
SCIENCE CHINA
Information Sciences

July 2023, Vol. 66 176101:1–176101:3

https://doi.org/10.1007/s11432-022-3580-5

c© Science China Press 2023 info.scichina.com link.springer.com

. PERSPECTIVE .

Toward actionable testing of deep learning models

Yingfei XIONG1,2*, Yongqiang TIAN3,4*, Yepang LIU5,6* & Shing-Chi CHEUNG3*

1Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education,

Beijing 100871, China;
2School of Computer Science, Peking University, Beijing 100871, China;

3Department of Computer Science and Engineering, The Hong Kong University of Science and Technology,

Hong Kong 999077, China;
4School of Computer Science, University of Waterloo, Waterloo ON N2L 3G1, Canada;

5Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology,

Shenzhen 518055, China;
6Department of Computer Science and Engineering, Southern University of Science and Technology,

Shenzhen 518055, China

Received 8 February 2022/Revised 12 June 2022/Accepted 30 August 2022/Published online 12 June 2023

Citation Xiong Y F, Tin Y Q, Liu Y P, et al. Toward actionable testing of deep learning models. Sci China Inf

Sci, 2023, 66(7): 176101, https://doi.org/10.1007/s11432-022-3580-5

Deep learning has become an important computational

paradigm in our daily lives with a wide range of applications,

from authentication using facial recognition to autonomous

driving in smart vehicles. The quality of the deep learning

models, i.e., neural architectures with parameters trained

over a dataset, is crucial to our daily living and economy.

To ensure the quality of deep learning models, many test-

ing approaches have been proposed to assess various proper-

ties of the models [1, 2], such as correctness, safety, and ro-

bustness. Here, we use the term “testing” in a broad sense

to refer to any approach that can detect violations of the

desirable properties (called bugs), regardless of whether the

bugs are detected through static analysis, dynamic analysis,

or comparing the output with an oracle. Most existing ap-

proaches treat the trained deep learning models as programs

and aim to find inputs that trigger incorrect outputs, also

known as adversarial samples. Success in detecting thou-

sands of adversarial inputs on widely used deep learning

models [3, 4] has been reported.

However, these approaches have received limited indus-

trial adoption, unlike their counterparts for conventional

software. A possible explanation is that they are not ac-

tionable. For conventional software, a failing test typically

depicts a buggy control flow and the set of variables that may

have received inappropriate value assignment. In contrast,

existing deep learning testing approaches do not provide

similar information that helps diagnose and fix the glitches.

Although many adversarial samples can be found, they pro-

vide no clue for the developers to make a modification that

eliminates the incorrect predictions on certain inputs while

preserving the correctness of other inputs. A straightfor-

ward approach is to add these discovered adversarial samples

to augment the training set, known as adversarial training,

but adding these samples will change the distribution of the

training set, which may negatively affect the performance of

the model [5]. Thus, most existing testing approaches may

only be used to assess the quality of a model. For exam-

ple, a deep learning model may be considered not robust

if many adversarial samples are found. However, this as-

sessment has limited usefulness. One cannot even compare

the quality of two models based on the number of adversar-

ial samples found because some adversarial samples may be

rare or unreal in practice, and finding more such samples

does not necessarily indicate less robustness.

To address this limitation, in this study, we argue that we

should also consider actionable testing of deep learning mod-

els. A testing approach is actionable if it provides (action-

able) clues together with the bugs detected. An (actionable)

clue is a hint such that, based on the current body of human

knowledge and the clue, an average developer can modify the

source of the deep learning model, such as the implementa-

tion code and the training set, to remove or mitigate the

impact of the bug. A clue can be a concrete modification to

be conducted on the deep learning model or an explanation

of the bug hinting at the changes that are needed.

