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Abstract This work focuses on the asynchronous controller design for two-dimensional Markov jump cyber-

physical systems against denial-of-service attacks. Firstly, due to the openness of the network, it is vulnerable

to cyber-attacks, resulting in the control input signal may not being sent to the designated location. Mean-

while, considering the influence of transmission delays and unavoidable packet dropout, a hidden Markov

model can help to deal with the unavoidable asynchronous phenomenon between the plant mode and the

controller mode. Then, by introducing the concepts of time instants and global states into two-dimensional

systems, an asynchronous control scheme for two-dimensional Markov jump cyber-physical systems is success-

fully formulated. Subsequently, recurring to the multi-Lyapunov function method and iterative technology,

sufficient conditions are achieved to make sure that the dynamic hidden two-dimensional Markov jump cyber-

physical systems are asymptotically mean-square stable. To conclude, an application example related to the

metal rolling process is provided to illustrate the feasibility and effectiveness of the presented asynchronous

control scheme under aperiodic denial-of-service attacks.
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1 Introduction

With the increasingly close integration of control, communication, and computation, cyber-physical sys-
tems (CPSs) have aroused a wide range of research interest in the past decade [1–3]. CPSs are widespread
in many engineering applications, such as device interconnection, IoT sensing, smart home, robotics and
intelligent navigation [4–6]. Recently, given the vulnerability of CPSs to malicious attacks, there has been
an extensive discussion on the security of CPSs. Although some targeted methods have been proposed,
for example, information encryption technology [7], it is still not enough to guarantee the reliability of
CPSs in the face of attacks from physical equipment or the interaction between the physical layer and
the network layer. Therefore, it is critical to study the safety of CPSs from the system perspective.

Currently, CPSs are mainly subject to two common attacks, namely deception attacks and denial-of-
service (DoS) attacks. Deception attacks, including fake data injection attacks and replay attacks, modify
the transmitted information such that the control unit receives misleading data. As a more accessible form
of attack, DoS attacks aim to disrupt data communication between system devices. Then the real-time
data will not be sent to the intended destination. Various research efforts have been made on DoS attacks
recently. For a class of power systems against DoS attacks, the authors in [8] proposed a distributed
resilient filter, which can embody the role of DoS attacks. When DoS attacks are generated by multiple
attackers, the authors in [9] constructed a fully distributed frame to analyze the cooperative behavior of
multi-agent systems. When considering that DoS attacks would destruct each channel independently, the
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authors in [10] designed a decentralized event-triggered controller in accordance with the balance between
transmission and tolerable attack strength.

In recent years, two-dimensional (2-D) systems have been active in the research of control theory,
which can be used to describe and analyze dynamical systems that evolve in two independent directions,
e.g., water splitting [11], image filtering [12], and information communication [13]. Roesser model and
Fornasini-Marchesini (FM) model are the most familiar 2-D form, whose developments can be founded
in [14]. Note that the strategies on stability analysis [15], sliding mode control [16], and fault detection [17]
are all for one-dimensional (1-D) systems, and cannot be capable of applying unchangeably to 2-D systems
with higher dimensionality. For this reason, researchers have reported many research achievements on
control/filtering for 2-D systems, e.g., [18–22] and the references therein. Considering that 2-D systems
may be affected by parameter changes and abrupt structures, the authors in [23–25] injected Markov
jump systems (MJSs) into the 2-D system, which is more relevant to the actual engineering. An H∞

model approximation approach for 2-D MJSs was presented in [23], although the mode information of
MJSs may be unknown. In [24], a stability criterion for 2-D MJSs was obtained, in which the Markov
chain is inhomogeneous. Based on certain performance levels, a scheme of fault detection and control for
2-D MJSs was achieved in [25]. However, as a whole, 2-D MJSs have not been analyzed thoroughly yet,
and still deserve further exploration.

