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Appendix A Motivation of the work

In the last decades, estimating and negating uncertain dynamics as well as disturbances has been shown to be an effective approach

in dealing with uncertain control systems. The fundamental issue of such approach is to design observers/estimators for uncertain

dynamics or disturbances. As is well known, many popular observers have been developed for different kinds of systems, including

uknown input observer (UIO) [1], disturbance observer based control (DOBC) [2, 3], extended state observer (ESO) [4], etc. ESO

is designed to take the external disturbances and internal uncertainties as an extend state “total disturbance” and estimate it in

real time together with system states. It has been proven that linear ESO (LESO) can deal with nonlinear unknown dynamics and

piecewise disturbances [5]. In several industrial sectors, ESO and ESO based control had been applied widely, such as two-mass

actuator systems [6], dc motor system [7], and spacecraft systems [8], as well as incipient fault diagnosis [9].

In the past years, substantial developments have been made for the continuous-time ESO for both stability and convergence,

including both linear ESO [10, 11], nonlinear ESO (NLESO) [12] and time-varying ESO [13]. Aiming to get desired estimation

performance, many modified ESOs with time-varying gains have been proposed. Liu et al. [14] combined LESO with an adaptive

approach and applied it to electro-mechanical servo system. But the optimization for ESO’s parameters under measurement noise

is not considered. Wei et al. [13] designed LESO with decreasing gains to reduce the influence of measurement noise in system

steady state. But the tuning law of gains is predetermined, which means it cannot adjust for disturbances outside the model. There

are analogous attempts in [15] and [16]. However, most of these papers are based on systems with continuous input and output.

On the contrary, in application, the system control input and output are mostly sampled-data. Therefore, it is necessary to explore

how to design discrete-time ESO.

Compared with continuous ESO, there is still little relevant research about the optimality and stability of discrete-time ESO in

the existing literatures. In [17], the stability of a third order discrete-time LESO, which has third order dynamics and was used to

estimate the states and the“total disturbance” of a 2 order plant, was analyzed and the effect of ESO gains and sampling period on

stability is revealed. Li et al. [18] proposed a design method of NLESO over discrete domain and obtained a sufficient condition to

guarantee the absolutely stability of the estimation error system. Combined with the Kalman filter, [19] proposed extended state

based Kalman filter (ESKF) to weaken the influence of noises and proved its stability. However, the upper bound on the variance

of noise is needed to be the prior information. Thus, data-driven based tuning law for ESO without assuming model information

of disturbances and noises seems to be an important open issue.

Reinforcement learning (RL) is an important segment of machine learning [20]. With the rise of reinforcement learning, many

researchers try to apply it to the design of controllers and achieve great success [21–26]. In a general reinforcement learning prob-

lem, an agent in a certain state has several actions to choose and receive the next state and reward after interacting with the

environment. The objective of reinforcement learning is to search a policy under which the agent can maximize the cumulative

rewards. Thus, reinforcement learning approach seems to be an appealing tool for learning based tuning law for ESO. On the other

hand, due to the unmeasurable property of the uncertain dynamics and disturbances, the principles of choosing states, reward and

actions in reinforcement learning algorithm for ESO are not obvious. Additionally, since the output measurements are sample-data,

it is straightforward to design a discrete ESO based on the discretized system model and tune the gains of ESO on-line through

RL. As a result, the reinforcement learning ESO (RLESO) will be discrete and time-varying. However, the existing results, almost

all of which are for continuous-time constant gain ESO, cannot be applied. Thus, RLESO design with guaranteed stability is an

important and challenging issue to be studied.

Appendix B Explanations for Assumptions 1

Notice that d1(x(t), t) is used to model the dynamic or signal in physical world, then it is reasonable to assume d1(x(t), t) to be

a m-times differentiable function and dm−1 can be approximated by a piece-wise linear function, which means ḋm , dm

dtm (d1)

can be approximated by a constant ci in every p sampling intervals. The σ(t) can be seen as the approximation error. In the

existing papers, it is popular to assume that d(m) is bounded [27]. The bounded assumptions of the variance and the integral of

the approximation error can be regarded as the equivalent form of the bounded assumption of d(m) in the discrete case.
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Appendix C Mathematical notations

Appendix C.1 Exact discrete model

Since the exact information of x(kh) and d(x(kh), kh) cannot be available in practice, it is necessary to estimate x(kh) and

d(x(kh), kh) in real time. In the past years, many effective observer/estimator design methods have been proposed. In this paper,

we will consider the discrete-time ESO design for the hybrid system (1), and adopt a reinforcement learning method for tuning the

parameters of ESO. Define z = [x, d] and combine (1) with (3) , we have

ż = A1z + B1u+ B2(ci + σ), (C1)

where

A1 =



0 1 · · · · · · 0

0 0 1 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · · 1

0 0 0 · · · 0


(n+m)×(n+m)

, B1 =


0(n−1)×1

1

0m×1

 , B2 =

[
0(n+m−1)×1

1

]
.