Providing actionable testing of deep learning models is

challenging. A major obstacle is the lack of understanding of

deep learning. Given an input that leads to an incorrect out-

put, neither the deep learning developers nor the testing re-

searchers know how to fix the bug. Because a breakthrough

in deep learning theory is unlikely in the short term, in this

study, we propose a pragmatic strategy toward actionable

deep learning testing: instead of trying to find a generic

actionable testing approach for any deep learning defect,

we characterize and classify the defects and design specific

testing approaches for the popular defect types whose fixing

solutions we know of. For example, when a “divided-by-

zero” error occurs during neural network computation, the

*Corresponding author (email: xiongyf@pku.edu.cn, ytianas@connect.ust.hk, liuyp1@sustech.edu.cn, scc@cse.ust.hk)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-022-3580-5&domain=pdf&date_stamp=2023-6-12
https://doi.org/10.1007/s11432-022-3580-5
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-022-3580-5
https://doi.org/10.1007/s11432-022-3580-5


Xiong Y F, et al. Sci China Inf Sci July 2023 Vol. 66 176101:2

computed values become INF, and the model will probably

produce an incorrect output. Similar to the situations in

conventional programs, divided-by-zero errors in deep learn-

ing programs are usually repairable. If the testing system

could indicate which divisor becomes zero during the com-

putation, the developers could probably repair the bug by

changing the implementation code of the neural model.

Note that the idea of actionable testing is to comple-

ment non-actionable testing with guidance to improve the

system. By relaxing the requirement of being actionable,

non-actionable testing could possibly cover more bug types

and could be useful in, for example, quality assessment and

acceptance testing.

In the following, we describe a high-level conceptual

framework of actionable deep learning model testing, high-

light a few testing approaches that can provide actionable

results, and discuss a roadmap for future research on action-

able deep learning testing.

Framework. Let s and e denote a deep learning model

under test and a bug detected in the model, respectively.

For example, a “divided-by-zero” bug can be represented by

e = (i, o), where divided-by-zero occurs at division operation

o given the test input i.

Based on these notations, an actionable deep learning

testing approach comprises three components.

• Buggy condition. A predicate P (s, e) that evaluates to

true when e is a bug in the deep learning model s.

• Bug detector. A function d : S → 2E , where S is the

set of deep learning models supported by the testing ap-

proach, and 2E is the power set of all possible bugs that can

be detected. This component detects a set of bugs from the

deep learning model. It is sound if all detected bugs are true

positives, i.e., ∀e ∈ d(s), P (s, e). In practice, depending on

the detection algorithm, false positives may occur.

• Clue generator. A function g : S×E → 2A, where S is

the set of deep learning models, E is the set of all possible

bugs, and 2A is the power set of all possible clues. This

component generates clues for a bug to guide the developers

in fixing the bug in the source of the model.

Take a testing approach for divided-by-zero as an exam-

ple. The buggy condition is a predicate P (s, (i, o)) that

evaluates to true when input i triggers a division with a

zero divisor at the operation o. The bug detector detects as

many pairs of problematic input and division operators as

possible. The clue generator directly reports the bugs ((i, o)

pairs) to the user. This clue is actionable because the bug is

divided-by-zero, and the developers can analyze the network

to understand why the bug occurs and derive modifications

to the network architecture to repair the bugs.

Example approaches. We notice that some existing deep

learning testing approaches are already actionable. Here,

we highlight a few examples to demonstrate what clues are

actionable.

DEBAR. The first example detects bugs that are similar

to traditional programs. Similar to the above divided-by-

zero example, these bugs are directly understandable by the

developers and can be directly used as clues. DEBAR [6]

is an approach for detecting numeric bugs in neural mod-

els. Similar to their counterparts in traditional programs,

numeric bugs cause invalid numeric computations, such as

divided-by-zero, resulting in crashes or meaningless results

(e.g., INF or NaN) during neural network computation. The

three components of DEBAR are described as follows.

• Buggy condition. In DEBAR, a numeric bug is defined

by a numeric operator in the implementation code and the

possible ranges of its operands such that the ranges contain

values that would cause numeric errors through this opera-

tor. To formulate the buggy condition, DEBAR predefines

the conditions where the various types of numeric operators

would produce an error. For example, a division operator

produces an error when the divisor is zero, and a logarithmic

operator produces an error when the argument is not posi-

tive. The buggy condition holds when there exists an input

such that an operator may produce a numeric error accord-

ing to the predefined conditions. Because invalid numeric

computation may occur at the training stage, DEBAR can

also be used to test the model before training by treating

the parameters as input.

• Bug detector. DEBAR employs a static analysis algo-

rithm that includes two novel abstract domains to precisely

analyze the range of values that may appear during execu-

tion for each variable.