Note that the results in [23–25] for MJSs are in line with the assumption that the controller/filter
can accurately acquire the system mode information. Unfortunately, some unfavorable factors, such as
time-delays, quantization, and data loss, can result in an asynchronous phenomenon between controller
modes and system modes. To overcome this challenge, the authors in [26] designed a mode-independent
controller by neglecting all mode information, despite some valuable. Further, Costa et al. [27] raised
to form a hidden Markov model (HMM) by releasing a detector to estimate the mode information of
the system. The mode relationship between the system and the controller/filter is described by some
conditional transitional probabilities. Thanks to this model, the asynchronous quantized sampled-data
control issue for fuzzy nonlinear MJSs was solved in [28]. For devising an asynchronous fault detection
filter for piecewise homogeneous MJSs, a dual HMM was proposed in [29]. For 2-D MJSs, the control
and filtering issues were discussed in [30–33]. However, to the authors’ best knowledge, until now, the
topic of asynchronous control/filtering for 2-D Markov jump cyber-physical systems (MJCPSs) against
DoS attacks has not received enough attention, which triggers the present work.

Based on the above discussion and analysis, this paper intends to investigate the asynchronous control
issue for 2-D MJCPSs, whose dynamics develop in two independent directions. Simultaneously, 2-D
MJCPSs are suffering from aperiodic DoS attacks. This seems to be hard work and the main difficulties
are as follows: (1) How to construct a global state of the 2-D FM local state space model (FMLSSM)?
(2) How to reflect the frequency and duration of DoS attacks in the 2-D FMLSSM with two independent
directions? (3) How to design an asynchronous control law under DoS attacks? In this paper, we will
systematically study these difficulties and give convincing answers.

In this article, the asynchronous controller design issue for 2-D MJCPSs against aperiodic DoS attacks
will be investigated. The main bright spots of this article are outlined as follows:

(1) According to the concept of the time instant κ in 2-D systems, we introduce global state Xκ to
collect all local states xi,j . And then, the frequency and duration of DoS attacks for 2-D MJCPSs can
be effectively described.

(2) Thanks to HMM, the mode information of 2-D MJCPSs can be detected by some conditional
probabilities. Then, the asynchronous problem between the plant and the controller can be effectively
solved.

(3) By the multi-Lyapunov function method and iterative technology, sufficient conditions are achieved
to make the dynamic hidden 2-D MJCPSs asymptotically mean-square stable (AMSS).

Notation. In this article, “diag{·}” signifies a block diagonal matrix. N1 and N2 represent positive
integer sets. The symbol ∗ means an ellipsis for terms induced for symmetry. The shorthand ‖ · ‖ stands
for the Euclidean norm of a vector or its induced matrix norm. λmax{M} and λmin{M} denote the
maximal and minimal eigenvalue matrix M , respectively. E{·} denotes the mathematical expectation.
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Figure 1 (Color online) The diagram for 2-D MJCPSs under DoS attacks.

2 System description and preliminaries

2.1 System description

As exhibited in Figure 1, the diagram for 2-D MJCPSs under DoS attacks covers a physical plant, a
sensor, an actuator, and a remote control station. 2-D MJCPSs outsource their complex computational
work to the remote control station. And the signal transmission from the plant to the remote control
station is carried out by a communication network, which may suffer from unexpected DoS attacks. In
this paper, we consider the following 2-D MJCPSs constructed by an FM model [34]:

xi+1,j+1 = A1(ri,j+1)xi,j+1 +A2(ri+1,j)xi+1,j +B1(ri,j+1)ui,j+1 +B2(ri+1,j)ui+1,j , (1)

where xi,j ∈ Rq is the local state vector, and ui,j ∈ Rp is the controlled input. The Markov parameter
ri,j takes values in the finite set N1 = {1, 2, . . . , N1} with the transition probability matrix Λ = [σmn].
The jump ri,j is subject to

σmn =Pr(ri+1,j+1 = n | ri,j+1 = m)

=Pr(ri+1,j+1 = n | ri+1,j = m) (2)

with σmn ∈ [0, 1] and
∑N1

n=1 σmn = 1 ∀m,n ∈ N1. Under ri,j+1 = m or ri+1,j = m, A1(ri,j+1), A2(ri+1,j),
B1(ri,j+1) and B2(ri+1,j) can be abbreviated to A1m, A2m, B1m and B2m.

