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Abstract In this study, a data-driven learning algorithm was developed to estimate the optimal distributed

cooperative control policy, which solves the cooperative optimal output regulation problem for linear discrete-

time multi-agent systems. Notably, the dynamics of all the agent systems and exo-system is completely un-

known. By combining adaptive dynamic programming with an internal model, a model-free off-policy learning

method is proposed to estimate the optimal control gain and the distributed adaptive internal model by only

accessing the measurable data of multi-agent systems. Moreover, different from the traditional cooperative

adaptive controller design method, a distributed internal model is approximated online. Convergence and

stability analyses show that the estimate controller generated by the proposed data-driven learning algo-

rithm converges to the optimal distributed controller. Finally, simulation results verify the effectiveness of

the proposed method.
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1 Introduction

The cooperative output regulation problem (CORP) [1–3], which simultaneously addresses the problem
of asymptotic tracking and disturbance rejection for multi-agent systems, has attracted widespread in-
terest in the last decades due to its wide applications in many areas, such as multiple unmanned aerial
vehicles [4], dynamic traffics [5], distributed robotics [6], and distributed sensor networks [6,7]. Necessary
and sufficient conditions for solving the output regulation problem were first established by [8] in terms
of the well-known regulator equations. By viewing the leader and disturbance as an exo-system, the
leader-following output consensus problem with disturbance rejection can be viewed as a CORP, where
the exo-system lumps reference inputs and disturbances together. This scenario has been extensively
investigated by many researchers, and some recent interesting results are provided in [9–14].

In general, two classes of control schemes are used to solve the output regulation problem, i.e., the
feedback-feedforward controller [8, 15] and dynamic controller embedding with the internal model [15,
16]. The CORP was addressed in [1] and solved by designing a feedback-feedforward controller with
a distributed observer. The distributed observer proposed in [1] is used to estimate the exo-system
state, which has been developed for solving the CORP for switching networks [2, 11] and nonlinear
systems [3]. However, as stated in [15,17], the feedforward control gain is dependent on the whole system
parameters, so with varying system parameters, the desired feedforward control gain would also vary.
Thus, the feedback-feedforward controller can only deal with the deterministic system dynamics without
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uncertainty parameters. To further solve the cooperative robust output regulation problem, in [18], an
internal model [16, 19] was employed to estimate the steady state of the system without solving the
regulator equations. This method ensures the robustness, with respect to parameter uncertainties, of
a controller embedded with the internal model. Later on, the cooperative robust output regulation for
nonlinear systems was investigated (see [11, 20, 21]). Due to the communication limitation, a distributed
adaptive internal model scheme was proposed in [9] for discrete-time multi-agent systems, and a similar
result for the continuous-time system is given in [10]. In [9], using the prior knowledge of the exo-system
dynamics, not only the estimation of the exo-system state but also the estimation of the internal model
for each agent can be achieved by the proposed adaptive distributed observer. Recently, the solution
in [9] was extended to solve the CORP for time-delay multi-agent systems [22].

Considering the output regulation and optimal control problems, an optimal controller design method-
ology was proposed in [23] by minimizing a predefined cost function that involves transient responses with
the constraint of the steady-state output regulation requirement, which is the so-called optimal output
regulation. Under the framework presented in [23], several studies on investigating the optimal output
regulation problem were presented for discrete-time linear systems [24], sample-data systems [25], and
nonlinear systems [26]. However, system matrices should be known prior to solving the related algebraic
Riccati equation (ARE) for linear systems [23, 24] or the Hamilton-Jacobi-Bellman (HJB) equation for
nonlinear systems [26]. In addition, accurate knowledge of system dynamics is required to construct the
corresponding controllers in most existing studies on the CORP, e.g., [1–3,9–14,18,20–22,27]. This limits
the applications of these solutions due to the existence of unknown parameters in practice.

Recently, combining the adaptive dynamic programming (ADP) algorithm and reinforcement learning
(RL) method, several online learning algorithms have been proposed to solve optimal control problems,
e.g., optimal regulation problems [28–34], H∞ tracking problems [35,36], and zero-sum games [37]. In [28],
a data-driven cooperative optimal cruise control was proposed for heterogeneous vehicle platoons using the
ADP algorithm with the policy-iteration (PI) scheme. A general containment control of the discrete-time
multi-agent system was presented in [32] by employing the value-iteration (VI)-based learning scheme.
Compared to the PI-based learning method, the VI-based learning algorithm relaxes the requirement on
the initial stabilizing control policy at the expense of the convergence rate. Taking the disturbance re-
jection into account, a developed ADP-based learning algorithm with distributed observers was proposed
in [38] to solve the leader-following control problem. Later on, with the distributed adaptive internal
model designed in [10], the cooperative optimal output regulation problem (COORP) was addressed
in [39], and it was solved by the ADP-based learning method with the PI and VI schemes. However, in
most of these existing studies, e.g., [29, 31, 34, 38–41], the exo-system dynamics should still be known,
such that the internal model and distributed observer can be efficiently designed for each agent.

To solve the COORP for unknown multi-agent system dynamics, a data-driven ADP-based learning
algorithm, which aims at estimating the optimal dynamic feedback controller embedding with the adaptive
distributed internal model, was developed in this study.

The contributions of this study are threefold: First, compared to [9] where the system dynamics should
be known, this study aims at developing a model-free learning algorithm to solve the COORP with
unknown multi-agent systems, including the unknown exo-system. Two different finite exciting (FE)-
based estimation update laws are proposed in this paper to approximate the exo-system dynamics, which
is used to establish the online distributed internal model. Second, different from [14, 27, 30], where the
internal model can be directly obtained for all agents, in this study, the distributed internal model of each
agent can be estimated by introducing an online adaptive distributed observer. Third, in most existing
methods for solving the COORP, for instance, [9,10,30,38,39,41], not only the exo-system dynamics are
assumed to be known, but also the exo-system state should be estimated by an observer network among
the agents. While in this study, by only accessing the data of the input, output, and state of each agent, a
data-driven learning algorithm is proposed, which does not require the approximation of the exo-system
state or the use of any prior knowledge of the multi-agent system and the exo-system. This could lead to
a reduction in the data computational load and data communication load. Moreover, estimation laws for
estimating the exo-system dynamics and a data-driven learning algorithm for approximating the optimal
control policy are designed without the requirement on the persistence of excitation condition.