For ∀t ∈ [t0, t0 + h], the solution of (C1) is

z(t) = e
A1(t−t0)

z(t0) +

∫ t

t0

e
A1(t−τ)

B1u(τ)dτ+

∫ t

t0

e
A1(t−τ)

B2(ci + σ)dτ.

Let t = (k + 1)h and t0 = kh, then we have

z((k + 1)h) = Azz(kh) + Bxu(kh) + Bdc(kh) + l(kh), (C2)

where

Az =



1 h
h2

2!
· · ·

hm+n−1

(m+ n− 1)!

0 1 h · · ·
hm+n−2

(m+ n− 2)!
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · h

0 0 0 · · · 1


, Bx =



hn

n!
.
.
.

h2

2!
h

0m×1


, Bd =



hm+n

(m+ n)!
.
.
.

h2

2!
h


,

l(kh) =



∫ (k+1)h
kh

((k+1)h−τ)m+n−1

(m+n−1)!
σ(τ)dτ

.

.

.∫ (k+1)h
kh ((k + 1)h− τ)σ(τ)dτ∫ (k+1)h

kh σ(τ)dτ

 .

(C3)

Appendix C.2 Notation in equation (12)

Ak =



1− hβk,1 h · · ·
hm+n

(m+ n)!
.
.
.

.

.

.
. . .

.

.

.

−hβk,m+n 0 · · · h

−hβk,m+n+1 0 · · · 1


, (C4)

ξk+1 = B̄kv(kh) + δk, B̄k = −h


β1(kh)

β2(kh)

.

.

.

βm+n+1(kh)

 , δk =

 l(kh)

c((k+1)h)− c(kh)

 . (C5)

Appendix D More details for the design of RLESO

Taking the jth to (j + 2)th tunings as an example, the working mechanism of RLESO is shown in Fig. C1.



Sci China Inf Sci 3

( 1)jq h ( 2)jq h (( 1) 1)j q h  (( 1) 2)j q h 

 

Estimation of RLESO is updated every sample.

RL tuning algorithm of gains is iterated every q samples.

t
jqh ( 1)j qh ( 2)j qh

Figure D1 The working mechanism of RLESO from t = jqh to t = (j + 2)qh

Remark 1. The current ESO gains and the estimation errors are the two elements that reflect the current working condition

of ESO. However, the estimation error of the total disturbance cannot be accessed because the total disturbance is unknown. In

our experience, when ESO’s estimation error of the total disturbance is small, its estimation error of x1 is also small, and vice

versa. This fact motivate us to replace the estimation error of the total disturbance with the estimation error of x1, which is a key

step in designing RLESO. Hence, the state contains two elements: i) The current observer gains, i.e., sj,1. ii) The average of the

cumulative estimation error for x1 over the past q sampling periods, i.e., sj,2.

Remark 2. For general reinforcement learning algorithms, the reward function rj is the most important factor to be designed.

As discussed in Remark 1, this paper uses the estimation error of x1 to reflect the estimation effect of ESO. Naturally, sj,2 is used

to design the reward function. Let s̄ be the maximum estimation error to be tolerated. On the one hand, sj,2 > s̄ indicates that

the system may be in a transient state, or a sudden disturbance has occurred. In this case, the penalty term −rp will give a quick

response and the RLESO can adjust the observer gains. On the other hand, sj,2 6 s̄ indicates that the ESO’s estimation is in

steady state and its estimation error is small. Thus, a larger reward −sj,2/s̄ ∈ [−1, 0] is given.
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Figure D2 The frame of RLESO at t = jqh

The frame of RL is shown in Fig. D2. For the RL decision process in Figure 2, notice that we did not specify a particular RL

algorithm. In fact, this is one of the characteristics of our work: we give a reasonable way to design states, actions, and rewards,

and one can combine them with different RL algorithms depending on the situation, rather than sticking to one algorithm.

