
SCIENCE CHINA
Information Sciences

July 2023, Vol. 66 170204:1–170204:15

https://doi.org/10.1007/s11432-022-3791-8

© Science China Press 2023 info.scichina.com link.springer.com

. RESEARCH PAPER .
Special Topic: Entanglement of Control and Optimization

Predefined-time distributed multiobjective
optimization for network resource allocation

Kunpeng ZHANG1, Lei XU1, Xinlei YI2, Zhengtao DING3, Karl H. JOHANSSON2,

Tianyou CHAI1 & Tao YANG1*

1State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China;
2School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 100 44, Sweden;

3School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK

Received 18 August 2022/Revised 18 March 2023/Accepted 10 May 2023/Published online 27 June 2023

Abstract We consider the multiobjective optimization problem for the resource allocation of the multia-

gent network, where each agent contains multiple conflicting local objective functions. The goal is to find

compromise solutions minimizing all local objective functions subject to resource constraints as much as

possible, i.e., the Pareto optimums. To this end, we first reformulate the multiobjective optimization prob-

lem into one single-objective distributed optimization problem by using the weighted Lp preference index,

where the weighting factors of all local objective functions are obtained from the optimization procedure

so that the optimizer of the latter is the desired Pareto optimum of the former. Next, we propose novel

predefined-time algorithms to solve the reformulated problem by time-based generators. We show that the

reformulated problem is solved within a predefined time if the local objective functions are strongly convex

and smooth. Moreover, the settling time can be arbitrarily preset since it does not depend on the initial

values and designed parameters. Finally, numerical simulations are presented to illustrate the effectiveness

of the proposed algorithms.
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1 Introduction

Recently, resource allocation problems have been substantially studied owing to their wide applications,
including economic dispatch [1–3], robot networks [4], and transportation systems [5]. The goal is to
minimize the sum of all local objective functions subject to resource constraints. Existing studies on
resource allocation problems mainly focus on the single-objective case where each agent contains a sin-
gle local objective function; see [6–8], recent survey paper [9] and references herein. However, many
practical applications tend to contain multiple objective functions. For example, the microgrid in [10]
includes three conflicting objective functions, which are economic, environmental and technical objective
functions, respectively. The related methods solving such a multiobjective optimization problem are gen-
erally summarized into two categories. One is the scalarization approach [11]. For example, in [12–14],
the multiple objective functions are weighted and summed into a new objective function; then the multi-
objective optimization problems are indirectly solved by single-objective methods. The other one is the
evolutionary approach [15], such as ant colony optimization algorithm [16], genetic algorithm [17], particle
swarm optimization algorithm [18], nondominated sorting genetic algorithm II [19], and multiobjective
evolutionary algorithm based on decomposition [20]. The evolutionary approach tends to be stochastic
and lacks theoretical guarantees. On the contrary, owing to the development of single-objective methods,
the scalarization approach has a solid theoretical foundation; see [21, 22].
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The aforementioned studies in [11–22] only provide centralized algorithms, where a center exists to
collect and compute all objective functions. Noticeably, more objectives tremendously increase the com-
putational burden of the center. Even for the single-objective case, the center struggles with computation
and interaction in large-scale networks. Moreover, centralized algorithms are subject to performance lim-
itations, such as a single point of failure, high communication requirement, and limited flexibility and
scalability. Therefore, distributed algorithms have been proposed to overcome the limitations where each
agent only communicates with its neighboring agents and there is no center; see recent survey studies [9,23]
and references herein. Recently, by taking advantage of distributed methods for the single-objective case,
Ref. [24] proposed a distributed multiobjective algorithm for the neurodynamic system. Ref. [25] devel-
oped a distributed diffusion adaptation strategy for the multiobjective optimization problem. Ref. [26]
proposed a distributed framework based on weighted Lp preference index for the constrained multiobjec-
tive optimization problem. Moreover, that framework provides a unique robust Pareto optimum, and it
does not use any prior knowledge that is often unavailable in many real-world applications; see [27, 28].

The above-mentioned distributed algorithms in [24–26] asymptotically or exponentially converge to the
Pareto optimum, which means the Pareto optimum is only obtained as time goes to infinity. However,
it is desired that the Pareto optimum or its neighboring solution is obtained within a certain time in
time-critical applications, such as distributed energy resource distribution [29]. To the best of our knowl-
edge, such a problem has not been well studied in the literature. For the single-objective case, various
finite/fixed/predefined-time distributed algorithms have been proposed in [30–35]. Note that the settling
time based on finite/fixed-time convergence theories depends on the initial states or designed parame-
ters. Instead, the settling time in [35] based on predefined-time convergence theory can be arbitrarily
preset. Inspired by the aforementioned discussions, this paper considers the predefined-time distributed
multiobjective optimization for network resource allocation.

The main contributions are summarized as follows.

(1) We reformulate the multiobjective optimization problem into a single-objective distributed opti-
mization problem by the weighted Lp preference index, where the optimizer of the latter is a Pareto
optimum of the former. Compared with [24, 25], which provide the weighting factors directly based on
prior knowledge containing global information, the weighting factors in this paper are unknown but can
be obtained from the optimization procedure without any prior knowledge, which guarantees that the
optimizer of the reformulated single-objective optimization problem is the desired Pareto optimum of the
multiobjective optimization problem.

(2) We propose novel predefined-time algorithms based on time-based generators for obtaining the
optimizer of the reformulated single-objective optimization problem. Compared with [26], the settling
time of the proposed algorithms can be arbitrarily preset since it does not depend on any initial values
and designed parameters.

(3) We provide the convergence analysis of the proposed algorithms. Compared with [35], where each
agent contains a single objective function, we prove that the proposed algorithms achieve predefine-
time convergence, in which each agent contains multiple conflicting objective functions. The considered
problem is more challenging because of the trade-off among the conflicting objective functions.

