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In the last few decades, the extended state observer

(ESO) [1] has been demonstrated to be an effective tool

for dealing with uncertain control systems and many modi-

fied ESOs have been proposed to get the desired estimation

performance [2–4]. Nevertheless, most of these methods as-

sume that part of the model information is already known.

Therefore, a data-driven tuning law for ESO without assum-

ing model information for disturbances and noise seems to

be a significant open issue.

Reinforcement learning (RL) is a crucial part of machine

learning [5] that aims to search for a policy under which the

agent can maximize the cumulative rewards. Thus, the RL

approach is an appealing tool for a learning-based tuning

law for ESO.

Furthermore, since the output measurements are sample-

data, it is straightforward to develop a discrete ESO based

on the discretized system model and tune the gains of

the ESO online through RL. Consequently, the reinforce-

ment learning ESO (RLESO) will be discrete and time-

varying, and the existing findings, almost all of which are for

continuous-time constant gain ESO, cannot be applied. It

is inferred that the discrete-time RLESO design with guar-

anteed stability is a critical and challenging issue to be ex-

amined.

In this study, RLESO, whose gains can be optimized on-

line with a data-driven mechanism, is proposed. The major

contributions are threefold:

(i) The framework of RLESO is proposed for a class of

sampled-data control systems under unknown dynamics and

stochastic noise.

(ii) The stability of RLESO is assessed and the quan-

titative conditions to guarantee the boundedness of the

RLESO’s estimation error using mean square are intro-

duced.

(iii) It is proven that convergence to zero of the estima-

tion error can be guaranteed if the noise’s variance and the

disturbance’s higher-order derivatives approach zero as time

goes to infinity.

Problem formulation. Consider the class of uncertain

sampled-data systems with continuous dynamics,





ẋ(t) = Ax(t) +B(u(t) + d1(x(t), t)),

y(kh) = x1(kh) + v(kh),

u(t) = u(kh),

t ∈ [kh, kh+ h), k > 0,

(1)

where t is the time, x(t) = [x1(t), x2(t), . . . , xn(t)]T denotes

the system state vector, u(t) ∈ R depicts the system input,

d1(x(t), t) ∈ R comprises both unknown dynamics and ex-

ternal disturbances, h is the sampling period, k ∈ N is the

discrete-time index, y(kh) is the system output, and v(kh)

is the measurement of stochastic noise at the k-th sampling

time. A and B are defined as

A =




0 1 · · · 0

...
...
. . .

...

0 0 · · · 1

0 0 · · · 0



, B =




0

...

0

1



.

Specifically, this study assumes that d1(t) satisfies [6, 7]

Assumption 1.

Assumption 1. For t ∈ [iph, (i + 1)ph), i = 0, 1, . . . , we

have

ḋ1(t) = d2(t), . . . , ḋm−1(t) = dm(t), ḋm(t) = ci + σ(t), (2)

where {ci}
∞

i=0 is a stochastic sequence satisfying

Rc
i , E[ci

2] < Rc ∀i, E[cicj ] = 0 ∀i 6= j. (3)

{σ(t)}t>0 is a stochastic process satisfying

Rσ
k , E

[∫ (k+1)h

kh

σ2(s)ds

]
< Rσ ∀k, (4)
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where Rc and Rσ are positive constants. More explanations

for Assumption 1 are given in Appendix B.

A popular assumption regarding measurement noise

{v(kh)}∞
k=1 is explained below [4].

Assumption 2.

Rv
k , E[v(kh)2] < Rv ∀k, (5)

where Rv is positive.

After defining z = [x, d1, d1
(1), . . . , d1

(m−1)]T, the linear

ESO is designed as (6) to estimate z,

[
ẑ((k + 1)h)

ĉ((k + 1)h)

]
=

[
Az Bd

0 1

][
ẑ(kh)

ĉ(kh)

]
+

[
Bx

0

]
u(kh)

+ hβk(y(kh)− ẑ1(kh)), (6)

where βk = [βk,1, . . . , βk,m+n+1]
T is the gain vector. Defi-

nitions for ẑ, ĉ, Az , Bd, and Bx are given in Appendix C.