The remainder of this paper is organized as follows: In Section 2, we present the basic assumptions,
preliminaries, and control objectives. In Section 3, we propose two online estimation methods to ap-
proximate the exo-system dynamics, which is used to design the distributed internal model, and then,
we developed an ADP-based data-driven learning method to estimate the optimal control policy without
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using any prior knowledge of the multi-agent system. We also present the convergence analysis of the
proposed algorithm in Section 3. In Section 4, we provide a numerical example to illustrate the proposed
method. Finally, in Section 5, we draw the conclusion.

Notations. The following notations are used throughout the paper. In ∈ R
n×n is a unit matrix. σ(A)

and ρ(A) are the complex spectrum and spectral radius of matrix A, respectively. For a matrix B ∈ R
m×n,

vec(B) = [b1
T, b2

T, . . . , bn
T]T, where bi ∈ R

m is the ith column of B. For a symmetric matrix C ∈ R
n×n,

vech(C) = [c11, c12, . . . , c1n, c22, c23, . . . , cn−1,n, cnn]
T ∈ R

n(n+1)
2 , where cij is the element of C. For two

column vectors v1 ∈ R
n1 and v2 ∈ R

n2 , col(v1, v2) = [vT1 , v
T
2 ]

T ∈ R
n1+n2 , and dia(v1) denotes a diagonal

matrix V ∈ R
n1×n1 , where Vii is the i-th element of v1. For any matrix Gi, G = block diag{Gi, . . . , Gn}

is an augmented block diagonal matrix with block matrix Gii = Gi. ∅ denotes the null set. Pn denotes the
normed space of all n-by-n real symmetric matrices and P

n
+ := {P ∈ P

n : P > 0}. ‖ · ‖ is the Euclidean
norm of vectors and the Frobenius norm of matrices. ⊗ denotes the Kronecker product.

2 Plant and control objective

Consider a class of discrete-time multi-agent systems described by

xi(t+ 1) = Aixi(t) +Biui(t) + Eiv(t), (1)

yi(t) = Cixi(t), (2)

ei(t) = yi(t)− Fv(t), (3)

where xi ∈ R
ni , ui ∈ R

mi , yi ∈ R
p, and ei ∈ R

p denote the state, control input, output, and tracking
error of the i subsystem with i = 1, 2, . . . , N , respectively. v(t) is the exo-system state generated by the
following autonomous exo-system:

v(t+ 1) = Sv(t), (4)

and Ai ∈ R
ni×ni , Bi ∈ R

ni×mi , Ei ∈ R
ni×q, Ci ∈ R

p×ni , F ∈ R
p×q, and S ∈ R

q×q are constant system
matrices.

Define a directed graph D = (V , E), where V = {0, 1, . . . , N} is the set of nodes with node 0 denoting
the exo-system and the other N nodes associated with the N agents, and E ⊂ V × V denotes the edge
set. Let Ni = {j ∈ V|(j, i) ∈ E} denote the set of incoming neighbors of agent i. Let V+

0 := V/{0} and
N+

i := Ni/{0}. In addition, the virtual tracking error is described as

êi ,
∑

j∈Ni

aij(yi − yj)
∑N

j=0 aij
, i = 1, . . . , N, (5)

where y0 = Fv, aij is the element of a weighted adjacency matrix A = [aij ] ∈ R
(N+1)×(N+1), which

has positive elements aij > 0 if (j, i) ∈ E and otherwise aij = 0. Define the graph Laplacian matrix

W = [wij ] ∈ R
N×N with wii =

∑N
j=1 aij and wij = −aij , for any i 6= j. Let ∆ = dia ([a10, a20, . . . , aN0])

and H = W +∆.
The following standard assumptions are made on the multi-agent system.

Assumption 1. The pair (Ai, Bi) is stabilizable, ∀i ∈ V+
0 .

Assumption 2. rank[ Ai − λI Bi

Ci 0
] = ni + p, ∀λ ∈ σ(S), i ∈ V+

0 .

Assumption 3. The communication graph D is acyclic which contains a directed spanning tree with
node 0 as the root.

Assumption 4. The eigenvalues of S are with modulus as 1.

Assumption 5. All of the system matrices Ai, Bi, Ci, Ei, F , and S are completely unknown, and the
exo-system state with a known dimension q is only available to the agents i, 0 ∈ Ni.

Now, let the performance index

J(t0) =
N∑

i=1

∞∑

t=t0

Ci(xi(t), ui(t)), (6)

where Ci(xi(t), ui(t)) = ‖xi−xi
d‖Qi

+‖ui−ui
d‖Ri

is the cost function with weight matrices Qi = QT
i > 0 ∈

R
ni×ni , Ri = RT

i > 0 ∈ R
mi×mi and the pair (Ai,

√
Qi) being detectable. xi

d and ui
d are the steady state
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and stabilizing control input for each agent i ∈ V+
0 , respectively, when the closed-loop system achieves

the reference tracking and disturbance rejection simultaneously.
The objective of this study is to determine the cooperative optimal control input u∗

i for each agent
i ∈ V+

0 , such that the following conditions are satisfied:
(i) The closed-loop system of each subsystem described in (1) is stable.
(ii) The tracking error of each agent converges to zero as t → ∞, i.e., limt→∞ ei(t) = 0.
(iii) The performance index J(t0) is minimized.

Remark 1. Assumptions 1 and 2 are the necessary and sufficient conditions used to solve the traditional
output regulation problem, which aims at simultaneously achieving the asymptotically tracking and
the disturbance rejection as shown in [9, 15, 38, 41]. In Assumption 3, the graph containing a directed
spanning tree is a necessary condition that ensures the consensus of multi-agent systems [39, 40]. Under
Assumption 3, one can always label all the agents such that A is a lower triangular matrix, which is also
required in [39]. Assumption 4 indicates that the exo-system is marginally stable and the exo-system
state is bounded, which is made without loss of any generality. Assumption 5 is used as the main setup
of this study. In addition, in Assumption 5, only the agents i, 0 ∈ Ni have access to the exo-system state,
but all agents, including the agents i, 0 ∈ Ni, cannot obtain the system matrix S of the exo-system.