Appendix E Supplement to Theorems 1-2
Before stating the main theorem, we introduce the L2-norm:

Definition 1. For a vector or matrix X, its L2-norm in the sense of mean square is defined as:

‖X‖L2
, {E[‖X‖22]}1/2. (E1)

The dynamics of estimation error is a time-varying random system whose stability is jointly determined by time-varying matrix,

measurement noise, and discretization error. RLESO is time-varying and discrete, so its stability cannot be guaranteed simply by

making the eigenvalues of Ak in the unit circle in every iteration. Next, the properties of the time-varying matrix will be analyzed.

Lemma 1. Define −, where ρ(Ak) means the spectral radius of Ak. For any ζ > 0 such that ζ + ρ̄ < 1, there exists a positive

number N such that ∀n > N , it holds

‖Akn‖2 < (ρ̄+ ζ)
n
, ∀k > 0. (E2)

Proof of Lemma 1. By Gelfand’s Formula,

ρ(Ak) = lim
n→∞

‖Akn‖1/n2 .

As a result, for any ζ > 0 s.t. ζ + ρ̄ ∈ (0, 1), there exists a positive number N such that ∀n > N ,∣∣∣ρ(Ak)− ‖Akn‖1/n2

∣∣∣ < ζ, ∀k,

so

‖Akn‖2 < (ρ(Ak) + ζ)
n 6 (ρ̄+ ζ)

n
. �
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Appendix E.1 Proof of Theorem 1.

Step 1. First, the uniform exponential stability of ek+1 = Akek will be proved.

By the fact that ‖Ak‖2 6
√
tr(ATkAk), we have

max
k
‖Ak‖2 6 Ã , max

k

√
tr(ATkAk). (E3)

Considering the Lyapunov equation

A
T
k Pk+1Ak + I = Pk+1, (E4)

it can be verified that the following symmetric positive definite matrix Pk+1 is the solution of (E4):

Pk+1 = I +
∞∑
i=1

(A
T
k )
i
(Ak)

i
.

Suppose P 1
k+1 and P 2

k+1 are all solutions of (E4), then

P
1
k+1 − P

2
k+1 = A

T
k

(
P

1
k+1 − P

2
k+1

)
Ak =

(
A
T
k ⊗ A

T
k

)
vec(P

1
k+1 − P

2
k+1),

where ⊗ is the Kronecker product. By Assumption 3, any two eigenvalues of Ak multiplied by each other cannot be 1, which means

that AT ⊗ AT is full rank. Therefore, P 1
k+1 − P

2
k+1 must be 0 and Pk+1 is the unique solution of (E4).

The upper bound of ‖Pk+1‖2 is:

‖Pk+1‖2

61 +

∞∑
i=1

‖Aki‖22

61 +

N∑
i=1

‖Ak‖2i2 +

∞∑
i=N+1

‖Aki‖22

61 +

N∑
i=1

Ã
2i

+

∞∑
i=N+1

(ρ̄+ ζ)
2i

61 +
Ã2 − Ã2N

1− Ã2
+

(ρ̄+ ζ)2(N+1)

1− (ρ̄+ ζ)2
= P.

(E5)

Obviously, {Pk} is absolutely convergent and the norm of Pk is bounded:

1 6 ‖Pk‖2 6 P, ∀k. (E6)

Defining the Lyapunov function Vk(e) = eTPke, it is easy to see that

‖e‖22 6 Vk(e) 6 P‖e‖22.

Next, by subtracting two consecutive instances of (E4), we have

Pk+1 − Pk

=A
T
k Pk+1Ak + I − ATk−1PkAk−1 − I

=A
T
k Pk+1Ak − ATk PkAk + A

T
k PkAk − A

T
k PkAk−1 + A

T
k PkAk−1 − ATk−1PkAk−1

=A
T
k (Pk+1 − Pk)Ak + A

T
k Pk (Ak − Ak−1) + (Ak − Ak−1)

T
PkAk−1,

(E7)

and then

A
T
k (Pk+1 − Pk)Ak − (Pk+1 − Pk) = −ATk Pk(Ak − Ak−1)− (Ak − Ak−1)

T
PkAk−1. (E8)

Define

Lk = A
T
k Pk(Ak − Ak−1) + (Ak − Ak−1)

T
PkAk−1.

