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The GaN on Si technology is attractive for power electronic

systems owing to its low cost and large wafer size [1]. GaN

Schottky barrier diodes (SBDs) on Si substrates have been

extensively studied due to their superior power figure of

merit and fast reverse recovery features [2]. Despite sub-

stantial advances in GaN SBDs research in recent years,

the device performance remains below the theoretical pre-

dictions. GaN SBDs are needed to enhance the turn-on

voltage, specific on-resistance, and breakdown voltage for

power electronic applications. An anode-recessed structure

was adopted in AlGaN/GaN SBDs to reduce the turn-on

voltage (VON) [3]. However, it is difficult to fabricate anode-

recessed SBDs with a uniform VON on a large sized wafer.

Furthermore, thermal stability is also necessary for space

applications like aerospace exploration.

Novel Al0.4Ga0.6N/(AlN/GaN super-lattices)/AlN/

Al0.1Ga0.9N double-channel (DC) SBDs with an anode-

recessed structure on a 6-inch Si substrate are proposed in

this study to enhance the VON uniformity and thermal sta-

bility of GaN SBDs. A smooth etching profile was achieved

through a two-step inductive coupled plasma (ICP) etch-

ing process. The anode-recessed DC-SBDs achieved a low

VON of 0.5 V with a tight distribution of 0.007 V. The

thermal stability of the devices was improved through en-

hanced two-dimensional electron-gas (2DEG) confinement

for the upper channel and weak mobility degeneration for

the lower channel. Moreover, the anode-recessed DC-SBDs

with an anode-to-cathode distance of 30 m achieved a high

breakdown voltage of 2290 V.

Material growth and device fabrication. The epilayer em-

ployed in this study was grown using metal-organic chem-

ical vapor deposition on a 6-inch p-type Si (111) sub-

strate. From bottom to top, the epitaxial structure con-

sists of a 200 nm AlN nucleation layer, two Al0.75Ga0.25N

(500 nm)/Al0.5Ga0.5N (500 nm) intermediate layers, a 2.5

micron Al0.1Ga0.9N layer, a 2 nm AlN layer, a 120 nm

AlN(1 nm)/GaN(5 nm) super-lattices (SLs) layer, a 25 nm

Al0.4Ga0.6N barrier layer, and a 2 nm GaN cap layer. The

intermediate layers Al0.75Ga0.25N/Al0.5Ga0.5N were intro-

duced for stress management to grow the thick Al0.1Ga0.9N

buffer layer for high-voltage applications. The 2 nm

AlN layer was designed as a back-barrier for the upper

2DEG channel and barrier for the lower 2DEG channel.

GaN/AlN SLs were used as the 2DEG channel layer be-

cause of their enhanced breakdown field strength and re-

duced alloy disorder scattering [4]. Figure 1(a) displays

the cross-sectional scheme of the epitaxial structure. The

van der Pauw Hall measurements show an electron sheet

density of 6.12×1012 cm−2 and an electron mobility of

433 cm2
·V−1

·s−1.

The device fabrication procedure began with mesa iso-

lation using ICP etching. Subsequently, the cathode ohmic

metals Ti/Al/Ni/Au (20 nm/140 nm/45 nm/55 nm) were

deposited by electron beam (EB) evaporation, followed by

annealing for 45 s in N2 ambient conditions. The transfer

length method was adopted to calculate the ohmic contact

resistance (1.2 Ω·mm). An anode-recessed structure was

constructed by the two-step ICP etching processes. First,

after the definition of the anode recess regions, the AlGaN

barrier layer was etched away using a Cl2/BCl3-based ICP

with a flow rate of 10/25 sccm. To minimize plasma-induced

damage, a low etching rate of 1.6 nm·min−1 could be at-

tained. Next, a Ni/Au (45 nm/200 nm) bilayer was evapo-

rated to fabricate the anode electrode, with the anode over-

lapping the GaN cap by 2 µm. Finally, 20 nm of Al2O3

was deposited using thermal atomic layer deposition to pas-

sivate the device. The anode-to-cathode distance (LAC)

varies from 5 to 30 µm. Figure 1(a) shows a cross-sectional

view of the DC-SBDs with the anode-recessed structure.

SBDs without the anode-recessed structure were also man-

ufactured on the same wafer for comparison.

Results and discussion. The temperature-dependent for-
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Figure 1 (Color online) (a) Cross-sectional schematics of the DC-SBDs with the anode-recessed structure; (b) forward I-V and

(c) reverse I-V characteristics of recessed DC-SBDs at elevated temperatures; (d) Arrhenius plot of the reverse current at VR =

−10, −20, −30, and −40 V as a function of the reciprocal temperature.

ward I-V characteristics of the recessed DC-SBDs are shown

in Figure 1(b). The forward current of the recessed DC-

SBDs at 2 V was observed to decrease with increasing the

measurement temperature. The forward current for Al-

GaN/GaN SBDs at 425 K usually drops below 0.60 of the

room temperature value [4]. Conversely, the forward cur-

rent (at 2 V) for the recessed DC-SBDs at 425 K reached

0.75 of the room temperature value. This is attributed to

the fact that the large conduction band discontinuity at the

GaN/AlN heterointerface can promote the confinement of

the upper 2DEG. Additionally, the mobility of 2DEG in the

lower AlGaN channel heterostructure drops less at higher

temperatures than in the AlGaN/GaN heterostructure [5].

Figure 1(c) displays the temperature-dependent reverse

I-V characteristics of the recessed DC-SBDs. Below the

pinch-off voltage (VR < −2.5 V), the reverse current is insen-

sitive to the reverse bias but increases with increasing tem-

perature. As a result, the Fowler-Nordheim tunneling and

variable-range-hopping mechanisms are both ruled out. The

reverse current at VR = −10, −20, −30, and −40 V exhibits

a linear behavior as a function of the reciprocal temperature,

as illustrated in Figure 1(d), suggesting an Arrhenius-type

thermally activated mechanism. The trap-assisted tunnel-

ing (TAT) is the most likely carrier transport mechanism

below the pinch-off voltage [3,6]. The activation energy can

be extracted from the linear fit to the data in Figure 1(d).

At VR = −10, −20, −30, and −40 V, the corresponding val-

ues of EA were found to be 0.177, 0.179, 0.176, and 0.169 eV

for the recessed DC-SBDs. These extracted EA are similar

to the values of 0.16 and 0.18 eV reported in [6, 7], respec-

tively. Liang et al. [6] discovered that N2 plasma treatment

results in higher EA and a reduced reverse leakage. The N2

plasma treatment in the recessed region will be implemented

to reduce the reverse leakage in our next study.
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