3 Main results

In this section, an ADP-based data-driven learning algorithm is proposed to estimate the optimal co-
operative control policy with a distributed adaptive internal model for solving the COORP. First, two
FE-based estimation methods are presented to establish the online distributed internal model design
scheme. Then, a model-free VI-based learning algorithm is developed to estimate the optimal control
policy. Finally, the stability and convergence analyses are presented.

3.1 Online distributed adaptive internal model design method

To solve the CORP for multi-agent systems, the internal model framework is usually introduced for
converting the CORP into a tractable cooperative stabilizing problem. In general, the distributed adaptive
internal model can be designed by the prior knowledge of the exo-system dynamics. The challenge arises
when the exo-system matrix S is unknown. Thus, for agents i, 0 ∈ Ni, we first propose two FE-based
methods to estimate the exo-system matrix S online without the requirement on the persistence of
excitation condition, where the estimation error converges to zero.

To begin with, the FE condition, which is similar to the FE condition shown in [42], is given as follows.

Definition 1 (Finite exciting condition). A bounded signal ρ(t) ∈ R
m×n is finite exciting over a time

series t = t0, t0 + 1, . . . , t0 + Ts with Ts ∈ Z
+, for a given 0 < γ < 1, if ∃ β > 0 such that

t0+Ts∑

t=t0

γtρ(t)Tρ(t) > βIn (7)

holds, where In ∈ R
n×n is a unit matrix and β denotes the degree of excitation.

The exo-system dynamics described in (4) can be linearly parameterized as

v(t+ 1) = χv(t)θ, (8)

where θ = vec(ST) ∈ R
q2 is the vectorization of the matrix S, and χv(t) = Iq ⊗ v(t)T ∈ R

q×q2 is the
regressor matrix with the unit matrix Iq ∈ R

q×q.
Consider the following filter equations:

F (t+ 1) = γF (t) + χv(t)
Tχv(t), F (t0) = 0, (9)

H(t+ 1) = γH(t) + χv(t)
Tv(t+ 1), H(t0) = 0, (10)

where γ ∈ (0, 1) is a tunable gain for adjusting the convergence rate and F (t) ∈ R
q2×q2 and H(t) ∈ R

q2

are the integrated-filtered regressors.
We introduce two different parameter estimation update laws for θ as follows:
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(1) The one-step estimation update law of θ̂ is given as

θ̂ = F (tTs
)−1H(tTs

), (11)

where tTs
is the instant when χv(t) satisfies the FE condition (7).

(2) The dynamic estimation update law of θ̂(t) is given as

θ̂(t+ 1) = θ̂(t) + kθ1χv(t)
T
(

v(t+ 1)− χv(t)θ̂(t)
)

+ kθ2

(

H(t)− F (t)θ̂(t)
)

, (12)

where kθ1 > 0 and kθ2 > 0 are the tuning gains for adjusting the estimation convergence rate.
Now, we present the following Theorem 1 to show the convergence of the FE-based estimation methods

for approximating the exo-system matrix S.

Theorem 1. For agents i, 0 ∈ Ni, if there exists an instant tTs
= t0 + Ts, such that χv(t) satisfies

the FE condition (7), then the exo-system matrix S can be estimated by either the one-step estimation
update law (11) or the dynamic estimation update law (12), where both the estimation errors converge
to zero.
Proof. Note that the estimation process for approximating the exo-system dynamics only exists in the
agents i, 0 ∈ Ni, since the exo-system state is only available for the agents i, 0 ∈ Ni. To begin with, it
follows from (8)–(10) that

H(t+ 1)− F (t+ 1)θ = γ [H(t)− F (t)θ] . (13)

Let an error ε(t) = H(t)− F (t)θ. Then, it follows from (13) that the error dynamics is

ε(t+ 1) = γε(t). (14)

Clearly, ε(t) = 0 for t = t0, t0 + 1, . . . , since F (t0) = 0 and G(t0) = 0. In addition, even though ε(t) 6= 0
suddenly suffers from the measurement error, the error dynamics of ε(t) can still be stabilized by setting
the tunable gain γ ∈ (0, 1). Thus, we have

H(t) = F (t)θ, t = t0, t0 + 1, . . . . (15)

Since χv(t)
Tχv(t) > 0, F (t) defined in (9) is a nondecreasing positive semidefinite time-varying square

matrix, i.e., F (t2) > F (t1) > 0 for t2 > t1. Considering that γ ∈ (0, 1), if χv(t) satisfies the FE condition
at tTs

, then

F (tTs
) =

t0+Ts∑

t=t0

γt−t0−1χv(t)
Tχv(t) > βIq2 .

Thus, we have F (t) > 0, ∀t > tTs
, which indicates that the square matrix F (t) is of full rank for all

t > tTs
. The full rank of F (t) ensures the existence of a unique solution to the estimation equation (15).

Therefore, the parameters of S, i.e., θ, can be estimated by calculating the following equation:

θ̂ = F (tTs
)−1H(tTS

), (16)

where tTs
is the instant when the FE condition is met. Accordingly, the proof of the one-step estimation

update law for θ is completed.
Let θ̃(t) = θ̂(t)− θ denote the estimation error. It follows from (8), (12), and (15) that the dynamics

of the estimation error θ̃(t) is

θ̃(t+ 1) = θ̂(t) + kθ1χv(t)
T
(

v(t+ 1)− χv(t)θ̂(t)
)

+ kθ2

(

H(t)− F (t)θ̂(t)
)

− θ

= θ̃(t) + kθ1χv(t)
T
(

χv(t)θ − χv(t)θ̂(t)
)

+ kθ2

(

F (t)θ(t) − F (t)θ̂(t)
)

= θ̃(t)− kθ1χv(t)
Tχv(t)θ̃(t)− kθ2F (t)θ̃(t). (17)

Consider the following Lyapunov function:

V (t) =
1

2
θ̃T(t)θ̃(t).
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If χv(t) satisfies the FE condition at tTs
, it follows from (17) that

V (t+ 1)− V (t) = −θ̃T(t)
(
kθ1χv(t)

Tχv(t) + kθ2F (t)
)
θ̃(t)

6 −θ̃T(t)kθ2F (t)θ̃(t)

6 −kθ2βV (t), t > tTs
. (18)

Therefore, since kθ2 > 0 and β > 0, the estimation error θ̃ converges to zero under the dynamic update
law (12). This completes the proof.