The rest of the paper is organized as follows. Section 2 provides some preliminaries and the multi-
objective optimization problem. Section 3 presents the proposed algorithms and convergence analysis.
Section 4 utilizes an example to carry out the verification of the proposed algorithms. Finally, Section 5
offers the conclusion.

Notations. Z+ stands for the set of positive integers. R and RN stand for the set of real numbers
and column vectors involving N dimensions, respectively. ‖·‖ stands for Euclidean norm of vectors.
IN stands for the identity matrix with N dimensions. IK denotes the set {1, 2, . . . ,K}. 1N (or 0N)
represents the N -dimensional column vector whose component is all 1 (or 0). Given one vector x (or

matrix X), xT (or XT) represents its transposition transform, and col (x1, . . . ,xN ) =
[

xT
1 , . . . ,x

T
N

]T
.

Given one differentiable function C, ∇C represents its gradient.

2 Preliminaries and problem formulation

In this section, some preliminaries and the problem formulation are presented.
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2.1 Graph theory

Consider an undirected graph G = (V , E ,A) with N agents, where V = {1, . . . , N} stands for the set of
agents and E ⊆ V × V stands for the set of edges. The weighted adjacency matrix is A = [aij ] ∈ RN×N .
If (j, i) ∈ E , that is, agents j and i can communicate with each other, then aij is positive and is zero
otherwise. Ni = {j ∈ V : (j, i) ∈ E} is the neighbor set of agent i. A path from agent i1 to agent ik is
symbolized as i1, . . . , ik, where (ij , ij+1) ∈ E for j = 1, . . . , k − 1. The graph G is said to be connected
if there exists at least one path between any two distinct agents. The Laplacian matrix is defined as
L = [Lij ] ∈ RN×N , where Lii =

∑N

j=1 aij and Lij = −aij for i 6= j. For an undirected and connected
graph, its Laplacian matrix has an eigenvalue at zero and the other eigenvalues are positive.

2.2 Predefined-time convergence based on time-based generators

Consider a continuous differentiable function ̥ (t) satisfying the following conditions in [35]:

̥ (t) =

{

0, if t = 0,

1, if t > tf ,
˙̥ (t) =

{

0, if t = 0 or t > tf ,

1, if 0 < t < tf ,
(1)

where tf is a predefined time. The function ̥ (t) is referred to as a time-based generator. Next, the
following lemma is useful for subsequent analysis.

Lemma 1 ([35]). Consider the system as follows:

ẋ (t) = −~k (t)x (t) , x (0) = x0 ∈ R
n, (2)

where x (t) ∈ Rn with n ∈ Z+ is the state, ~ is a positive constant, k (t) = ˙̥ (t) / [1−̥ (t) + σ] with
σ ∈ (0, 1) being a design parameter, x (0) is the initial state, and x0 is a constant vector which can
be arbitrarily chosen. Note that the equilibrium point of the system (2) is x (t) = 0n. The state

x (t) converges to the value [σ/ (1 + σ)]~x0 at the predefined time tf if the function ̥ (t) is continuous
differentiable and satisfies (1).

The definition of predefined-time convergence is given as follows.

Definition 1 ([35]). The system (2) is said to achieve predefined-time convergence when the following
conditions are satisfied for arbitrary initial state x (0):



















lim
t→tf

‖x (t)‖ 6 c,

‖x (t)‖ 6 c, ∀t > tf ,

lim
t→∞

‖x (t)‖ = 0,

(3)

where tf is independent of the initial state x (0) and can be designed arbitrarily, and c is an arbitrarily
small positive constant.

2.3 Pareto optimum and weighted Lp preference index

Consider a constrained multiobjective optimization problem with K conflicting objective functions:

min
x∈Rn

{

C
1 (x) , . . . ,CK (x)

}

, (4a)

subject to g (x) = 0, (4b)

where x ∈ Rn with n ∈ Z+ is the decision variable, Ck : Rn → R for k ∈ IK is the k-th objective
function, g (x) is the constraint function, and its Pareto optimum is defined as follows.

Definition 2 ([36]). A decision x∗ ∈ Rn is a Pareto optimum of the constrained multiobjective opti-
mization problem (4) if there does not exist any other decision x ∈ Rn satisfying the equality constraint
(4b) such that Ck (x) 6 Ck (x∗) for all k ∈ IK and Cj (x) < Cj (x∗) for at least one j ∈ IK .

Definition 3 ([37]). The weighted Lp preference index can be written as ð=[
∑K

k=1wk(C
k(x)−Ck∗(x))

p
]
1

p

with p ∈ [1,∞) if Ck∗ and wk are the infimum and the weighting factor of Ck of the constrained multi-
objective optimization problem (4), respectively.
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2.4 Problem formulation

We consider the following multiobjective optimization problem for the resource allocation of the multia-
gent network containing N agents:

min
x∈RN

{

C1
i (xi) , . . . , C

K
i (xi)

}

, for all i ∈ V , (5a)

subject to

N
∑

i=1

xi =

N
∑

i=1

di, (5b)

where x = col (x1, . . . , xN ) ∈ RN is the global decision variable, xi ∈ R is the local decision variable
of agent i, Ck

i (xi) : R → R is the k-th local objective function of agent i, K is the number of the

conflicting objective functions of agent i, di ∈ R is the local constraint of agent i, and
∑N

i=1 di is the
global constraint.