Let x̄i,j = [xT
i,j+1 xT

i+1,j ]
T, ūi,j = [uT

i,j+1 uT
i+1,j ]

T. Then, 2-D MJCPSs (1) equal

xi+1,j+1 = Āmx̄i,j + B̄mūi,j , (3)

where Ām = [A1m A2m], B̄m = [B1m B2m].
As depicted in Figure 2, relative to 1-D systems, the main distinction of 2-D systems is that their

information is transmitted in two independent directions. According to this structural characteristic, let
Xκ denote the global state, which collects all local states xi,j along the diagonal line Lκ = (i, j) : i+j = κ,
that is

X(κ) = {xi,j : i+ j = κ}. (4)

Remark 1. As shown in Figure 2, the global state Xκ collects all the local states xi,j on the diagonal
line Lκ. Besides, the evolution of 2-D MJCPSs (1) exhibits that the local state xi+1,j+1 results from a
global state assignment xi,j+1 and xi+1,j . Consequently, an increment depending on the global instant κ
will be causally imposed on 2-D MJCPSs (1).

The boundary condition (Ξ0,Γ0) of 2-D MJCPSs (1) is given as
{

Ξ0 = {x0,j , xi,0 | i, j = 0, 1, 2, . . .} ,
Γ0 = {r0,j , ri,0 | i, j = 0, 1, 2, . . .} .

(5)

Assumption 1 ( [35, 36]). The boundary condition (Ξ0,Γ0) is assumed to comply with

lim
N→∞

E

{
N∑

ι=0

(

‖x0,ι‖2 + ‖xι,0‖2
)
}

< ∞. (6)
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Figure 2 (Color online) Discrete-time 2-D FMLSSM and global state Xκ under DoS attacks.

2.2 DoS attacks description

Let △(a, κ) represent the times of DoS off/on transitions and ▽(a, κ) denote the total duration in the
interval [a, κ). To describe DoS attacks, referring to [37], two assumptions are listed to portray the energy
bounded property of the concerned DoS attacks.

Assumption 2 (DoS frequency). Over the interval [a, κ), there exist scalars ρ > 0 and φ > 0 satisfying

△ (a, κ) 6 ρ+
κ− a

φ
. (7)

Assumption 3 (DoS duration). Over the interval [a, κ), there exist scalars λ > 0 and β > 1 satisfying

▽ (a, κ) 6 λ+
κ− a

β
. (8)

Remark 2. There are two main reasons for the limited energy of DoS attacks. One is that the capability
of attackers is limited, and the other is that if the system is always subject to uninterrupted DoS attacks,
the controller/filter cannot get any useful data, and then the stability research for the system will be
meaningless. Thus, in this paper, two assumptions related to DoS frequency and DoS duration are given
to portray the energy-bounded property of DoS attacks. The formulation of Assumption 2 is borrowed
from the concept of the average sojourn time in switching systems. Apart from the DoS frequency, we also
have to limit the DoS duration, i.e., the length of the intervals over which communication is broken off.
Assumption 3 provides a quite natural counterpart to Assumption 2 in terms of DoS duration. Limited
energy generated by DoS attacks not only makes controller design and synthesis meaningful, but also has
a practical motivation.

2.3 Asynchronous 2-D controller design under DoS attacks

Malicious cyber-attacks may present in the information transfer process because of the openness char-
acteristic of networks, which interrupt communication channels. As depicted in Figure 2, the concerned
DoS attacks in this paper are not periodic and the active time of that is designated by [Don

n , Doff
n ), n ∈ N+.

Obviously, due to the intervention of DoS attacks, the network transmission at the global instants κ− 3,
κ− 2, κ+ 1 will be invalid and no information can be sent to the controller unit.
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Here, we employ variable α(κ) to characterize DoS attacks. Then, the asynchronous 2-D controller is
specifically presented as

ūi,j = α(κ)Kqx̄i,j , (9)

where α(κ) =

{

0, κ ∈ [Don
n , Doff

n )

1, others
with κ = i + j and Kq = diag{K1(ϕi,j+1),K2(ϕi+1,j)}. Variable ϕi,j

has a similar feature as variable ri,j , taking values in N2 = {1, 2, . . . , N2} and satisfying the conditional
probability matrix ð = [δmq] with

Prob{ϕi,j+1 = q|ri,j+1 = m}
= Prob{ϕi+1,j = q|ri+1,j = m}
= δmq, (10)

where δmq ∈ [0, 1] and
∑N2

q=1 δmq = 1 ∀m ∈ N1, q ∈ N2.
Under ϕi,j+1 = q or ϕi+1,j = q, the dynamic hidden 2-D MJCPSs are derived as

xi+1,j+1 = Amqx̄i,j , (11)

where Amq = Ām + α(κ)B̄mKq.