Obviously,

‖Lk‖2 6 2‖Ak − Ak−1‖2PÃ. (E9)

It can be verified that the solution of (E8) is

Pk+1 − Pk = Lk +

∞∑
i=1

(A
T
k )
i
Lk(Ak)

i
, (E10)

and the uniqueness of the solution is verifiable. The verification method is the same as (E4).
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Then
‖Pk+1 − Pk‖2

6‖Lk‖2

[
1 +

∞∑
i=1

‖(ATk )
i‖2‖Ak

i‖2

]
62‖Ak − Ak−1‖2PÃ · P (by (E5))

=2P
2
Ã‖Ak − Ak−1‖2

=2P
2
Ã

√√√√m+n+1∑
i=1

(βk,i − βk−1,i)
2

62P
2
Ã

√√√√m+n+1∑
i=1

max{a2
i , ā

2
i }

<1. (by (13))

(E11)

As a result, there is a positive number µ ∈ (0, 1) satisfying

‖Pk+1 − Pk‖2 6 µ < 1. (E12)

Then
Vk+1(ek+1)− Vk(ek)

=e
T
k (−I + Pk+1 − Pk)ek

=− eTk ek + e
T
k (Pk+1 − Pk) ek

6(−1 + µ)e
T
k ek,

(E13)

which means that ek+1 = Akek is uniformly exponentially stable.

Step 2. Next step is to prove ξk+1 is L2 bounded: On one hand, according to Assumption 2, equation (8) and equation (E1),

it can be calculated directly ∥∥B̄kv(kh)
∥∥
L2

=

{
E

[
h

2
m+n+1∑
i=1

β
2
i (kh)v

2
(kh)

]}1/2

=

{
h

2
m+n+1∑
i=1

β
2
i (kh)E

[
v

2
(kh)

]}1/2

6

{
h

2
R
v
k

m+n+1∑
i=1

β̄
2
i

}1/2

6

{
h

2
R
v
m+n+1∑
i=1

β̄
2
i

}1/2

.

(E14)

On the other hand, according to Assumption 1 and (C3), it holds

‖δk‖L2

=

{
E

[
m+n+1∑
i=1

(∫ (k+1)h

kh

((k + 1)h− τ)i

i!
σ(τ)dτ

)2

+ (c((k + 1)h)− c(kh))
2

]}1/2

6

{
E

[
m+n+1∑
i=1

∫ (k+1)h

kh

(
((k + 1)h− τ)i

i!

)2

σ(τ)
2
dτ + (c((k + 1)h)− c(kh))

2

]}1/2

6

{
E

[
m+n+1∑
i=1

(
hi

i!

)2 ∫ (k+1)h

kh

σ(τ)
2
dτ + (c((k + 1)h)− c(kh))

2

]}1/2

=

{
m+n+1∑
i=1

(
hi

i!

)2

E

[∫ (k+1)h

kh

σ(τ)
2
dτ

]
+ E

[
c
2
((k + 1)h)

]
+ E

[
c
2
(kh)

]
− 2E [c((k + 1)h)c(kh)]

}1/2

6

{
m+n+1∑
i=1

(
hi

i!

)2

R
σ
k + R

c
k+1 + R

c
k

}1/2

6

{
m+n+1∑
i=1

(
hi

i!

)2

R
σ

+ 2R
c

}1/2

.

(E15)

Define

H1,k = h

{
R
v
k

m+n+1∑
i=1

β̄
2
i

}1/2

+

{
m+n+1∑
i=1

(
hi

i!

)2

R
σ
k + R

c
k+1 + R

c
k

}1/2

(E16)

and

H1 = h

{
R
v
m+n+1∑
i=1

β̄
2
i

}1/2

+

{
m+n+1∑
i=1

(
hj

i!
)

2

R
σ

+ 2R
c

}1/2

, (E17)
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then

‖ξk+1‖L2
6 H1,k 6 H1.

Step 3.The boundedness of estimation error.

According to (E6) and (E13),

Vk+1(ek+1)

=e
T
k+1Pk+1ek+1

6eTk Pkek − (1− µ)e
T
k ek

=e
T
k Pkek −

(1− µ)

P
Pe

T
k ek

6eTk Pkek −
(1− µ)

P
e
T
k Pkek

=

(
1−

1− µ
P

)
Vk(ek).

. (E18)

Define η2 = 1− (1−µ)
P , then for ∀i 6 k we have

Vk+1(ek+1) 6 η2
Vk(ek)

⇒Vk+1(ek+1) 6 η2(k + 1−i)
Vi(ei)

⇒‖ek+1‖22 6 Vk+1(ek+1) 6 η2(k+1−i)
Vi(ei)

⇒‖ek+1‖2 6 ηk+1−i√
P‖ei‖2.