Our objective is to find the desired Pareto optimum of the problem (5) in a distributed manner. Specif-
ically, agent i for i ∈ V has information only about its local objective functions

{

C1
i (xi) , . . . , C

K
i (xi)

}

,
and minimizes its local objective functions subject to resource constraints while communicating with its
neighboring agents via the underlying communication network modeled by an undirected graph G. In the
following, we reformulate the multiobjective optimization problem (5) into a single-objective distributed
optimization problem subject to resource constraints by using the weighted Lp preference index in [32],
and also illustrate that the optimal global decision variable of the reformulated single-objective opti-
mization problem is the desired Pareto optimum of the multiobjective optimization problem (5) by an
example.

Before presenting the reformulated single-objective optimization problem, we first define several im-
portant symbols: x̃k∗

i , ωk∗
i , and x̂k∗

i . Specifically, for any k ∈ IK , x̃k∗ = col
(

x̃k∗
1 , . . . , x̃k∗

N

)

∈ RN is the
optimal global decision variable of the following constrained optimization problem:

min
x̃

k∈RN

N
∑

i=1

Ck
i

(

x̃k
i

)

, (6a)

subject to

N
∑

i=1

x̃k
i =

N
∑

i=1

di, (6b)

where x̃k = col
(

x̃k
1 , . . . , x̃

k
N

)

∈ RN is the global decision variable and x̃k
i ∈ R is corresponding to agent i.

For any i ∈ V and k ∈ IK , ωk∗
i ∈ R is the weighting factor corresponding to Ck

i (xi) and is chosen
based on the relative importance of objective Ck

i

(

x̃k
i

)

compared with the total cost of agent i, which is
given by

ωk∗
i =

|Ck
i

(

x̃k∗
i

)

|
∑K

j=1 |C
j
i (x̃

j∗
i )|

. (7)

It is straightforward to get that
∑K

k=1 ω
k∗
i = 1 and ωk∗

i > 0.
For any i ∈ V and k ∈ IK , x̂k∗

i ∈ R is the optimal decision variable of the following optimization
problem:

min
x̂k
i
∈R

Ck
i

(

x̂k
i

)

, (8)

where x̂k
i is the decision variable and Ck

i

(

x̂k
i

)

is the k-th local objective function of agent i in the multi-
objective optimization problem (5).

To this end, we reformulate the multiobjective optimization problem (5) into the following constrained
single-objective distributed optimization problem:

min
x∈RN

U (x, x̂∗,ω∗) =

N
∑

i=1

ui (xi, x̂
∗
i ,ω

∗
i ) , (9a)

subject to

N
∑

i=1

xi =

N
∑

i=1

di, (9b)
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where U is the global objective function, x̂∗ = col (x̂∗
1, . . . , x̂

∗
N) ∈ RKN with x̂∗

i = col
(

x̂1∗
i , . . . , x̂K∗

i

)

∈
RK , ω∗ = col (ω∗

1 , . . . ,ω
∗
N ) ∈ RKN with ω∗

i = col
(

ω1∗
i , . . . , ωK∗

i

)

∈ RK , and ui is the local objective
function of agent i, which is given by utilizing the weighted Lp preference index. Specifically,

ui

(

xi, x̂
∗
i ,ω

∗
i

)

=

[

K
∑

k=1

ωk∗
i

(

Ck
i

(

xi

)

− Ck
i

(

x̂k∗
i

)

)p

]

1

p

, (10)

where p ∈ [1,∞).

Throughout this paper, we make the following assumptions, which are commonly adopted in [2,22,26].

Assumption 1. For any i ∈ V and k ∈ IK , the local cost function Ck
i (xi) is lki -strongly convex with

lki > 0 and mk
i -smoothness with mk

i > 0.

Assumption 2. The graph G is undirected and connected.

Lemma 2 ([38]). Supposing Assumption 1 is satisfied, one obtains

[

∇Ck
i (x) −∇Ck

i (y)
]T

(x− y) > lki ‖x− y‖2, (11)
∥

∥∇Ck
i (x)−∇Ck

i (y)
∥

∥ 6 mk
i ‖x− y‖ , for ∀x, y ∈ R. (12)

Lemma 3 ([39]). Supposing Assumption 2 is satisfied, one obtains

zTLz > λ2 (L)z
TKNz, (13)

zTL2z 6 λN

(

L2
)

zTz, ∀z ∈ R
N , (14)

where λ2 (L) is the second smallest eigenvalue of L, λN (L2) is the largest eigenvalue of L2, and KN =
IN − 1

N
1N1T

N .

From [40], we know that the optimal global decision variable of the problem (9) is the desired Pareto
optimum of the problem (5). Thus, we aim to solve the problem (9) in a predefined time in a distributed
manner.

Next, we illustrate why the optimal global decision variable of the problem (9) is a Pareto optimum of
the problem (5). To facilitate analysis, we consider an example of the problem (5) with K = 2. For i ∈ V ,
the horizontal axis and the vertical axis in Figure 1 represent the decision variables of the local objective
functions. Let the irregular ring denote the solution set, which implies the set of cost pairs allowed. The
Pareto front, a set of cost pairs of agent i corresponding to all the Pareto optimums of the example, is
denoted by the red line. Note that the problem (9) with K = 2 and p = 2 implies that we minimize
the sum of the radiuses of all circles centered on the ideal points of agents when ω1∗

i = ω2∗
i , where the

ideal point denotes
(

C1∗
i , C2∗

i

)

, and C1∗
i and C2∗

i denote the infimums of C1
i and C2

i , respectively. When
we reformulate the example by the form of the problem (9), it implies that we want to obtain the sum
of some values, which are the shortest distances between

(

C1
i , C

2
i

)

and the ideal point of agent i for
i ∈ V , respectively. The shortest distances are successively denoted by di for i ∈ V . Because of the
distribution of the ideal point and the Pareto front,

(

C1
i , C

2
i

)

corresponding to di is at the Pareto front.

Since Assumption 1 is satisfied, we know that the Pareto front is Λ>-convex, which implies that
(

C1
i , C

2
i

)

corresponding to di is unique for i ∈ V ; see [26].