2.4 Problem of interest

Definition 1 ( [35,36]). The dynamic hidden 2-D MJCPSs (11) are said to be AMSS, if, for every initial
condition (Ξ0,Γ0) satisfying Assumption 1, it has

lim
i+j→∞

E‖x(i, j)‖2 = 0. (12)

3 Main results

In this part, some sufficient conditions will be provided to make the dynamic hidden 2-D MJCPSs (11)
AMSS.

Theorem 1. For given scalars ρ > 0, λ > 0, φ > 0, β > 1, the dynamic hidden 2-D MJCPSs (11) are
AMSS, if there exist ̺ > 1, 0 < π1 < 1, π2 > 0, π̄3 > 1 − π1 and symmetric matrices Pm > 0, Wm > 0,
K1q, K2q ∀m,n ∈ N1, ∀q ∈ N2, such that the following inequalities hold:

[

−π̄1P̄m Ψ1mq

∗ Ψ2m

]

< 0, (13)

[

−π̄2W̄m Ψ3mq

∗ Ψ4m

]

< 0, (14)

P̄m < ̺W̄m, (15)

W̄m < ̺P̄m, (16)

0 <
ln π̄2 − ln π̄3

− ln π̄1 + ln π̄3
< β − 1, (17)

ln π̄3 +
ln ̺

φ
< 0, (18)

where

π̄1 = 1− π1, π̄2 = 1 + π2,

Ψ1mq = [
√

δm1A′
m1

√

δm2A′
m2 · · ·

√

δmN2
A′

mN2
], Ψ2m = − diag{Pm,Pm, . . . ,Pm

︸ ︷︷ ︸

N2

},
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Ψ3mq = [
√

δm1A′′
m1

√

δm2A′′
m2 · · ·

√

δmN2
A′′

mN2
], Ψ4m = − diag{Wm,Wm, . . . ,Wm

︸ ︷︷ ︸

N2

},

A′
mq = Ām + B̄mKq, A′′

mq = Ām, Pm =
1

2

(
N1∑

n=1

σmnPn

)−1

, Wm =
1

2

(
N1∑

n=1

σmnWn

)−1

,

P̄m = diag{Pm, Pm}, W̄m = diag{Wm,Wm}.

Proof. Firstly, we consider the case where no DoS attack occurs. The Lyapunov function for the
dynamic hidden 2-D MJCPSs (11) at global instant κ is provided as

Vα1
(κ) = x̄T

i,jP̄mx̄i,j , κ = i+ j. (19)

For the next global instant κ+ 1, it has

Vα1
(κ+ 1) = xT

i+1,j+1P̃mxi+1,j+1, (20)

where P̃m = 2Pm.
Following the trajectories of the dynamic hidden 2-D MJCPSs renders

∆Vα1
(κ) = Vα1

(κ+ 1)− Vα1
(κ)

= xT
i+1,j+1P̃mxi+1,j+1 − x̄T

i,j P̄mx̄i,j . (21)

For 0 < π1 < 1, we define

J1 = E{∆Vα1
(κ) + π1Vα1

(κ)}

=

N1∑

n=1

σmn

N2∑

q=1

δmq{xT
i+1,j+1P̃nxi+1,j+1}+ (π1 − 1)x̄T

i,j P̄mx̄i,j . (22)

Form condition (13), we know J1 < 0, which means

E{∆Vα1
(κ)} < −π1E{Vα1

(κ)}. (23)

Notice that inequality (11) can only be guaranteed if no DoS attack appears. Then, we move on to
discuss the case where the dynamic hidden 2-D MJCPSs (11) suffer from DoS attacks. The Lyapunov
function is given as

Vα0
(κ) = x̄T

i,jW̄mx̄i,j , κ = i+ j. (24)

Similarly, for π2 > 0, we have

J2 = E{∆Vα0
(κ)− π2Vα0

(κ)}

=

N1∑

n=1

σmn

N2∑

q=1

δmq{xT
i+1,j+1W̃nxi+1,j+1} − (π2 + 1)x̄T

i,jW̄mx̄i,j . (25)

Condition (14) can ensure J2 < 0, that is,

E{∆Vα0
(κ)} < π2E{Vα0

(κ)}. (26)

Let V (κ) = Vα1
(κ) when no DoS attack arises; if not, V (κ) = Vα0

(κ). Next, we set out to analyze the
relationships between V (κ) and V (0) ∀κ > 0.