• Clue generator. DEBAR directly returns the detected

bugs as clues. Similar to numeric bugs in traditional pro-

grams, developers can debug the implementation code of the

neural network based on the clues.

Object relevancy. The second example demonstrates

that repair actions can be derived from the properties of the

application domain. Image classification identifies the ob-

ject contained in an image and is a key application of deep

learning techniques. Image classification has been widely

used in video surveillance, search engines, criminal inves-

tigations, etc., and thus the quality of image classification

systems must be ensured. However, developing actionable

testing for image classification is not easy, as we still lack

an understanding of the intrinsic inference logic of neural

image classifiers.

Tian et al. [7] proposed a desirable property of image

classifiers, object relevancy, and a testing approach to de-

tect bugs violating object relevancy. Object relevancy refers

to whether the inferences are based on the target objects of

image classifiers. For example, if in a dataset cats are al-

ways in a house while tigers are always in a forest, an image

classifier may learn to distinguish cats and tigers based on

their backgrounds and thus violate object relevancy, as the

inference is based on the background and not the target ob-

ject. Such bugs can be repaired by adding more images with

diverse backgrounds to the training set. The three compo-

nents of the testing approach are as follows.

• Buggy condition. Based on intuition, Tian et al. pro-

posed two metamorphic relations (MRs) that an image clas-

sifier should satisfy. The first MR expects that modifying

the target object in an image will cause the model to pro-

duce a different classification result or the same result with

less certainty. The second MR expects that modifying the

background will not affect the classification result. Then,

a bug is defined as an image and its modified version that

violate any of the MRs.

• Bug detector. The system generates random modifica-

tions to the images and checks if a violation of the MRs can

be found.

• Clue generator. A detected bug implies insufficient

background diversity for the target object in the training

set, which provides a clue leading to repair actions. The

developer can add more images of the target object with a

more diverse background to the training set. In contrast to

adversarial training, this clue reveals an understandable rea-

son for the bug, and the developer can add standard images

without distorting the distribution.

TransRepair and CAT. The third example demon-



Xiong Y F, et al. Sci China Inf Sci July 2023 Vol. 66 176101:3

strates that repair actions can be derived by wrapping the

model with external runtime facilities. Modern machine

translation systems, powered by deep learning models, are

used by millions of users daily. The quality of such systems

is critical to avoiding misunderstanding.

Multiple testing approaches [8–11] for machine transla-

tion systems have been proposed. Their basic idea is that

replacing a word in a sentence with a similar word should not

induce substantial changes in the structure of the sentence’s

translation. For example, replacing “Lily went to school”

with “Lucy went to school” should only cause a change

from “Lily” to “Lucy” in the translated sentence. If the

translated sentence undergoes a large structural change, it

is probably a mistranslation. However, similar to most test-

ing approaches, although this approach helps detect bugs,

it provides little information for bug fixing.

TransRepair [12] and CAT [13] employ a novel method

for “repairing” such bugs in machine translation systems

automatically. The basic assumption is that a well-trained

neural network is usually correct, and thus ensemble learn-

ing can be used to avoid mistranslations (i.e., bugs). The

repair method first replaces words from the original sentence

to generate a set of mutated sentences, translates all these

sentences, and then chooses one translation that has the

smallest difference from all other translations. Finally, the

replaced word in the chosen translation is put back to cre-

ate the final result. In this way, the bug is repaired without

actually modifying the neural model, and the testing result

becomes actionable with an automatic repair solution.

Under our framework, the three components of TransRe-

pair and CAT are as follows.

• Buggy condition. A bug is represented by two sen-

tences that differ only in one word, and the difference should

not affect the structure of the translated sentence; e.g., the

two words have the same part-of-speech role and are emo-

tionally similar in the concerned context. The buggy con-

dition is that the two sentences are translated into two sen-

tences with significantly different structures.

• Bug detector. The bug detector randomly generates

such pairs of sentences and checks whether the buggy con-

dition is satisfied.

• Clue generator. The clue is a direct repair of the im-

plementation code. The inference of the model is wrapped

with an online repair component that automatically gener-

ates mutants for each input to detect and repair bugs.