Remark 2. Compared to the estimation update law (12) where the start instant for estimating S is
t0 and the estimation error converges to zero as t → ∞, the estimation update law (11) starts from tTs

when the matrix F (t) is of full rank. In addition, if there exists no measurement error for all t > t0, the
estimation error of the estimation update law (11) is zero for t > tTs

.

For the agents i, 0 ∈ Ni, which have access to the exo-system state, using the estimation solution θ̂ to
(11) or (12), the minimal polynomial of the estimated exo-system matrix Ŝ can be obtained as

ΛŜ(λ) = λqm + αqm−1λ
qm−1 + · · ·+ α1λ+ α0, (19)

with qm 6 q. Then, combining (19) with the internal model principle given in [15, Chapter 1], design the
dynamics of the internal state as

zi(t+ 1) = G0
1zi(t) + G2êi(t), (20)

where zi ∈ R
pqm is the internal state, êi is defined in (5), and the pair (G0

1 ,G2) is the designed internal
model parameters which can be explicitly given as

G0
1 = block diag{G0

1, . . . , G
0
1

︸ ︷︷ ︸

p-tuple

} ∈ R
pqm×pqm , G2 = block diag{G2, . . . , G2

︸ ︷︷ ︸

p-tuple

} ∈ R
pqm×p, (21)

with

G0
1 =












0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

...
...

0 0 0 · · · 1

−α0 −α1 −α2 · · · −αqm−1












, G2 =












0

0
...

0

b












, (22)

where αj is the coefficients of λ in (19) with j = 0, 1, . . . , qm− 1, and b is a nonzero constant that ensures
the controllability of the pair (G0

1, G2).
For the agents i, 0 /∈ Ni, due to the inaccessibility of the state and dynamics of the exo-system, the

matrix G0
1 cannot be directly obtained. Inspired by [9], although G0

1 is only obtainable for the agents i,
0 ∈ Ni, we can still design the online distributed adaptive internal model Gi

1(t) for all agents i ∈ V+
0 as

zi(t+ 1) = Gi
1(t)zi(t) + G2êi(t), (23)

with G2 defined in (21) and

Gi
1(t+ 1) = Gi

1(t) + µ1

∑

j∈Ni

aij

(

Gj
1(t)− Gi

1(t)
)

, Gi
1(t0) = 0, (24)

where 0 < µ1 < 2/ρ(H) is a positive tuning constant and Gi
1 has the same form as G0

1 , i.e.,

Gi
1 = block diag{Gi

1, . . . , G
i
1

︸ ︷︷ ︸

p-tuple

} ∈ R
pqm×pqm . (25)

Now, we show the stability of the closed-loop multi-agent system under the cooperative control policy
embedding with the distributed adaptive internal model designed in (23) and (24), which is summarized
in Theorem 2.
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Remark 3. According to the internal model principle given in [15, Chapter 1], G0
1 must have exactly p

invariant factors, each of which is divisible by the minimal polynomial of S. Hence, G0
1 is determined by

(19). Once the estimation process for approximating S is completed, G0
1 can be designed for the agents

i, 0 ∈ Ni. Then, for the agents i, 0 /∈ Ni, using (24) where the information of Gj
1 of the agent j, j ∈ Ni is

required, the internal model parameter Gi
1 of the agents i, 0 /∈ Ni can be directly approximated without

estimating the exo-system matrix S.

Theorem 2. Under Assumptions 1–5, if there exists an instant tTs
, such that χv(t) satisfies the FE

condition, then the CORP of the multi-agent system (1)–(4) is solved by the dynamic feedback controller
with the online distributed adaptive internal model given as







ui(t) = −Ki
xxi(t)−Ki

zzi(t),

zi(t+ 1) = Gi
1(t)zi(t) + G2êi(t),

Gi
1(t+ 1) = Gi

1(t) + µ1

∑

j∈Ni

aij(Gj
1(t)− Gi

1(t)),
(26)

with i ∈ V+
0 , Gi

1(t0) = 0 ∈ R
pqm×pqm , and the pair (Ki

x, Ki
z) satisfying that the matrix

Ai
c =

[

Ai −BiK
i
x −BiK

i
z

G2Ci G0
1

]

(27)

is Schur.
Proof. Under Assumptions 1 and 2, there exists a Schur matrix Ai

c for each agent i ∈ V+
0 , such that the

following augmented regulator equations [15]:

XiS = (Ai −BiK
i
x)Xi −BiK

i
zZi + Ei, (28)

ZiS = G0
1Zi, (29)

0 = CiXi − F (30)

have a unique solution (X∗
i , Z

∗
i ), where G0

1 defined in (21) is determined by θ̂. As proven in Theorem 1,

θ̂ is the estimation of the exo-system dynamics where the estimation error converges to zeros once χv(t)
satisfies the FE condition.

Let

x̄i = xi −X∗
i v, (31)

z̄i = zi − Z∗
i v. (32)

Using the above transformation equations (31) and (32), the closed-loop system (1)–(4) of each agent
i ∈ V+

0 with the dynamic feedback controller (26) can be transformed into the following compact system:

x̄i
z(t+ 1) = Ai

cx̄
i
z(t)−

∑

j∈Ni

aij
∑N

j=0 aij

[

0

G2C̄j

]

x̄j
z(t) +

[

0 0

0 G̃i
1(t)

]

x̄i
z(t) +

[

0

G̃i
1(t)Z

∗
i v(t)

]

:= Ai
cx̄

i
z(t)− Li

0(t) + Li
1(t)x̄

i
z(t) + Li

2(t), (33)

ei(t) = C̄ix̄
i
z(t), (34)

where x̄i
z = col(x̄i, z̄i), x̄

0
z = 0, C̄i = [Ci, 0], G̃i

1(t) = Gi
1(t)− G0

1 is the estimation error of internal model,
and

Li
0 =

∑

j∈Ni

aij
∑N

j=0 aij

[

0

G2C̄j

]

x̄j
z(t), Li

1(t) =

[

0 0

0 G̃i
1(t)

]