Keeping inequalities (23) and (26) in mind, one has

E{Vα1
(κ+ 1)} < π̄1E{Vα1

(κ)}, (27)

E{Vα0
(κ+ 1)} < π̄2E{Vα0

(κ)}. (28)

Besides, conditions (15) and (16) can derive

E{Vα1
(κ)} < ̺E{Vα0

(κ)}, (29)
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E{Vα0
(κ)} < ̺E{Vα1

(κ)}. (30)

Under DoS attacks, it yields from inequalities (27)–(30) that

E{V (κ)} < π̄2E{Vα0
(κ− 1)}

< π̄2
2E{Vα0

(κ− 2)}
...

< π̄
κ−Don

n

2 E{Vα0
(Don

n )}
< π̄

κ−Don

n

2 ̺E{Vα1
(Don

n )}
< π̄

κ−Don

n

2 π̄1̺E{Vα1
(Don

n − 1)}
...

< π̄
κ−▽(0,κ)
1 π̄

▽(0,κ)
2 ̺△(0,κ)V (0). (31)

On the other hand, for κ /∈ [Don
n , Doff

n ), the identical result as inequality (31) can be derived, and the
details are omitted here. Then, from inequality (31), we get

EV (κ) < π̄
κ−▽(0,κ)
1 π̄

▽(0,κ)
2 ̺△(0,κ)V (0)

= e(κ−▽(0,κ)) ln π̄1+▽(0,κ) ln π̄2+△(0,κ) ln ̺

< e(κ−▽(0,κ)) ln π̄1+▽(0,κ) ln π̄2+(ρ+ κ
φ
) ln ̺. (32)

In the light of Assumption 3, one has

(κ−▽(0, κ)) ln π̄1 +▽(0, κ) ln π̄2

6

(

κ− λ− κ

β

)

ln π̄1 +

(

λ+
κ

β

)

ln π̄2

= λ (ln π̄2 − ln π̄1) + κ

[(

1− 1

β

)

ln π̄1 +
1

β
ln π̄2

]

. (33)

By means of condition (17), it yields

ln π̄2 < −(β − 1) ln π̄1 + β ln π̄3, (34)

that is,
(

1− 1

β

)

ln π̄1 +
1

β
ln π̄2 < ln π̄3. (35)

Combining inequality (33) with inequality (35), we acquire

(κ−▽(0, κ)) ln π̄1 +▽(0, κ) ln π̄2 < κ ln π̄3 + λ (ln π̄2 − ln π̄1) . (36)

Substituting inequality (36) into inequality (32) can render

EV (κ) < e[λ(ln π̄2−ln π̄1)+ρ ln ̺]e(ln π̄3+
ln ̺
φ )κV (0)

=
π̄λ
2 ̺

ρ
π

π̄λ
1

(

π̄3̺
1

φ

)κ

V (0). (37)

Let

cE‖xi,j‖2 6 EV (κ), V (0) 6 d‖x0,0‖2, (38)

where

c = min

{

min
m∈N1

{λmin{P̄m}}, min
m∈N1

{λmin{W̄m}}
}

,
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d = max

{

max
m∈N1

{λmax{P̄m}}, max
m∈N1

{λmax{W̄m}}
}

.

Inequalities (37) and (38) lead to

E‖xi,j‖2 <
d

c

π̄λ
2 ̺

ρ
π

π̄λ
1

(

π̄3̺
1

φ

)κ

‖x0,0‖2. (39)

From inequality (18), we have π̄3̺
1

φ < 1, which together with (39) and Assumption 1 implies that
E‖xi,j‖2 → 0 as κ → ∞. Then, the dynamic hidden 2-D MJCPSs (11) are guaranteed to be AMSS,
which ends the proof.