The weighted Lp preference index has been utilized in [26]. Although its algorithms exponentially con-
verge to the Pareto optimum, they cannot meet the requirements of time-critical applications. Therefore,
we propose novel predefined-time algorithms to obtain the desired Pareto optimum of the problem (5).
Moreover, the settling time of the proposed algorithms can be arbitrarily preset since it does not depend
on any initial values and designed parameters.

3 Main results

In this section, based on time-based generators, we propose algorithms to seek the desired Pareto optimum
of the problem (5) and also provide convergence analysis.
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Figure 1 (Color online) Interpretation of problem reconstruction satisfying L2 preference index.

3.1 Description of the algorithms

We propose new predefined-time algorithms based on time-based generators to solve the problem (9). It
is necessary to get ω∗

i and x̂∗
i of the cost component ui (xi, x̂

∗
i ,ω

∗
i ) for i ∈ V by separately solving the

problem (6) for k ∈ IK and the problem (8) for i ∈ V and k ∈ IK .
Firstly, to solve the problem (6) for k ∈ IK in a predefined time, the distributed algorithm is as follows:

˙̃xk
i (t) =

[

k1 (t) + 1
][

−∇Ck
i

(

x̃k
i (t)

)

+ yki (t)
]

, (15a)

ẏki (t) =
[

k1 (t) + 1
]



−
∑

j∈V

aij

(

yki (t)− ykj (t)
)

−
∑

j∈V

aij

(

zki (t)− zkj (t)
)

+ di − x̃k
i (t)



 , (15b)

żki (t) =
[

k1 (t) + 1
]

∑

j∈V

aij

(

yki (t)− ykj (t)
)

, (15c)

ωk
i (t) =

|Ck
i (x̃

k
i (t))|

∑

j∈IK
|Cj

i (x̃
j
i (t))|

, i ∈ V , (15d)

where k1 (t) = ˙̥ 1 (t) / [1−̥1 (t) + σ1], the function ̥1 (t) is continuous differentiable and satisfies (1),
σ1 ∈ (0, 1), yki (t) , z

k
i (t) ∈ R for i ∈ V , k ∈ IK are auxiliary variables, and ωk

i (t) is the estimate of the
weighting factor corresponding to Ck

i (xi).
Next, to solve the problem (8) for i ∈ V and k ∈ IK in a predefined time, the algorithm is as follows:

˙̂xk
i (t) = −

[

k2 (t) + 1
]

∇Ck
i

(

x̂k
i (t)

)

, (16)

where k2 (t) = ˙̥ 2 (t) / [1−̥2 (t) + σ2], the function ̥2 (t) is continuous differentiable and satisfies (1),
and σ2 ∈ (0, 1).

Finally, the optimal global decision variable of the problem (9) is obtained in a predefined time by the
following distributed algorithm:

ẋi (t) =
[

k3 (t) + 1
][

−∇ui (xi, x̂
∗
i ,ω

∗
i ) + λi (t)

]

, (17a)

λ̇i (t) =
[

k3 (t) + 1
]



−
∑

j∈V

aij

(

λi (t)− λj (t)
)

−
∑

j∈V

aij

(

ρi (t)− ρj (t)
)

+ di − xi (t)



 , (17b)

ρ̇i (t) =
[

k3 (t) + 1
]





∑

j∈V

aij

(

λi (t)− λj (t)
)



 , i ∈ V , (17c)
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where k3 (t) = ˙̥ 3 (t) / [1−̥3 (t) + σ3], the function ̥3 (t) is continuous differentiable and satisfies (1),
σ3 ∈ (0, 1), and λi (t) , ρi (t) ∈ R for i ∈ V are auxiliary variables.

3.2 Convergence analysis

In this subsection, we show the convergence analysis of the proposed algorithms (15)–(17). Firstly, from
(15d), we know that the estimate ωk

i (t) of the weighting factor for i ∈ V and k ∈ IK achieves predefined-
time convergence if the global decision variable x̃k of the constrained distributed optimization problem (6)
for k ∈ IK achieves predefined-time convergence. Therefore, we prove that the global decision variable x̃k

of the constrained distributed optimization problem (6) for k ∈ IK achieves predefined-time convergence
in the following.

Lemma 4. Supposing Assumptions 1 and 2 are satisfied, the distributed algorithm (15) solves the
constrained distributed optimization problem (6) in a predefined time t1f , i.e.,

lim
t→t1

f

∥

∥x̃k
i (t)− x̃k∗

i

∥

∥ 6

√

2

α

(

σ1

1 + σ1

)Φ

V k
1 (0), (18a)

∥

∥x̃k
i (t)− x̃k∗

i

∥

∥ 6

√

2

α

(

σ1

1 + σ1

)Φ

V k
1 (0), ∀ t > t1f , (18b)

lim
t→∞

∥

∥x̃k
i (t)− x̃k∗

i

∥

∥ = 0, i ∈ V , (18c)

where σ1 is an arbitrarily positive constant, Φ = ε/ (α+ 3β + 2ε) with ε > 0, V k
1 for k ∈ IK is the

Lyapunov candidate function defined later, and

β > (3ε+ 1) / [2λ2 (L)], (19a)

α > max
{

[β2 − ε(lk − 3/2−m2k/2− λN

(

L2
)

)]/lk, [1− ε(2λ2 (L)− λN

(

L2
)

− 1)]/2λ2 (L)
}

> 0, (19b)

with lk = min
{

lki
}N

i=1
, mk = max

{

mk
i

}N

i=1
, and m2k =

(

mk
)2
.

Proof. We sometimes drop the dependency t for notational simplification when it is clear from the
context.