, Li
2(t) =

[

0

G̃i
1(t)Z

∗
i v(t)

]

. (35)

Following the same derivation from [39], one can always label all the agents such that i < j if (i, j) ∈ E
under Assumption 3. Thus, the representation that contains the dynamic of all the agents is given as

x̄z(t+ 1) = Acx̄z(t) + L1(t)x̄z(t) + L2(t), (36)
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where

x̄z = col
(
x̄1
z , . . . , x̄

N
z

)
, (37)

Ac = block diag
{
A1

c , . . . , A
N
c

}
, (38)

L1 = block diag
{
L1
1, . . . , L

N
1

}
, (39)

L2 = col
(
L1
2, . . . , L

N
2

)
. (40)

According to [9, Lemma 2], the estimation error of the adaptive internal model G̃i
1(t) converges to

zero, which implies that limt→∞ L1(t) = 0. In addition, since the exo-system state is bounded, we have
limt→∞ L2(t) = 0. As stated in [15, Chapter 1.6], for each agent i ∈ V+

0 , there always exists a pair
(Ki

x, K
i
z), such that the matrix Ai

c is Schur if Assumptions 1 and 2 are satisfied. This implies that there
exist pairs (Ki

x, K
i
z), such that Ac is Schur, which indicates that limt→∞ x̄z(t) = 0. Then, it follows from

(34) that the tracking error limt→∞ ei(t) = 0, which means that the CORP of the multi-agent system is
solved by the proposed dynamic feedback controller (26). Thus, the proof is completed.

3.2 Data-driven learning algorithm for solving the COORP

In this subsection, we first define a class of cost functions for the performance index described in (6).
Then, combining the existence of the solution to regulator equations, the COORP is transformed into
a cooperative optimal control problem. A model-free ADP-based learning algorithm with employing
the VI scheme is developed to estimate the optimal control gain by approximating the solution to the
corresponding ARE. Finally, the convergence analysis is given to show that the estimated distributed
controllers converge to the optimal distributed control policies.

3.2.1 COORP transformation

Since Gi
1 converges to G0

1 as shown in [9, Lemma 2], using the transformation equations (31) and (32),
the augmented multi-agent system of the representation (36) with the online desired internal model (20)
can be rewritten as

x̄z(t+ 1) = Āx̄z(t) + B̄ū(t), (41)

where

ū = [ūT
i , . . . , ū

T
N ]T (42)

is the control input with ūi = −Kix̄
i
z and Ki = [Ki

x, Ki
z], Ā = block diag

{
Ā1, . . . , ĀN

}
with Āi =

[ Ai 0

G2Ci G0
1
], and B̄ = block diag

{
B̄1, . . . , B̄N

}
with B̄i = [ Bi

0
].

It follows from (31) and (32) that

ūi = −Kix̄
i
z = ui − (−Ki

xX
∗
i v −Ki

zZ
∗
i v),

where ui = −Ki
xxi −Ki

zzi.
Now, modify the cost function in (6) for each agent i ∈ V+

0 as

Ci(xi(t), ui(t)) = ‖xi − xi
d‖Qx

i
+ ‖zi − zid‖Qz

i
+ ‖ui − ui

d‖Ri
, (43)

where Qx
i = (Qx

i )
T > 0, Qz

i = (Qz
i )

T > 0, and Ri = (Ri)
T > 0 are the weight matrices with appropriate

dimensions.
Let xi

d = X∗
i v, z

i
d = Z∗

i v, and ui
d = −Ki

xX
∗
i v − Ki

zZ
∗
i v. It follows from (26) and (28)–(32) that the

cost function (43) can be rewritten as

Ci(xi(t), ui(t)) =
(
x̄i
z

)T
Qi

(
x̄i
z

)
+ (ūi)

T
Ri (ūi) , (44)

where Qi = block diag {Qx
i , Qz

i }.
That is, the COORP for the multi-agent system can be transformed as a tractable cooperative optimal

control problem subject to the augmented compact system (41) as formulated in Problem 1.
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Problem 1.

min
ū

N∑

i=0

∞∑

t=t0

(
x̄i
z

)T
Qi

(
x̄i
z

)
+ (ūi)

T
Ri (ūi) (45)

subject to x̄z(t+ 1) = Āx̄z(t) + B̄ū(t).

Minimizing the cost function with respect to the policy ū gives the following optimal control policy:

ū∗
i = −K∗

i x̄
i
z , (46)

where K∗
i =

(
Ri + B̄T

i P
∗
i B̄i

)−1
B̄T

i P
∗
i Āi is the optimal control gain and P ∗

i is the symmetric positive
definite solution to the following ARE:

ĀT
i PiĀi − Pi +Qi − ĀT

i PiB̄i

(
Ri + B̄T

i PiB̄i

)−1
B̄T

i PiĀi = 0. (47)

Then, we introduce a one-step recursion of the value update in the model-based VI scheme [43, Chapter
17.5] for solving the ARE (47), which is given as

P
(k+1)
i = ĀT

i P
(k)Āi − ĀT

i P
(k)
i B̄i

(

Ri + B̄T
i P

(k)
i B̄i

)−1

B̄T
i P

(k)
i Āi +Qi. (48)

The policy evaluation is

K
(k+1)
i =

(

Ri + B̄T
i P

(k+1)
i B̄i

)−1

B̄T
i P

(k+1)
i Āi. (49)

According to [43, Lemma 17.5.4], for P
(k+1)
i , k = 0, 1, 2, . . . , evaluated in (48) with any initial symmetric

positive matrix P
(0)
i ∈ P

ni

+ , we have limk→∞ P
(k)
i = P ∗

i and limk→∞ K
(k)
i = K∗

i with (Āi − B̄iK
∗
i ) being

a Schur matrix.
Notably, if the system matrices Āi and B̄i are unknown, the solutions to the regulator equations (28)–

(30) and ARE (47) are unavailable. Hence, the steady state xi
d, steady input ui

d, and the optimal control
gain K∗

i are unknown. Moreover, the data (x̄z , ū) of the system (41) are unavailable due to the absence
of knowledge of xi

d, z
i
d, and ui

d, which makes the design of the online learning algorithm for solving the
COORP more difficult.