Although some brief conditions are attained in Theorem 1, there exist some nonlinearities which will
be a hindrance to the controller design. Therefore, in the following, we will perform linearization to the
conditions in Theorem 1.

Theorem 2. For given scalars ρ > 0, λ > 0, φ > 0, β > 1, if there exist ̺ > 1, 0 < π1 < 1, π2 > 0,
π̄3 > 1 − π1 and positive-definite symmetric matrices P̂m, Ŵm, X1m, X2m, matrices G1, G2, K1µ and
K2µ ∀m,n ∈ N1, ∀q ∈ N2, such that the following linear matrix inequalities hold:

[

−X1m X1m

∗ −Pm

]

< 0, (40)

[

−X2m X2m

∗ −Wm

]

< 0, (41)

Ω̃2×2 < 0, (42)

Π̃2×2 < 0, (43)

P̂m < ̺Ŵm, (44)

Ŵm < ̺P̂m, (45)

where

X1m =
[√

2σm1X1m,
√
2σm2X1m, . . . ,

√

2σmN1
X1m

]

,

X2m =
[√

2σm1X2m,
√
2σm2X2m, . . . ,

√

2σmN1
X2m

]

,

Pm = − diag{P̂1, P̂2, . . . , P̂N1
}, Wm = − diag{Ŵ1, Ŵ2, . . . , ŴN1

},
Ω̃11 = −π̄1diag{GT

1 − P̂m +G1, G
T
1 − P̂m +G1}, Ω̃12 =

[√

δm1Υ̃1m1

√

δm2Υ̃1m2 · · ·
√

δmN2
Υ̃1mN2

]

,

Υ̃1mq =

[

GT
1 A

T
1m +KT

1pB
T
1m

GT
1 A

T
2m +KT

2pB
T
2m

]

, Ω̃22 = − diag{X1m, X1m, . . . , X1m
︸ ︷︷ ︸

N2

},

Π̃11 = −π̄2diag{GT
2 − Ŵm +G2, G

T
2 − Ŵm +G2}, Π̃12 =

[

δm1Υ̃2m1 δm2Υ̃2m2 · · · δmN2
Υ̃2mN2

]

,

Υ̃2mq =

[

GT
2 A

T
1m

GT
2 A

T
2m

]

, Π̃22 = − diag{X2m, X2m, . . . , X2m
︸ ︷︷ ︸

N2

},

then the dynamic hidden 2-D MJCPSs (11) are guaranteed to be AMSS. In addition, the asynchronous
controller gain can be described by K1µ = K1µG

−1, K2µ = K2µG
−1.

Proof. First, we prescribe the following relationship:

P̂m = P−1
m , Ŵm = W−1

m , K1µ = GK1µ, K2µ = GK2µ.

It yields from condition (40) that −Pm < −X1m. Then, carrying on a congruence transformation to
inequality (13) with diag{G,G, I, I, . . . , I

︸ ︷︷ ︸

N1

}, one has

Ω2×2 < 0, (46)
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where

Ω11 = −π̄1diag{GT
1 P̂

−1
m G1, G

T
1 P̂

−1
m G1}, Ω12 =

[√

δm1Υ1m1

√

δm2Υ1m2 · · ·
√

δmN2
Υ1mN2

]

,

Υ1mq =

[

GTAT
1m +GTKT

1pB
T
1m

GTAT
2m +GTKT

2pB
T
2m

]

, Ω22 = − diag{X1m, X1m, . . . , X1m
︸ ︷︷ ︸

N2

}.

KeepingGTP̂−1
m G > GT−P̂m+G in mind, we know that inequality (40) can be deduced from inequality

(13). Similarity, inequality (41) is evolved from inequality (14). Besides, inequalities (15) and (16) are
equivalent to inequalities (44) and (45), respectively.