Firstly, the distributed algorithm (15) is rewritten as follows:

˙̃x
k
=
(

k1 + 1
)[

−∇Ck
(

x̃k
)

+ yk
]

, (20a)

ẏk =
(

k1 + 1
)(

− Lyk − Lzk + d− x̃k
)

, (20b)

żk =
(

k1 + 1
)

Lyk, (20c)

where x̃k = col
(

x̃k
1 , . . . , x̃

k
N

)

∈ RN , ∇Ck = col
(

∇Ck
i , . . . ,∇Ck

N

)

∈ RN , yk = col
(

yk1 , . . . , y
k
N

)

∈ RN ,

d = col (d1, . . . , dN ) ∈ RN , and zk = col
(

zk1 , . . . , z
k
N

)

∈ RN .

Let
(

x̃k∗,yk∗, zk∗
)

denote the equilibrium point of (20), which satisfies

0N = −∇Ck
(

x̃k∗
)

+ yk∗, (21a)

0N = −Lyk∗ − Lzk∗ + d− x̃k∗, (21b)

0N = Lyk∗. (21c)

Since Assumption 2 is satisfied, one obtains yk∗1 = yk∗2 = · · · = yk∗N from (21c). Then according to (21a),
one gets

∇Ck
1

(

x̃k∗
1

)

= ∇Ck
2

(

x̃k∗
2

)

= · · · = ∇Ck
N

(

x̃k∗
N

)

. (22)

By premultiplying (21b) with 1T
N , one gets

N
∑

i=1

x̃k∗
i =

N
∑

i=1

di. (23)
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From (21)–(23), we conclude easily that the equilibrium point
(

x̃k∗,yk∗, zk∗
)

satisfies the KKT optimality
condition, and thus x̃k∗ is the optimal global decision variable of problem (6).

Secondly, the convergence of the global decision variable x̃k is analyzed based on Lyapunov theory.
For ease of analysis, let x̄k = x̃k − x̃k∗, ȳk = yk − yk∗, and z̄k = zk − zk∗. From (20), one obtains

˙̄x
k
=
(

k1 + 1
)(

−hk + ȳk
)

, (24a)

˙̄y
k
=
(

k1 + 1
)(

−Lȳk − Lz̄k − x̄k
)

, (24b)

˙̄z
k
=
(

k1 + 1
)

Lȳk, (24c)

where hk = ∇Ck
(

x̃k
)

−∇Ck
(

x̃k∗
)

.
Consider the following orthogonal transformation:

χk = [r, R]
T
x̄k = col

(

χk
1 ,χ

k
2

)

, (25a)

ηk = [r, R]
T
ȳk = col

(

ηk1 ,η
k
2

)

, (25b)

δk = [r, R]
T
z̄k = col

(

δk1 , δ
k
2

)

, (25c)

where χk
1 , η

k
1 , δ

k
1 ∈ R, χk

2 ,η
k
2 , δ

k
2 ∈ RN−1, [r, R] is an orthogonal matrix, r =

(

1/
√
N
)

1N , rTR = 0T
N−1,

RTR = IN−1, and RRT = IN −
(

1/N
)

1N1T
N .

Since L1N = 1T
NL = 0N and RRTL = LRRT = L, it follows from (25) that the system (24) is

rewritten into two subsystems.
Subsystem 1:

χ̇k
1 =

(

k1 + 1
)(

−rThk + ηk1
)

, (26a)

η̇k1 = −
(

k1 + 1
)

χk
1 , (26b)

δ̇k1 = 0. (26c)

Subsystem 2:

χ̇k
2 =

(

k1 + 1
)(

−RThk + ηk
2

)

, (27a)

η̇k
2 =

(

k1 + 1
)(

−RTLRηk
2 −RTLRδk2 − χk

2

)

, (27b)

δ̇k2 =
(

k1 + 1
)

RTLRηk
2 . (27c)

From (25a) and x̄k = x̃k−x̃k∗, we know that the global decision variable x̃k of the constrained distributed
optimization problem (6) for k ∈ IK achieves predefined-time convergence if χk for k ∈ IK achieves
predefined-time convergence. Then, we prove the convergence of χk (i.e., χk

1 and χk
2). Consider the

following Lyapunov candidate function:

V k
1 =

α

2

[

(

χk
)T

χk +
(

ηk
)T

ηk
]

+
α+ β

2

(

δk2
)T

δk2

+
β

2

(

ηk
2 + δk2

)T (
ηk
2 + δk2

)

+
ε

2

(

χk − ηk
)T (

χk − ηk
)

, (28)

where α > 0, β > 0, and ε > 0, which will be defined later.
Let ϕk = col

(

χk,ηk, δk2
)

. One gets

α

2

(

χk
)T

χk
6 V k

1 6
α+ 3β + 2ε

2

∥

∥ϕk
∥

∥

2
. (29)

According to (26)–(28), one gets

V̇ k
1 = α

[

(

χk
)T

χ̇k +
(

ηk
)T

η̇k
]

+
(

α+ β
)(

δk2
)T

δ̇k2

+ β
(

ηk
2 + δk2

)T(
η̇k
2 + δ̇k2

)

+ ε
(

χk − ηk
)T(

χ̇k − η̇k
)

= α
(

k1 + 1
)[

−
(

x̄k
)T

hk −
(

ηk
2

)T
RTLRηk

2

]
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+ β
(

k1 + 1
)[

−
(

ηk
2

)T
χk

2 −
(

δk2
)T(

RTLR
)

δk2 −
(

δk2
)T

χk
2

]

+ ε
(

k1 + 1
)[

−
(

x̄k
)T

hk +
(

χk
2

)T
RTLRηk

2

+
(

χk
2

)T
RTLRδk2 +

(

χk
)T

χk +
(

ηk
)T[

r, R
]T

hk −
(

ηk
)T

ηk

−
(

ηk
2

)T
RTLRηk

2 −
(

ηk
2

)T
RTLRδk2

]