3.2.2 Model-free online VI-based learning algorithm

To begin with, we combine the original multi-agent system (1) with the distributed adaptive internal
model (23) to obtain

xi
z(t+ 1) = Āix

i
z(t) + B̄iui +

[

Ei

−̺i0G2F

]

v(t)−
∑

j∈Ni

̺ij

[

0

G2Cj

]

xj(t) +

[

0

G̃i
1(t)zi(t)

]

, (50)

where xi
z = col(xi, zi), x0 = v, C0 = F , and ̺ij = aij/

∑N
j=0 aij .

The main idea of the online ADP learning algorithm is that, by replacing the system matrices in the
ARE with the online data, a corresponding iterative learning equation is established for estimating the
solution to ARE without using any prior knowledge of system dynamics. Note that the solution to the
ARE (47) only relies on the system matrices Āi and B̄i. If there exists a related system that has the
same system matrices (Āi, B̄i) as those of the system (41), then the ADP-based learning algorithm can
be established by the online data from the related system without using any knowledge of (Āi, B̄i).

Moreover, using the online data xi
z and ui from (50) to replace the data x̄i

z and ūi in (41), since it has
the same system matrices (Āi, B̄i) as those of system (41), the online ADP-based learning algorithm can
be established for estimating the solution to the ARE, i.e., K∗

i , without using any knowledge of (Āi, B̄i).
To deal with the issue that the exo-system state v(t) is unavailable to the agents i, 0 /∈ Ni, in most of

the existing studies for solving the CORP, for instance, [9,10,30,38,39,41], the adaptive observer network
is introduced in the agents i, 0 /∈ Ni to estimate the exo-system state, which could demand a large data
communication load to transmit the estimated state data among the agents. Instead of estimating the
state v(t), we consider a transformation method to construct a signal v̂(t) to replace v(t) in (50), as
shown below.
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As Gi
1(t) converges to G0

1, the minimal polynomial of S is obtained for each agent i ∈ V+
0 . Thus, we

can always find a signal v̂(t) and a known matrix Ĝi
1(t) ∈ R

qm×qm satisfying

v̂i(t+ 1) = Ĝi
1(t)v̂i(t), (51)

v(t) = Si
t v̂i(t), (52)

where Si
t ∈ R

q×qm is an unknown matrix.
Thus, combining (51) and (52), the system (50) can be rewritten as

xi
z(t+ 1) = Āix

i
z(t) + B̄iui +

[

EiS
i
t

−̺i0G2FSi
t

]

v̂i(t)−
∑

j∈Ni

̺ij

[

0

G2Cj

]

xj(t) +

[

0

G̃i
1(t)zi(t)

]

:= Āix
i
z(t) + B̄iui + Ēiv̂i(t) + D̄ix

+
j (t) + εi(t), (53)

where x+
j (t) is the vector lumping all xj(t) for j ∈ Ni and D̄i is the matrix lumping all D̄j for j ∈ Ni

with

D̄j = −̺ij

[

0

G2Cj

]

, Ēi =

[

EiS
i
t

−̺i0G2FSi
t

]

, εi(t) =

[

0

G̃i
1(t)zi(t)

]

. (54)

The above statements indicate that v(t) is replaced by a signal v̂i(t) generated by the agent i itself
without interacting with the estimated state from other agents, which could lead to a reduction in the
data communication load and computational load, compared to [9, 10, 30, 38, 39, 41] where an adaptive
observer network is needed to interact the estimated state among the agents.

Combining (48) with the data from system (53), we have

xi
z(t+1)TP

(k)
i xi

z(t+ 1) =









xi
z(t)

ui(t)

v̂i(t)

x+
j (t)









T 







ĀT
i P

(k)
i Āi ĀT

i P
(k)
i B̄i ĀT

i P
(k)
i Ēi ĀT

i P
(k)
i D̄i

∗ B̄T
i P

(k)
i B̄i B̄T

i P
(k)
i Ēi B̄T

i P
(k)
i D̄i

∗ ∗ ĒT
i P

(k)
i Ēi ĒT

i P
(k)
i D̄i

∗ ∗ ∗ D̄T
i P

(k)
i D̄i

















xi
z(t)

ui(t)

v̂i(t)

x+
j (t)









+ ε̃i(t)

:=









xi
z(t)

ui(t)

v̂i(t)

x+
j (t)









T 







P(i,k)
11 P(i,k)

12 P(i,k)
13 P(i,k)

14

∗ P(i,k)
22 P(i,k)

23 P(i,k)
24

∗ ∗ P(i,k)
33 P(i,k)

34

∗ ∗ ∗ P(i,k)
44

















xi
z(t)

ui(t)

v̂i(t)

x+
j (t)









+ ε̃i(t), t > tTd
, (55)

where tTd
is the instant when ‖Gi

1(t) − Gj
1(t)‖ < ǫ1 is achieved for all (j, i) ∈ E with a small threshold

ǫ1 > 0, and ε̃i(t) = (2xi
z(t+1)− εi(t))

TP
(k)
i εi(t). As shown in [9, Lemma 2], the estimation error of G̃i

1(t)

converges to zero by tuning 0 < µ1 < 2/ρ(H). Since P
(k)
i and xi

z(t) are usually bounded, the term ε̃i(t)
could be ignored by setting a small enough ǫ1.