(E19)

Let Φ(k, i) be the transition matrix of ek+1 = Akek, according to the definition of induced norm, we have

‖Φ(k, i)‖2 = sup
‖ei‖=1

‖Φ(k, i)ei‖2 6
√
Pη

k−i
. (E20)

Define H2 =
√
P

1−η , it is apparent that

k∑
i=1

‖Φ(k, i)‖L2
6 H2, ∀k. (E21)

And then

‖ek+1‖L2
6
√
Pη

k+1‖e0‖2 +

k∑
i=0

‖Φ(kh, ih)ξi+1‖L2
6
√
P‖e0‖2 +H1H2, ∀k. (E22)

At this point, the proof is completed. �

Appendix E.2 Proof of Theorem 2.

The proof is quite like Theorem 1. By condition (15), it holds

lim
k→∞

H1,k = 0.

Thus,

lim
k→∞

‖ek+1‖L2
6 lim
k→∞

√
Pη

k+1‖e0‖2 +H1,kH2 = 0.

Since ‖ek+1‖L2
> 0,

lim
k→∞

‖ek+1‖L2
= 0.

Appendix E.3 The significance of Theorems 1-2

Remark 3. Theorem 1 gives a quantitative condition to guarantee the boundedness of the RLESO’s estimation error. Actually,

(13) clearly provides the design principles for the action set of RLESO.

Remark 4. Theorem 2 states that if the noise and the m-th derivative of total disturbance converge to zero, then the estimation

error of RLESO will converge to 0. Actually, such conditions are satisfied when the system dynamics is in steady-state and there

is no measurement noise.

Appendix F Application to velocity control system of UGV
In this section, the effect of the RLESO will be tested by simulation. In the simulation, the following longitudinal velocity control

system of the unmanned ground vehicle (UGV) will be studied:


v̇(t) = b

mT (t)− F1
m ,

F1(t) = kf (t)m(t),

y(kh) = v(kh) + n(kh),

t > 0, k > 0, (F1)

where m = m0 +mp and the significances of the meanings are shown in Table F1:

For simplicity, the friction resistance is assumed to be affected only by road friction coefficient kf and vehicle total load m.

According to [28], friction coefficients under different road surfaces are shown in Table 2:
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Table F1 Significance of symbol

Symbol Physical Significance Value

v Longitudinal Velocity 25∼50 (km/h)

b Control gain 5000

m0 Mass of the Vehicle 1270 (kg)

mp Load of the Vehicle 140 ∼ 350 (kg)

T Pedal Angle Control input

F1 Frictional Resistance Depends on kf and m

n Measurement Noise ∼ N(0, 0.01)

kf Friction Coefficient Depends on the road surface

Table F2 Friction coefficient under different road surfaces

Road Surface Cement Concrete Cement Concrete Bituminous Concrete Bituminous Concrete

Old/New Old New Old New

kf 0.53 0.82 0.63 0.95

Next, the simulation will be carried out under three different vehicle driving conditions:

Table F3 Different driving conditions

Types of Road Surface Load Variation Velocity (km/h) Load (kg) Noise

Case 1 1 No 50 1270 N(0, 0.01)

Case 2 4 No 50 1270 0

Case 3 4 Yes 0 ∼ 50 1480∼1620 N(0, 0.01)

Taking F2 = ( bm −
b
m0

)T − F1
m as the total disturbance, the LESO is designed as follows:

ẑ1((k + 1)h)

ẑ2((k + 1)h)

ẑ3((k + 1)h)

 =


1− hβk,1 h h2

2

1− hβk,2 1 h

1− hβk,3 0 1



ẑ1(kh)

ẑ2(kh)

ẑ3(kh)

+


h

0

0

 b

m0

T (kh) + h


βk,1

βk,2

βk,3

 y(kh) (F2)

where ẑ = [ẑ1, ẑ2, ẑ3]T is the estimation value of [v, F2, Ḟ2]T .

For the convenience of adjusting parameters, βk adjusted by the “bandwidth method”:


βk,1 = 3ωo(kh),

βk,2 = 3ωo
2(kh)− 1

2hωo
3(kh),

βk,3 = ωo
3(kh),

ωo(kh) ∈ [0.5, 10], ∀k > 0, (F3)

and the eigenvalues of 
1− hβk,1 h h2

2

1− hβk,2 1 h

1− hβk,3 0 1


are all 1− hωo(kh) and the bandwidth ωo is the only gain to be adjusted.