. (30)

Since Assumption 1 is satisfied, the term −
(

x̄k
)T

hk in (30) satisfies

−
(

x̄k
)T

hk
6 −lk

(

χk
)T

χk. (31)

Since Assumption 2 is satisfied, the terms −
(

ηk
2

)T
RTLRηk

2 and −
(

δk2
)T

RTLRδk2 in (30) satisfy

−
(

ηk
2

)T
RTLRηk

2 6 −λ2

(

L
)(

ηk
2

)T
ηk
2 , (32)

−
(

δk2
)T

RTLRδk2 6 −λ2

(

L
)(

δk2
)T

δk2 . (33)

Moreover, from Young’s inequality, one obtains

−
(

ηk
2

)T
χk

2 6
β

2

(

χk
2

)T
χk

2 +
1

2β

(

ηk
2

)T
ηk
2 , (34)

−
(

δk2
)T

χk
2 6

β

2

(

χk
2

)T
χk

2 +
1

2β

(

δk2
)T

δk2 , (35)

(

ηk
)T[

r, R
]T

hk
6

1

2

(

ηk
)T

ηk +
m2k

2

(

χk
)T

χk, (36)

(

χk
2

)T
RTLRηk

2 6
λN

(

L2
)

2

(

χk
2

)T
χk

2 +
1

2

(

ηk
2

)T
ηk
2 , (37)

(

χk
2

)T
RTLRδk2 6

λN

(

L2
)

2

(

χk
2

)T
χk

2 +
1

2

(

δk2
)T

δk2 , (38)

−
(

ηk
2

)T
RTLRδk2 6

λN

(

L2
)

2

(

ηk
2

)T
ηk
2 +

1

2

(

δk2
)T

δk2 . (39)

Substituting (31)–(39) into (30) yields

V̇ k
1 6−

(

k1 + 1
)

[

αlk − β2 + ε
(

lk − 1− m2k

2
− λN

(

L2
)

)

]

(

χk
)T

χk

− ε

2

(

k1 + 1
)(

ηk
)T

ηk −
(

k1 + 1
)

[

βλ2

(

L
)

− 1

2
− ε

]

(

δk2
)T

δk2

−
(

k1 + 1
)

[

αλ2

(

L
)

− 1

2
+ ε

(

λ2

(

L
)

− λN

(

L2
)

2
− 1

2

)]

(

ηk
2

)T
ηk
2 . (40)

From (19a), one gets

βλ2 (L)−
1

2
− ε >

ε

2
. (41)

From (19b), one gets

αlk − β2 + ε

[

lk − 3

2
− m2k

2
− λN

(

L2
)

]

>
ε

2
, (42)

αλ2

(

L
)

− 1

2
+ ε

[

λ2

(

L
)

− λN

(

L2
)

2
− 1

2

]

> 0. (43)

From (40)–(43), one gets

V̇ k
1 6 −ε

2

(

k1 + 1
)

[

(

χk
)T

χk +
(

ηk
)T

ηk +
(

δk2
)T

δk2

]
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= −ε

2

(

k1 + 1
)∥

∥ϕk
∥

∥

2

6 −εk1
2

∥

∥ϕk
∥

∥

2
. (44)

This together with (29) implies that

V̇ k
1 6 − εk1

α+ 3β + 2ε
V k
1 . (45)

It then follows from Lemma 1 that

V k
1 →

(

σ1

1 + σ1

)Φ

V k
1 (0) , as t → t1f . (46)

Since V k
1 >

α
2

(

χk
)T

χk, one can obtain that

∥

∥χk
∥

∥→ V̂1 =

√

2

α

(

σ1

1 + σ1

)Φ

V k
1 (0), as t → t1f . (47)

When t > t1f , k1 = 0, one gets

V̇ k
1 6 −ε

2

∥

∥ϕk
∥

∥

2
6 −ΦV k

1 . (48)

Therefore, we conclude that χk for k ∈ IK converges to V̂1 in a predefined time t1f , and continues to

converge to the origin as time goes to infinity; i.e., the global decision variable x̃k of the constrained
distributed optimization problem (6) for k ∈ IK achieves predefined-time convergence. The proof is
completed.

Next, we prove that the decision variable x̂k
i of the optimization problem (8) for i ∈ V and k ∈ IK

achieves predefined-time convergence.

Lemma 5. Supposing Assumption 1 is satisfied, the algorithm (16) solves the optimization problem
(8) in a predefined time t2f , i.e.,

lim
t→t2

f

∥

∥x̂k
i (t)− x̂k∗

i

∥

∥ 6

√

2

̺

(

σ2

1 + σ2

)2lk
i

V̌ k
i (0), (49a)

∥

∥x̂k
i (t)− x̂k∗

i

∥

∥ 6

√

2

̺

(

σ2

1 + σ2

)2lk
i

V̌ k
i (0), ∀ t > t2f , (49b)

lim
t→∞

∥

∥x̂k
i (t)− x̂k∗

i

∥

∥ = 0, (49c)

where ̺ > 0, σ2 is an arbitrarily positive constant, and V̌ k
i for i ∈ V and k ∈ IK is the Lyapunov

candidate function defined later.