Remark 3. Referring to [38], we know that computational complexity can commonly be characterized
by the number of decision variables. In Theorem 1, the number of decision variables is q(q + 1)N1 +
2pqN2 + 4, where N1 and N2 denote the number of system modes and asynchronous controller modes,
respectively. However, the restraints in Theorem 1 have some nonlinearities, which are an obstacle to
the design of the controller. Theorem 2 is proposed to linearize the restraints in Theorem 1, such that
the resultant results can be solved by Matlab linear matrix inequality toolbox, directly. The number
of decision variables in Theorem 2 is 5q2N1 + 3qN1 + 2pqN2 + 4, which indicates that the results of
the linearization of Theorem 2 introduce conservatism due to the increased computational complexity.
Therefore, designing an intelligent algorithm to address the nonlinear problem without introducing any
conservatism will be one of our next research efforts.

4 Illustrative example

Consider metal rolling process (MRP)-based 2-D MJCPSs shown in Figure 3, where the network layer
suffers from DoS attacks, and the physical layer is an MRP. The dynamics of the controlled plant is
modeled as [39]

li(t) =
γ̄m

γ̄m +Ma2

{(

1 +
Ma2

γ1m

)

li−1(t)−
FM

γ2

}

, (47)

where a denotes the differentiation operator d/d(t), li(t) is the ith actual roll-gap thickness, FM represents
the force developed by the motor, M means the lumped mass of the roll-gap adjusting mechanism, γ1m,
γ2 and γ̄m refer to the stiffness of the adjusting mechanism spring, the hardness of the metal strip, and
the composite stiffness of the metal strip and the rolling mechanism, respectively.

By adopting a backward difference approach and selecting the sampling period h, MRP (47) can be
transformed into

li (t+ h) = d1mli(t) + d2mli (t− h) + d3mli−1 (t+ h) + d4mli−1(t) + d5mli−1 (t− h) + θmui(t) (48)

with d1m = 2M
γ̄mh2+M

, d2m = −M
γ̄mh2+M

, d3m = 1, d4m = −2γ̄mM
γ1m(γ̄mh2+M) , d5m = γ̄mM

γ1m(γ̄mh2+M) , θm =
−γ̄mh2

γ2(γ̄mh2+M) , γ̄m = γ1mγ2

γ1m+γ2
, m = 1, 2.

Remark 4. Assume that the stiffness of the adjusting mechanism spring in Figure 3 may suffer from
sudden structure change due to long-term use. Fortunately, the Markov jump model is suitable for
describing this phenomenon. In this simulation, we consider the stiffness of the adjusting mechanism
spring switches stochastically in both cases.

Define t = jh, xi,j , [li−1((j + 1)h) li−1(jh) li(jh) li((j − 1)h) li−1((j − 1)h)]T, ui,j , ui(t), and we
can further convert equation (48) to 2-D MJCPSs (1) with

A1m =












d3m d4m d1m d2m d5m

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0












, A2m =












0 0 0 0 0

0 0 0 0 0

d3m d4m d1m d2m d5m

0 0 1 0 0

0 1 0 0 0












,
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Figure 3 (Color online) The framework of the MRP-based 2-D MJCPSs under DoS attacks.

B1m =
[

θm 0 0 0 0
]T

, B2m =
[

0 0 θm 0 0
]T

.

Setting γ11 = 1000 N/mm, γ12 = 3000 N/mm, γ2 = 500 N/mm, M = 50 kg and h = 1 s, it has
Modes 1 and 2.

Mode 1:

A11 =












1.0000 −0.0870 0.2609 −0.1304 0.0435

0 0 1.0000 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0












,

A21 =












0 0 0 0 0

0 0 0 0 0

1.0000 −0.0870 0.2609 −0.1045 0.0435

0 0 1.0000 0 0

0 1.0000 0 0 0












,

B11 =
[

−0.0017 0 0 0 0
]T

, B21 =
[

0 0 −0.0017 0 0
]T

.

Mode 2:

A12 =












1.0000 −0.0299 0.2090 −0.1045 0.0149

0 0 1.0000 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0












,

A22 =












0 0 0 0 0

0 0 0 0 0

1.0000 −0.0299 0.2090 −0.1045 0.0149

0 0 1.0000 0 0

0 1.0000 0 0 0












,

B21 =
[

0 0 −0.0018 0 0
]T

, B22 =
[

−0.0018 0 0 0 0
]T

.
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(a) (b)

(c) (d)

(e)

Figure 4 (Color online) State trajectory xi,j in the open-loop case. (a) x1ij ; (b) x2ij ; (c) x3ij ; (d) x4ij ; (e) x5ij .