Adopting the following control law

T (t) =
m0

b
[−ẑ2(kh)− kv(ẑ1(kh)− v∗(kh))], t ∈ [kh, (k + 1)h). (F4)

The Q-learning algorithm combined with ε-greedy is selected to make a decision. The factors are designed as follows and the

control block diagram is shown in Fig. F1. Details of the Q-learning based tuning algorithm are given in Algorithm 1.

Parameters: ωo = 0.5, ωo = 10, q=100, greedy rate ε = 0.9, discount factor γ = 0.95 and learning rate αn = 1
n2 [29];

State: sj = [sj,1, s̃j,2], where 
sj,1 = ωo((j − 1)qh),

sj,2 = 1
q

q−1∑
i=0
|e((j − 1)qh+ ih)| , e = y − x̂1,

and

s̃j,2 =



1, sj,2 ∈ [0, 0.002),

2, sj,2 ∈ [0.002, 0.004),

.

.

.

9, sj,2 ∈ [0.016, 0.018),

10, else;

Action : Λ = {−0.5, 0, 0.5};
Reward:

rj−1 =

{
− sj,2/0.2, sj,2 6 0.2,

− 10, sj,2 > 0.2.
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Figure F1 UGV longitudinal velocity control system based on RLESO

Algorithm F1 Tuning algorithm based on Q-learning with ε-greedy method

Initialize j = 0, Q(s, a) = 0 for all s and a. Then select the discount factor γ and learning rate sequence {αj}.
if the experiment has not been finished then

repeat for every q samples:

1. j = j + 1;

2. Get state sj ;

3. Choose action aj which satisfies

aj = argmax
a′∈Λ

Q(sj, a
′
) (F5)

with probability ε, and choose action randomly with probability 1 − ε;

4. Tune the bandwidth:

ωo,jq =


ωo, if ωo,(j−1)q + aj > ωo

ωo,(j−1)q + aj, if ωo,(j−1)q + aj ∈ (ωo, ωo)

ωo, if ωo,(j−1)q + aj 6 ωo

;

5. Observe the next state sj and reward rj−1;

6. Update Q(sj, aj) with

Q(sj, aj) = Q(sj, aj) + αj [rj−1 + γ · max
a′∈A

Q(sj+1, a
′
) − Q(sj, aj)]; (F6)

end if

In Case 1, the vehicle is driving at a steady speed on the concrete road with no load and the total disturbance F2 would be a

constant and the measurement noise n ∼ N(0.01). For a constant disturbance, the ideal bandwidth is small to reduce the impact

of measurement noise. Moreover, simulations with ωo = 0.5, 5 and 10 are set as comparisons. Combined with Fig. F2 and Fig. F3,

it is easy to see the bandwidth is gradually declining and the steady estimation error of the RLESO is smaller and smaller.

Vehicle in Case 2 drives on different roads without measurement noise. Furthermore, it is assumed that the friction changes

linearly during the transition of the road surfaces. As a result, F2 is time-varying red and the bandwidth should be maintained

at a high level to get a good transient performance. And the simulation results in Fig. F4 and Fig. F5 meet expectations: The

bandwidth starts at the minimum value and gradually increases to a high level. And the estimation performance of RLESO is

improved.
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Figure F4 The curves of F2 and ωo (Case 2) Figure F5 The estimation error of the total disturbance (Case

2)

Finally, Case 3 considers that the vehicle is driving on different roads, with loads getting on and off and velocity changing.

To simulate passengers getting on and off and the vehicle stopping and starting, the expected velocity and mass of the vehicle

are shown in Fig. F6. Under this condition, the RLESO is expected to adjust the bandwidth to get a good performance both in

transient state and steady state. Fig. F8 shows a satisfying result: When the disturbance changes, the RLESO can quickly track the

disturbance so the transient performance is great. When the disturbance becomes constant, the influence of noise can be reduced

and a smooth estimation curve can be obtained.
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1500
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0 10 20 30 40 50 60 70 80 90 100
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0

20
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Figure F6 The curves of load and velocity (Case 3)
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3)

In addition to the above studies, considering that the RLESO is based on sampled-data, the influence of the sampling period

h on it will be studied. With the same settings to Case 1, Fig. F9 shows the estimation effect of RLESO under different sampling

period. In the same time, the shorter the sampling period, the more times RLESO can learn and tune, so as to obtain better

estimation effect.

0 1 2 3 4 5 6 7 8 9 10

t(s)

-10

-8

-6

-4

-2

0

2

Figure F9 The curves of estimation error of RLESO under different sampling periods
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