Next, we define the functions Γv1,v2 and ∆v1,v1 associated with the column vectors v1 and v2 as

Γv1,v2(t) = [v1(t)⊗ v2(t)]
T
, ∆v1,v1(t) = vech

(
2v1(t)v1(t)

T − dia (v1(t)) dia (v1(t))
)T

. (56)

Using the functions defined in (56), Eq. (55) can be rewritten as

Ψ̄i(T )









vech(P(i,k)
11 )

vec(P(i,k)
12 )

vech(P(i,k)
22 )

Π









= Φ̄
(k)
i (T + 1), (57)

where

Ψ̄i(T ) = [Ψi(tTd
)T,Ψi(tTd

+ 1)T, . . . ,Ψi(tTd
+ T )T]T, (58)
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Φ̄
(k)
i (T + 1) = [Φ

(k)
i (tTd

+ 1)T,Φ
(k)
i (tTd

+ 2)T, . . . ,Ψ
(k)
i (tTd

+ T + 1)T]T, (59)

Π=
[

vec(P(i,k)
13 )T,vec(P(i,k)

14 )T,vec(P(i,k)
23 )T,vec(P(i,k)

24 )T,vech(P(i,k)
33 )T,vec(P(i,k)

34 )T,vech(P(i,k)
44 )T

]T

, (60)

with

Φ
(k)
i (t+ 1) = xi

z(t+ 1)TP
(k)
i xi

z(t+ 1), (61)

Ψi(t) =
[

∆xi
zx

i
z
, 2Γxi

zui
,∆uiui

, 2Γxi
zv̂i

, 2Γxi
zx

+
j
, 2Γuiv̂i , 2Γuix

+
j
,∆v̂iv̂i , 2Γv̂ix

+
j
,∆x+

j x+
j

]

. (62)

Note that Eq. (57) is the so-called online VI-based iterative learning equation, which requires the data

of xi
z , ui, v̂i, P

(k)
i , and xj , j ∈ Ni to construct the related matrices Ψ̄i and Φ̄

(k)
i for each agent i ∈ V+

0 at

each iteration k. It follows from (48) and (49) that, given an initial P
(0)
i ∈ P

ni

+ , for k = 0, 1, 2, . . . , the
online VI-based value update and control policy evaluation are

P
(k+1)
i = P(i,k)

11 − P(i,k)
12

(

Ri + P(i,k)
22

)−1 (

P(i,k)
12

)T

+Qi, (63)

K
(k+1)
i =

(

Ri + P(i,k)
22

)−1 (

P(i,k)
12

)T

, (64)

where P(i,k)
11 , P(i,k)

12 , and P(i,k)
22 are obtained by solving (57), and Qi and Ri are user-defined weight

matrices. As shown in most existing ADP-based learning algorithms, for instance, [30,39,41], the iterative
learning equation (57) can be solved by the pseudo-inverse method, when Ψ̄i(T ) is of full-column rank
but not a square matrix. However, it should be pointed out that there may exist calculation errors when
the pseudo-inverse method is used.

Finally, the data-driven ADP-based learning algorithm for solving the COORP is described in Algo-
rithm 1. The convergence and stability of Algorithm 1 are shown in Theorem 3.

3.3 Convergence and stability analyses

Theorem 3. For each agent i ∈ V+
0 , if there exists an instant ts∗ = tTd

+ s∗ with s∗ ∈ Z
+, such that

the rank condition

rank
(
Ψ̄i(T )

)
=

(ni + pqm +mi + qm +
∑

j∈Ni
nj)(1 + ni + pqm +mi + qm +

∑

j∈Ni
nj)

2
(65)

is satisfied for all ts > ts∗ , then the COORP for the multi-agent system (1)–(4) is solved by employing
the control policy estimated by Algorithm 1.

Proof. First, since Ψ̄i(T ) only relies on the collected data and is independent of either P
(k)
i or K

(k)
i ,

Ψ̄i(T ) is of full column rank for each iteration k at any instant ts > ts∗ , once the rank condition (65) is
satisfied at ts∗ . If the above rank condition (65) holds for each agent i ∈ V+

0 , then there always exists a
unique solution to the iterative learning equation (57). Note that Eq. (57) is transformed from the value
evaluation equation (48). Therefore, it follows from the properties of the VI scheme shown in [43, Chapter

17.5], i.e., limk→∞ K
(k)
i = K∗

i , that the estimated control gain K
(k)
i converges to its optimal value.

Then, according to [43], the optimal solution K∗
i for minimizing the cost function (44) makes (Āi −

B̄iK
∗
i ) be Schur matrix. Combining the stability analysis proven in Theorem 2, the controller (26) with

the estimated optimal control gain K̂∗
i and the online distributed adaptive internal model by employing

Algorithm 1 can achieve the aforementioned three objectives (i)–(iii) given in Section 2, which indicates
that the COORP is solved by Algorithm 1. Thus, the proof is completed.

The initial control policy used in the proposed Algorithm 1 has no demand on a stabilizing control
gain, yet it only needs two requirements: (1) The state response of a closed-loop system with the initial
control policy is bounded; (2) The rank condition (65) can be met. The rank condition can be easily
satisfied by only adding the exploration noise in the data collection process, and the exploration noise
would be cut off once the rank condition is satisfied, which was utilized in most existing ADP-based
learning algorithms, for instance, [28,29,32,38,39]. The judgment on the rank condition for each agent i
would not affect each other if the initial control policies with exploration noise are chosen appropriately.
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Algorithm 1 ADP-based data-driven learning algorithm for solving the COORP

1: Initialize: Give an arbitrary initial control policy sequences {ui
0(t)}

∞
t=0 with exploration noise series {ξi0(t)}

∞
t=0, initial v̂i(0),

and the weight matrices Qi and Ri for each agent i = 1, . . . , N . Select γ ∈ (0, 1), kθ1
> 0, kθ2

> 0, 0 < µ1 < 2/ρ(H), two small

thresholds ǫ1 and ǫ2, and a maximum iteration number kN . Define Vd = V+
0 .

2: Compute F (t) and H(t) by (9) and (10), respectively;

3: if the FE condition (7) of F (t) holds

4: Solve (11) or update (12) to obtain Ŝ;

5: Find the pair (G0
1, b) by (22);

6: Construct the distributed adaptive internal model (Gi
1(t),G2) obtained by (24) for the agent i ∈ Vd;

7: else

8: Let t = t + 1, and then go to Step 2;

9: end if

10: if ‖Gi
1(t) − Gj

1(t)‖ < ǫ1 holds for all (j, i) ∈ E

11: Collect data and compute Ψi(t) by (62) for agent i ∈ Vd; Let T = t, i = 1;

12: for i ∈ Vd do

13: if the rank condition (65) holds for Ψ̄i(T )

14: Let k = 0, and initialize P
(0)
i ∈ P

n
+;

15: Solve (57) to obtain P
(i,k)
11 , P

(i,k)
12 , and P

(i,k)
22 ;

16: Update Pk+1
i = P

(i,k)
11 − P

(i,k)
12 (Ri + P

(i,k)
22 )−1(P

(i,k)
12 )T + Qi;

17: if ‖Pk+1
i − Pk

i ‖ < ǫ2

18: Update control law ui = −K̂∗
i x

i
z with K̂∗

i = (Ri + P
(i,k)
22 )−1(P

(i,k)
12 )T for agent i;

19: Update the set Vd with deleting the element i from Vd;

20: else if k < kN

21: Let k = k + 1, and then go to Step 15;

22: end if

23: else

24: Let i = i+ 1;

25: if i /∈ Vd and i < N

26: Go to Step 24;

27: end if

28: end if

29: end for

30: if Vd ⊂ ∅
31: break

32: else

33: Let t = t + 1, and then go to Step 11.