Framework of RLESO. The value of ESO is calculated

at the end of each sample period, but the RL tuning is per-

formed for every q sample periods, that is, the gains of ESO

are updated every q samples. More details on the RLESO

framework are provided in Appendix D.

The three basic elements of the RL algorithm are state,

action, and reward. The design procedures for these ele-

ments are presented below.

State. State sj = [sj,1, sj,2], where




sj,1=β(j−1)q,

sj,2=
1

q

q−1∑
i=0

|y((j−1)qh+ ih)− x̂1((j−1)qh+ ih)|.
(7)

Action. The action aj = [aj,1, . . . , aj,m+n+1] is chosen

in Λ1 × · · · ×Λm+n+1 and {Λi}
n+m+1
i=1 is a real number set

with finite elements, in which the lower and upper bounds

are represented as ai and ai, respectively.

After the action is identified, the gains will be updated

at k = jq, j = 1, 2, . . . , i = 1, 2, . . . , m+ n+ 1,

βjq,i =






β
i
, β(j−1)q,i + aj,i < β

i
,

β(j−1)q,i + aj,i, β
i
6 β(j−1)q,i + aj,i 6 βi,

βi, β(j−1)q,i + aj,i > βi,

(8)

where β
i
and βi are the predetermined bounds of βk,i. In

rest of the cases, βk remains the same, namely,

βk = βk−1, mod(k, q) 6= 0. (9)

Reward. The reward function is set as

rj =

{
− sj,2/s̄, if sj,2 6 s̄,

− rp, if sj,2 > s̄,
(10)

where s is a pre-set threshold value of the estimation error

and rp > 1 is a penalty term.

Stability and convergence analysis for RLESO. Provided

exi
= xi − x̂i, i = 1, . . . , n, edi = di − d̂i, i = 1, . . . ,m, and

ec = c−ĉ, the corresponding dynamic equation of estimation

error can be written as

ek+1 = Akek + ξk+1, (11)

where ek = [ex1
, . . . , exn

, ed1 , . . . , edm , ec]T(kh) and

Ak =




1− hβk,1 h · · ·
hm+n

(m+ n)!
...

...
. . .

...

−hβk,m+n 0 · · · h

−hβk,m+n+1 0 · · · 1




. (12)

The definitions of the mathematical notation are listed in

Appendix C.

Assumption 3. h, {Λi}
n+m
i=1 , {β

i
}m+m
i=1 , and {βi}

m+m
i=1

are set to make the eigenvalues of Ak are all in the unit

circle ∀k.

Theorem 1. Consider the sampled-data system (1) and

the RLESO with Assumptions 1 and 2. Let the action set

satisfy

2P 2Ã

√√√√
m+n+1∑

i=1

max{ai
2, ai2} < 1, (13)

where

Ã = max
k

√
tr(AT

k
Ak), P = 1+

Ã2 − Ã2N

1− Ã2
+

(ρ̄+ ζ)2(N+1)

1− (ρ̄+ ζ)2
.

(14)

Then

sup
k

‖ek‖L2
< ∞.

Theorem 2. Consider the sampled-data control system

(1) and the RLESO (6) with Assumptions 1 and 2. Fol-

lowing the same parameter settings in Theorem 1, if the

uncertain dynamics and measurement noise satisfy

lim
k→∞

(
Rc

k
2 +Rv

k
2 + Rσ

k
2
)
= 0, (15)

then

lim
k→∞

‖ek‖L2
= 0.

The proofs of Theorems 1 and 2 are provided in Ap-

pendix E.

Conclusion. This study proposes the RLESO to optimize

the performance of the ESO. The framework of RLESO has

been established, and mean square boundedness, as well as

convergence of the estimation error, has been examined.
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