Roadmap. We foresee a roadmap for studying ac-

tionable deep learning testing that consists of two steps:

(1) designing techniques for specific types of bugs and

(2) generalizing these special cases into general actionable

testing approaches. We have seen some deep learning testing

approaches that are already actionable. However, the bugs

covered by these approaches comprise only a small portion

of all the bugs that may occur in deep learning models. In

fact, all the discussed approaches cover one type of bug, and

for some of them, the covered bug occurs only in a particu-

lar application of deep learning (e.g., machine translation).

Therefore, the next immediate step is to identify more types

of deep learning bugs where clues could be provided and de-

velop actionable testing approaches for them. In this way,

the developers can use these testing approaches together to

detect a large class of bugs. One possible approach is to em-

pirically study how practitioners develop and maintain deep

learning models and summarize their bug-fixing strategies.

The second step is to generalize the special techniques

to general cases. In the above-discussed actionable test-

ing approaches, the clues provided are diverse: from bug

explanations for developer reference to fully automatic bug-

fixing actions and from augmenting the training set to wrap-

ping the models with external facilities. At this stage, the

commonality of the existing actionable testing approaches

is difficult to summarize. This difficulty is due to the stud-

ied types of bugs thus far being still limited. With an in-

creasing number of bugs studied, we will be able to answer

broader research questions, such as what diagnosis informa-

tion is needed to help debug deep learning models and form

repair actions, and develop more general actionable testing

approaches that are applicable to a wide range of deep learn-

ing bugs.

Acknowledgements This work was supported by National
Key Research and Development Program of China (Grant No.
2019YFE0198100) and Innovation and Technology Commission
of HKSAR (Grant No. MHP/055/19).

References

1 Wang Z, Yan M, Liu S, et al. Survey on testing deep learn-

ing neural networks (in Chinese). J Software, 2020, 31:

1255–1275

2 Huang X, Kroening D, Ruan W, et al. A survey of safety

and trustworthiness of deep neural networks: Verification,

testing, adversarial attack and defence, and interpretabil-

ity. Comput Sci Rev, 2020, 37: 100270

3 Ma L, Juefei-Xu F, Zhang F, et al. DeepGauge: multi-

granularity testing criteria for deep learning systems.

In: Proceedings of ACM/IEEE International Conference

on Automated Software Engineering, 2018. 120–131

4 Pei K, Cao Y, Yang J, et al. DeepXplore: automated white-

box testing of deep learning systems. In: Proceedings of the

ACM Symposium on Operating Systems Principles, 2017.

1–18

5 Raghunathan A, Xie S M, Yang F, et al. Adversarial train-

ing can hurt generalization. In: Proceedings of ICML Deep

Phenomena, 2019

6 Zhang Y, Ren L, Chen L, et al. Detecting numerical bugs in

neural network architectures. In: Proceedings of the ACM

Joint European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering, 2020.

826–837

7 Tian Y, Ma S, Wen M, et al. To what extent do DNN-

based image classification models make unreliable infer-

ences? Empir Software Eng, 2021, 26: 84

8 Zhou Z Q, Sun L. Metamorphic testing for machine trans-

lations: MT4MT. In: Proceedings of Australian Software

Engineering Conference, 2018. 96–100

9 He P, Meister C, Su Z. Structure-invariant testing for ma-

chine translation. In: Proceedings of International Confer-

ence on Software Engineering, 2020. 961–973

10 Gupta S, He P, Meister C, et al. Machine translation test-

ing via pathological invariance. In: Proceedings of the

ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering,

2020. 863–875

11 He P, Meister C, Su Z. Testing machine translation via

referential transparency. In: Proceedings of International

Conference on Software Engineering, 2021. 410–422

12 Sun Z, Zhang J M, Harman M, et al. Automatic testing

and improvement of machine translation. In: Proceedings

of International Conference on Software Engineering, 2020.

974–985

13 Sun Z, Zhang J M, Xiong Y, et al. Improving machine

translation systems via isotopic replacement. In: Proceed-

ings of International Conference on Software Engineering,

2020. 1181–1192

https://doi.org/10.1016/j.cosrev.2020.100270
https://doi.org/10.1007/s10664-021-09985-1