Proof. Let x̌k
i (t) = x̂k

i (t)− x̂k∗
i (t). It then follows from the algorithm (16) that

˙̌xk
i (t) = −

[

k2
(

t
)

+ 1
]

hk
i2

(

t
)

, (50)

where hk
i2

(

t
)

= ∇Ck
i (x̂

k
i

(

t
)

)−∇Ck
i (x̂

∗
i

(

t
)

).
Consider the following Lyapunov candidate function:

V̌ k
i

(

t
)

=
̺

2

[

x̌k
i

(

t
)]T

x̌k
i

(

t
)

. (51)

Then, one gets that

˙̌V k
i

(

t
)

= ̺
[

x̌k
i

(

t
)]T ˙̌xk

i

(

t
)

= −̺
[

k2
(

t
)

+ 1
][

x̌k
i

(

t
)]T

hk
i2

(

t
)

. (52)
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Since Assumption 1 is satisfied, one gets

−
[

x̌k
i

(

t
)]T

hk
i2

(

t
)

6 −lki
[

x̌k
i

(

t
)]T

x̌k
i

(

t
)

. (53)

Next

˙̌V k
i

(

t
)

6 −
[

k2
(

t
)

+ 1
]

̺lki
[

x̌k
i

(

t
)]T

x̌k
i

(

t
)

6 −2
[

k2
(

t
)

+ 1
]

lki V̌
k
i

(

t
)

(54)

6 −2k2
(

t
)

lki V̌
k
i

(

t
)

. (55)

Invoking Lemma 1, one obtains that

V̌ k
i (t) →

(

σ2

1 + σ2

)2lki

V̌ k
i (0) , as t → t2f . (56)

This together with (51) implies

∥

∥x̌k
i (t)

∥

∥→ V̂2 =

√

2

̺

(

σ2

1 + σ2

)2lk
i

V̌ k
i (0), as t → t2f . (57)

From (57), one can obtain

lim
t→t2

f

∥

∥x̂k
i (t)− x̂k∗

i

∥

∥→ V̂2 =

√

2

̺

(

σ2

1 + σ2

)2lk
i

V̌ k
i (0). (58)

When t > t2f , k2 (t) = 0, from (54), one can obtain that

˙̌V k
i (t) 6 −2lki V̌

k
i (t) . (59)

Therefore, we conclude that x̌k
i (t) for i ∈ V and k ∈ IK converges to V̂2 in a predefined time t2f , and

continues to converge to the origin as time goes to infinity; i.e., the decision variable x̂k
i of the optimization

problem (8) for i ∈ V and k ∈ IK achieves predefined-time convergence. The proof is completed.

Finally, we prove that the local decision variable xi for i ∈ V of the constrained single-objective
distributed optimization problem (9) achieves predefined-time convergence when ω∗

i and x̂∗
i for i ∈ V are

obtained.

Theorem 1. Supposing Assumptions 1 and 2 are satisfied, the distributed algorithm (17) solves the
constrained single-objective distributed optimization problem (9) in a predefined time t3f , i.e.,

lim
t→t3

f

‖xi (t)− x∗
i ‖ 6

√

2

θ

(

σ3

1 + σ3

)Ψ

Ṽ (0), (60a)

‖xi (t)− x∗
i ‖ 6

√

2

θ

(

σ3

1 + σ3

)Ψ

Ṽ (0), ∀ t > t3f , (60b)

lim
t→∞

‖xi (t)− x∗
i ‖ = 0, i ∈ V , (60c)

where σ3 is an arbitrarily positive constant, Ψ = ϑ/ (θ + 3ν + 2ϑ) with ϑ > 0, Ṽ is the Lyapunov
candidate function defined later, and

ν > (3ϑ+ 1)/[2λ2(L)], (61a)

θ > max{[ν2 − ϑ(l − 3/2−m2/2− λN (L2))]/l, [1− ϑ(2λ2(L)− λN (L2)− 1)]/[2λ2(L)]} > 0, (61b)

with l = min
{

lki
}

and m = max
{

mk
i

}

.
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Proof. We sometimes drop the dependency t for notational simplification when it is clear from the
context.

Firstly, replacing x̃k
i , k1, C

k
i

(

x̃k
i

)

, yki , and zki by xi, k3, ui

(

xi, x̂
∗
i , ω

∗
i

)

, and λi, ρi, respectively, from
(20)–(23), we have

N
∑

i=1

x∗
i =

N
∑

i=1

di. (62)

It indicates that the equality constraint of the problem (9) is satisfied when the distributed algorithm
(17) converges to its equilibrium point (x∗,λ∗,ρ∗) with x∗ = col (x∗

1, . . . , x
∗
n), λ

∗ = col (λ∗
1, . . . , λ

∗
n), and

ρ∗ = col (ρ∗1, . . . , ρ
∗
n). In addition, we conclude easily that the equilibrium point (x∗,λ∗,ρ∗) satisfies the

KKT optimality condition such that x∗ is the optimal global decision variable of problem (9).
Secondly, we analyze the convergence of the global decision variable x. Let x̄ = x− x∗, λ̄ = λ − λ∗,

ρ̄ = ρ − ρ∗, h = ∇u (x, x̂∗,ω∗) − ∇ui (x
∗, x̂∗,ω∗), χ1, η1, δ1 ∈ R, χ2,η2, δ2 ∈ RN−1, χ =

[

r̃, R̃
]T

x̄ =

col (χ1,χ2), η =
[

r̃, R̃
]T

λ̄ = col (η1,η2), and δ =
[

r̃, R̃
]T

ρ̄ = col (δ1, δ2), where [r̃, R̃] is an orthogonal
matrix. From (24)–(27), we obtain

χ̇1 =
(

k3 + 1
)(

−r̃Th+ η1
)

, (63a)

η̇1 = −
(

k3 + 1
)

χ1, (63b)

δ̇1 = 0, (63c)

χ̇2 =
(

k3 + 1
)(

−R̃Th+ η2

)

, (63d)

η̇2 =
(

k3 + 1
)(

−R̃TLR̃η2 − R̃TLR̃δ2 − χ2

)

, (63e)

δ̇2 =
(

k3 + 1
)

R̃TLR̃η2. (63f)