34: end if

35: end if

0

1

2

3

4

Figure 1 Communication graph of the multi-agent system.

4 Simulation

In this section, a numerical example is given to validate the effectiveness of the proposed data-driven
distributed cooperative optimal output regulation control scheme. Consider a multi-agent system with
four agents whose communication graph is shown in Figure 1, and the system dynamics for agent i =
1, 2, 3, 4 is described as

xi(t+ 1) =

[

0 1

−i× 0.1 1.1

]

xi(t) +

[

0

1− i× 0.1

]

ui(t) +

[

0 0

0 −0.05× i

]

v(t),

v(t+ 1) =

[

0.99500 −0.09983

0.09983 0.99500

]

v(t),

ei(t) =
[

1 0
]

xi(t) +
[

2 0
]

v(t),

with the state initial values xi(0) = [i, i]T and v(0) = [2, 0]T. The weight matrices in the performance
function for each agent i are set to Qi = i × I4 ∈ R

4×4 and Ri = i where I4 is the unit matrix. In
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Figure 2 (Color online) Evolution of the distribution adaptive internal model parameters Gi
1(t).

addition, for each agent i, v̂i(0) = [1, 1]T. The parameters in the proposed algorithm are chosen as
γ = 0.9, µ1 = 0.9, ǫ1 = ǫ2 = 10−8, and the maximum iteration number is kN = 1000. The initial

control gain is chosen as K
(0)
i = 0, and the probing noise is selected as

∑10
j=0 cj sin(2πωj∆T × t) with ∆T

being the sampling time, which is a combination of several sinusoidal signals with different amplitudes cj
and frequencies ωj. Then, we collect the online data to estimate the exo-system dynamics, distributed
adaptive internal model, and optimal control gain for solving the COORP.

To illustrate the effectiveness of the proposed Algorithm 1, according to the given multi-agent system
dynamics with known weight matrices Qi and Ri, we first give the optimal control policy with the desired
distributed internal model for each agent i = 1, 2, 3, 4 as

{

ui(t) = −K∗
i x

i
z(t),

zi(t+ 1) = G∗
1zi(t) + G∗

2 êi(t),
(66)

with

K∗
1 = [−0.0098, 0.9423, − 7.1773, 7.2764] ,

K∗
2 = [−0.0973, 0.9732, − 7.6751, 7.7789] ,

K∗
3 = [−0.1964, 0.9981, − 8.2404, 8.3476] ,

K∗
4 = [−0.3076, 1.0129, − 8.8885, 8.9960] ,

and

G∗
1 =

[

0 1

−1.0000 1.9900

]

, G∗
2 =

[

0

0.01

]

.

The dynamic state feedback controller with the distributed adaptive internal model used in the pro-
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Figure 3 (Color online) Reference and outputs of each agent. Figure 4 (Color online) Control inputs of each agent.
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Figure 5 (Color online) Convergence performances of the online VI-based learning algorithm.

posed Algorithm 1 is given as







ui(t) = −K̂∗
i x

i
z(t),

zi(t+ 1) = Gi
1(t)zi(t) + G2êi(t),

Gi
1(t+ 1) = Gi

1(t) + µ1

∑

j∈Ni

aij(Gj
1(t)− Gi

1(t)).

(67)

Figure 2 shows that all the Gi
1(t) for each agent i = 1, 2, 3, 4 converges to G∗

1 and the error accuracy ǫ1 is
achieved around the instant t = 25, which illustrates the convergence of the distributed adaptive internal
model parameters. The trajectories of outputs and inputs are drawn in Figures 3 and 4, respectively, and
Figure 5 shows the convergence performances of the online VI-based learning algorithm. In particular,
Figure 3 shows that the control policies of each agent i = 1, 2, 3, 4 estimated by Algorithm 1 can achieve
the reference tracking with disturbance rejection. In addition, Figures 4 and 5 indicate that the estimated
control policies u1, u2, u3, and u4 are updated after 255, 276, 256, and 368 iterations, respectively, when
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the rank condition for agent i = 1, 2, 3, 4 is satisfied at t = 58, t = 75, t = 75, and t = 102, respectively,
and the estimate values are

K̂∗
1 = [−0.0097, 0.9414, − 7.1698, 7.2684] ,

K̂∗
2 = [−0.0965, 0.9728, − 7.7171, 7.8235] ,

K̂∗
3 = [−0.1963, 0.9983, − 8.2546, 8.3625] ,

K̂∗
4 = [−0.3075, 1.0134, − 8.8989, 9.0034] .

The simulation results illustrate that, by employing Algorithm 1 without using any prior knowledge of
the exo-system and multi-agent system or estimating the exo-system state, the estimated optimal control
policies for each agent with a distributed adaptive internal model can solve the COORP.

5 Conclusion

This paper addresses the distributed cooperative optimal output regulation problem with completely
unknown multi-agent systems. Two parameter approximation update laws are designed to estimate the
exo-system dynamics, which ensures that the online distributed adaptive internal model is established
without any prior knowledge of the exo-system dynamics. By only accessing the input, state, and output
data, the data-driven learning algorithm is proposed by using the ADP method with the VI scheme to
estimate the optimal control policy. The FE condition and rank condition guarantee the convergence
and stability of the proposed model-free ADP-based learning algorithm. Our future work will focus on
data-driven algorithms for adaptive optimal measurement/output feedback control with unmeasurable
external disturbance for unknown systems.
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