The transition probability matrix Λ and the conditional probability matrix ð are given as

Λ =

[

0.3 0.7

0.6 0.4

]

, ð =

[

0.4 0.6

0.8 0.2

]

.

In addition, we set ρ = 5, λ = 5, φ = 2 and β = 3 to construct DoS attacks, and set ̺ = 1, π1 =
0.01, π2 = 0.08 and π̄3 = 1.02 to satisfy conditions (17) and (18). By solving linear matrix inequalities
(40)–(45), we have
Mode 1:

K11 =
[

563.6834 −27.9471 128.4638 −64.1090 14.1515
]

,

K21 =
[

561.2206 −25.8543 126.8595 −58.9354 8.7069
]

;

Mode 2:

K12 =
[

568.7185 −38.0541 136.4158 −69.1605 19.2047
]

,

K22 =
[

565.6775 −30.5889 134.4258 −60.0817 9.5221
]

.
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(a) (b)

(c) (d)

(e)

Figure 5 (Color online) State trajectory xi,j in the closed-loop case. (a) x1ij ; (b) x2ij ; (c) x3ij ; (d) x4ij ; (e) x5ij .

Figure 6 (Color online) Switching mechanism of DoS attacks under Case III.

By doing this, Figure 4 presents the state trajectories of 2-D MJCPSs (1) in the absence of control
actions, in which the five subfigures indicate that 2-D MJCPSs (1) are not stable. Through the asyn-
chronous 2-D controller (9), the state trajectories of the dynamic hidden 2-D MJCPSs (11) are shown
in Figure 5, which suggests that the concerned system is AMSS, although the DoS attacks portrayed in
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Table 1 Comparison of system stability performance under five DoS attacks

Different case DoS frequency ESUM

Case I △(0, 20) = 5 162.0538

Case II △(0, 20) = 7 187.3809

Case III △(0, 20) = 9 197.0091

Case IV △(0, 20) = 11 212.7102

Case V △(0, 20) = 13 235.5337

0

0

1

Case I Case II Case III Case IV Case V

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

κ

Figure 7 (Color online) Five different DoS attack sequences.

Figure 6 appear.
Table 1 gives the comparison of system stability performance under five DoS attacks, and the specific

sequences of five DoS attacks are provided in Figure 7. It is worth noting that, for the sake of comparison,
the frequency of the attacks is only increased from the original. Set ESUM = E{‖xp,q‖2} to reflect the
quality of system stability. It is not difficult to understand that the smaller the value of ESUM, the better
the system stability performance of the system. From Table 1, we can claim that the increase in attack
frequency does weaken the stability performance of the system.

Remark 5. Hu et al. [40, 41] utilized parameter Tmin
off to signify the uniform lower boundedness of the

sleeping period in every active period T , resulting in the DoS attacks being periodic. However, attackers
may launch cyber attacks from time to time to prevent attacks from being detected or circumvented.
The DoS attacks in this article are free from periodicity constraints through frequency and duration
description, which are more general than the periodic DoS attacks in [40, 41].

Remark 6. Note that the existing results on DoS attacks in [8–10] are for 1-D systems. Due to the
increase in dimensionality, the above conclusions cannot be directly applied to 2-D systems. At present,
there are very few studies on the dynamic behavior analysis of 2-D systems under DoS attacks. In this
article, we introduce the concepts of instants and global states into 2-D MJCPSs, which can help describe
the two constraints of frequency and duration of DoS attacks in 2-D MJCPSs.

5 Conclusion

The objective of this work is to investigate the asynchronous control issue for 2-D MJCPSs suffering
from aperiodic DoS attacks. At first, the asynchronous phenomenon between the concerned system and
the 2-D controller is carried out by an HMM. Then, the concepts of time instants and global states are
introduced into 2-D MJCPSs, which can help to describe the frequency and duration of DoS attacks for
2-D MJCPSs. Subsequently, by the multi-Lyapunov function method and iterative technology, sufficient
conditions are achieved to ensure that the dynamic hidden 2-D MJCPSs are AMSS. Finally, we utilize
an application example related to the MRP to clarify the feasibility and effectiveness of the proposed
asynchronous control scheme under aperiodic DoS attacks.
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