously prunes all components in a transformer, does

not alter the transformer structure, generalizes well to down-

stream tasks with high accuracies, applies to not only ViTs

but also its many variants, and can be easily extended to

the NLP tasks.

To fulfill these goals, we propose UP-ViTs, a unified prun-

ing framework for vision transformers, which prunes the

channels in ViTs in a unified manner, including those inside

and outside the residual connections in all the blocks, multi-

head self-attentions (MHSAs), FFNs, normalization layers,

and convolution layers in ViT variants. We first devise an ef-

ficient evaluation module to estimate the importance score

of each filter in a pre-trained ViT model. Then, on the

basis of the compression goals, all redundant channels are

simultaneously removed, leading to a thinner structure. In

particular, when compressing the attention layers, we inves-

tigate the influence of MHSA and propose a novel method

for discarding channels. We also design an effective progres-

sive block pruning method that removes the least important

block and proposes new hybrid blocks in ViTs. Experiments

on ImageNet show that UP-ViTs considerably outperform

previous ViTs with the same or even higher throughput.

Our contributions are as follows:

• We propose a novel framework for structured compres-

sion of ViTs and their variants. The resulting compressed

models achieve higher accuracy than previous state-of-the-

art ViTs and existing pruning algorithms.

• Our method maintains the consistency of the token rep-

resentation. Therefore, we can generalize the compressed

model to various downstream tasks.

• Our model can be applied not only for ViTs but also

for transformers in NLP tasks. We demonstrate that our ap-

proach improves the state of the art on language modeling

benchmarks and results in lower perplexity.

Methods. We demonstrate how to prune the standard

ViT. More details about compressing its variants can be

found in the appendix.

First, we calculate the importance scores of all channels.

We aim to minimize the information loss of the last layer

after pruning channels. In particular, a ViT’s block con-

tains two components, an attention layer and an FFN. Each

component contains one LayerNorm (LN) layer. We refer

to the FC layer in the attention as FCq , FCk, FCv, and

FCproj, plus FC1 and FC2 in the FFN. Generally, we divide

ViTs into several uncorrelated components and evaluate the

performance change after removing each channel in every

component.

Let us take one ViT block as an example. We divide the

block into three irrelevant structural components as follows:

• Component 1: the shortcut connections that chain rep-

resentations across all blocks, i.e., the input channels of FCq,

FCk, FCv, and FC1, the output channels of FCproj and FC2,

and the two LN layers.

• Component 2: the attention embedding filters inside

the attention layer in every block, i.e., the input channels of

FCproj and the output channels of FCq, FCk, and FCv.

• Component 3: the FFN inter-layer filters in every block,

i.e., the input channels of FC2 and the output channels of

FC1.
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To measure the channel importance, we randomly select

2000 images from the training dataset to establish a proxy

dataset D. We then extract the output logits on D and

evaluate the performance change before/after removing a

specific channel. Inspired by CURL [6], we calculate the

score from the Kullback-Leibler (KL)-divergence between

two models with and without this particular channel, i.e.,

s =
∑

i∈D

DKL(qi||pi), (1)

where i enumerates samples from D, pi is the output of the

model without this particular channel, and qi is the output

of the original model. The larger the score s is, the more im-

portant this channel is. Note that because MHSA contains a

reshaping operation when calculating the importance scores

of component 2, we mask the target channel as 0 instead of

removing it.

Then, given the original model and every channel’s im-

portance score, we first generate the sub-model candidate.

In components 1 and 3, on the basis of the preset com-

pression ratio, we independently rank the importance scores

and delete the less important ones. For simplicity, we use

the same compression ratio in all blocks.

In particular, the attention layer in ViT benefits from

the multi-head attention mechanism, which captures richer

information by using multiple different heads. However, it

also brings difficulties to compressing component 2. There-

fore, we specifically design a simple but effective method for

pruning the multi-heads. In detail, given a Db-dimensional

attention layer with hb heads, we need to prune it into Dt

dimensions with ht heads. Note that every head contains

the same number of dimensions across all attention layers,

and hb is divisible by ht. Both settings are common in

transformer-based models. When pruning multi-head atten-

tion, we first merge hb/ht heads into one head. Hence, the

attention layers will each have ht heads with Db dimensions.

Then, we remove Db−Dt

ht
dimensions from every head, and

the remaining module is the desired attention layer.

Lastly, we fine-tune the sub-model with all training sam-

ples and use the original model as the teacher to distill the

sub-model. In contrast to the training strategy of DeiT, we

use the classic soft distillation to measure the training loss:

L = LCE(y, p) + αLKL(q, p) , (2)

where p is the output probability (after softmax) of the sub-

model, q is the output probability of the teacher (i.e., the

original model), and y is the true label. LCE and LKL de-

note the cross-entropy loss and the KL-divergence.

Experiments. We prune DeiT-B into UP-DeiT-S and test

the effectiveness on ImageNet-1k [7]. More experiments are

provided in the appendix.

Figure 1 shows the pruning results of DeiT-B. The x-axis

represents the throughput, and the y-axis represents the ac-

curacy of the ImageNet-1k validation dataset. Performance

comparison between DeiT-S and UP-DeiT-S proves the ef-

fectiveness of our framework. Additionally, UP-DeiT-S also

consistently outperforms previous state-of-the-art ViT vari-

ants. Note that we only lost 0.28% accuracy when pruning

DeiT-B into UP-DeiT-S (which is 3.92-fold smaller in size

and 3.03-fold faster than DeiT-B). This result is better than

the previous state-of-the-art pruning ViT methods, such as

Evo-ViT [5], which achieves 81.11% accuracy and is 1.53-

fold faster.
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Figure 1 (Color online) Results of pruning DeiT-B on

ImageNet-1k.

Conclusion. In this study, we proposed a novel method

called UP-ViTs to prune ViTs in a unified manner. Our

framework can prune all components in a ViT and its vari-

ants, maintain the models’ structure, and generalize well

into downstream tasks. UP-ViTs achieve state-of-the-art

results when pruning various ViT backbones. Moreover, we

studied the transferring ability of the compressed model and

found that our UP-ViTs also outperform original ViTs. We

also extended our method into NLP tasks and obtained more

efficient transformer models. Please refer to the appendix

for more details.
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