Consider the following Lyapunov candidate function:

Ṽ =
θ

2

[(

χ
)T

χ+
(

η
)T

η
]

+
θ + ν

2

(

δ2
)T

δ2

+
ν

2

(

η2 + δ2
)T(

η2 + δ2
)

+
ϑ

2

(

χ− η
)T(

χ− η
)

, (64)

where θ > 0, ν > 0, ϑ > 0.
From (29)–(45), we have

˙̃V 6 − ϑk3
θ + 3ν + 2ϑ

Ṽ . (65)

This together with Lemma 1 and Ṽ > θ
2 (χ)

T
χ implies that

‖χ‖ → V̂3 =

√

2

θ

(

σ3

1 + σ3

)Ψ

Ṽ (0), t → t3f . (66)

When t > t3f , k3 = 0, one gets

˙̃V 6 −ΨṼ . (67)

Therefore, one concludes that χ converges to V̂3 in a predefined time t3f , and continues to converge
to the origin as time goes to infinity; i.e., the local decision variable xi for i ∈ V of the constrained
single-objective distributed optimization problem (9) achieves predefined-time convergence. The proof is
completed.

Note that the global decision variable of the problem (9) suffers an error caused by the flawed ω∗
i and x̂∗

i

at t = t3f as shown in Lemmas 4 and 5 when executing the proposed algorithms (15)–(17) simultaneously

at t = 0. From (47) and (58), the error decays to a sufficiently small value at max{t1f , t2f}+ t3f by choosing
sufficiently small σ1 and σ2. As time goes to infinity, the error does not exist, and thus the optimal global
decision variable of the problem (9) is obtained, which is equivalent to the desired Pareto optimum of
the problem (5).
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Figure 2 (Color online) Power outputs (a) and supply and demand (b) using the proposed algorithm in [26].

4 Simulation

In this section, one example modeled by an undirected ring graph with six microgrids is provided to
verify the fast convergence of the proposed algorithms. Note that the simulation utilizes the weighted L2

preference index in [26]. The multi-microgrid network is formulated as follows:

min
Pd,i∈R

{

FC,i

(

Pd,i

)

, FN,i

(

Pd,i

)

, FE,i

(

Pd,i

)}

, (68a)

subject to

N
∑

i=1

Pd,i =

N
∑

i=1

(

1 + ηi
)

Pl,i, i ∈ V , (68b)

where Pd,i is the local active power generated from the i-th microgrid, FC,i(Pd,i), FN,i(Pd,i), and FE,i(Pd,i)

are the economic, environmental, and technical objective functions, respectively,
∑N

i=1 (1 + ηi)Pl,i is the
mismatch between the supply and demand caused by the intermittent renewable generations and varying
load demands, and

FC,i (Pd,i) = qp,iP
2
d,i + wp,iPd,i + ep,i, (69)

FN,i (Pd,i) = mn

(

sl,iP
2
d,i + gl,iPd,i + hl,i

)

, (70)

FE,i (Pd,i) = ve,i(Pd,i − Popt,i)
2
. (71)

For the parameters of the objective functions, see [26].
Next, we make a comparative illustration for demonstrating the effectiveness of the proposed algo-

rithms. We first get ω∗
i and x̂∗

i of the cost component ui (xi, x̂
∗
i ,ω

∗
i ) for i ∈ V by the algorithms (15)

and (16), respectively. For the proposed algorithm in [26], Figure 2(a) shows that the power outputs of
the microgrids converge to the Pareto optimum after 8 s, and Figure 2(b) shows that the power supply
and demand are balanced; that is, the resource allocation satisfies the constraint in the problem (68).

To verify the utility of the time-based generator in the distributed algorithm (17), we introduce the
following example with t3f = 0.7 s:

̥3 (t) =

{

10
0.76 t

6 − 24
0.75 t

5 + 15
0.74 t

4, 0 6 t < t3f ,

1, t > t3f .
(72)

Subsequently, Figure 3(a) shows the power outputs of microgrids converge to the Pareto optimum in
the predefined time t3f = 0.7 s, and Figure 3(b) shows that the constraint (68b) is satisfied.

Then we choose the following example with t3f = 0.3 s:

̥3 (t) =

{

10
0.36 t

6 − 24
0.35 t

5 + 15
0.34 t

4, 0 6 t < t3f ,

1, t > t3f .
(73)

As shown in Figures 4(a) and (b), the distributed algorithm (17) still can converge in the predefined time
t3f = 0.3 s and the constraint (68b) is satisfied.
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Figure 3 (Color online) Power outputs (a) and supply and demand (b) using our algorithm with t3f = 0.7 s.
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Figure 4 (Color online) Power outputs (a) and supply and demand (b) using our algorithm with t3f = 0.3 s.

5 Conclusion

We reformulated the considered multiobjective optimization problem into a single-objective optimization
problem by using the weighted Lp preference index. The weighting factors were unknown but can be
obtained from optimization procedure without any prior knowledge. In addition, three predefined-time
algorithms were proposed based on time-based generators. We proved that the proposed algorithms
achieved predefined-time convergence. Finally, the comparative simulation results verified the fast con-
vergence of the proposed algorithms.

The potential drawback of the proposed algorithms is that we only obtain a neighboring solution of
the weighting factor ω∗

i at a predefined time t1f , and a neighboring solution of the optimal value x̂∗
i

at a predefined time t2f , which cause an error for the cost component ui (xi, x̂
∗
i ,ω

∗
i ) of the reformulated

constrained single-objective optimization problem (9). Although the error exists until time goes to infinity,
it still affects within a certain time. In addition, it is challenging to extend our method to higher-order or
mixed-order multiagent systems with box constraints, where the local objective functions are nonsmooth.
We will pursue these research directions in the future.
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