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Appendix A Preliminaries

Let Rn
+ := {x ∈ Rn, xj > 0, 1 6 j 6 n}, where Rn stands for n-dimensional Euclidean space. N0 = {0, 1, 2...}. I denotes the

identity matrix. For x, y ∈ Rn, define: x ≫ y, if xj > yj 1 6 j 6 n; x > y, if xj > yj , for 1 6 j 6 n; x > y, if x > y and x ̸= y.

A = (aij)n×n is Metzler matrix if aij > 0(i ̸= j). The jth coordinate of vector xp is denoted by xpj . The weighted l∞ norm of

x ∈ Rn
+ is given by

||x||υ∞ = max
16j6n

|xj |
υj

.

For an n-tuple r = {r1, r2, ..., rn} and a constant λ > 0, the dilation map is defined by δrλ

δ
r
λ(x) =
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λr1 0 0 . . . 0 0

0 λr2 0 . . . 0 0
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.

.

.

xn

 =


λr1x1

λr2x2

.

.

.

λrnxn

 ,

where λj > 0 (j = 1, 2, ..., n). The dilation map δrλ is standard when r = {1, 1, ..., 1}.

Definition 1. A vector field f : Rn → Rn is cooperative if the Jacobian matrix ∂f
∂x (a) is Metzler matrix for all a ∈ Rn

+\{0},
where f : Rn → Rn is continuous and continuously differentiable on Rn

+\{0}.
From ( [1], Chapter 3, Remark 1.1, p.33), the cooperative vectors satisfy Kamke-condition.

Proposition 1. If f : Rn → Rn is a cooperative field, then given any two vectors x and y in Rn
+ satisfying x > y and xj = yj ,

one has fj(x) > fj(y).

Definition 2. A vector field g : Rn → Rn is called order-preserving on Rn
+, if g(x) > g(y) for any x,y ∈ Rn

+ satisfying x > y.

If for any t ∈ [0,+∞), fσ(t) is is a cooperative field and gσ(t) is order-preserving field, then system (1) is SPNSs. More precisely,

in the fist interval [0, t1), the solution of the first activated subsystem is nonnegative for any nonnegative initial condition. This

implies that the initial condition is nonnegative for the second interval [t1, t2). Hence, the solution of the system (1) is always

nonnegative.

Definition 3. System (1) is exponentially stable (ES), if for nonnegative initial function θ(t) and any switching signal from a

fixed ADT class, there exist two constants a0 > 0 and b0 > 0 such that the solutions of system (1) satisfy

||x(t)|| 6 a0e
−b0t||θ(t)||, t > 0,

where ||.|| is some norm in Rn.

Definition 4. Denote Nσ(T1, T2) be the number of switching times of σ(t) over the interval [T1, T2]. If there exist two positive

constants τa and N0 such that

Nσ(T1, T2) 6 N0 +
T2 − T1

τa
,

then τa is called an average dwell time (ADT) of σ(t).
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Appendix B The proof of Lemma 1

Proof: For any j ∈ {1, 2, ..., n}, one can get

(
xj(t)

υpj

) rmax
rj =

(
xj(t)

υqj

υqj
υpj

) rmax
rj

=
(

xj(t)

υqj

) rmax
rj

(
υqj
υpj

) rmax
rj

6 α
rmax

rj
(

xj(t)

υqj

) rmax
rj

6 αl
(

xj(t)

υqj

) rmax
rj

= β
(

xj(t)

υqj

) rmax
rj ,

then it follows from the definition of the multiple max-separate Lyapunov function that (2) holds.

Appendix C The proof of Theorem 1

Proof: For any p ∈ M, j ∈ {1, 2, ..., n}, define function zpj(λ) = λ +
fpj(υp)

υpj
+ eλτmax

gpj(υp)

υpj
, then it is easily to check that

zpj(0) < 0 and zpj(λpj) = 0. Note that zpj(λ) is monotonically increasing in λ, then picking any λ0 with 0 < λ0 < min
p∈M

min
16j6n

λpj ,

the following inequality holds

zpj(λ0) < 0, j ∈ {1, 2, ..., n}. (C1)

Set x(t) = e−λ0ty∗(t), then it follows from system (1) that

ẏ
∗
(t) 6 λ0y

∗
(t) + fσ(t)(y

∗
(t)) + e

λ0τ(t)
gσ(t)

(
y
∗
(t − τ(t))

)
, t > 0. (C2)

Next, consider the following impulsive switched positive system


ẏ(t) = λ0y(t) + fσ(t)(y(t)) + eλ0τ(t)gσ(t) (y (t − τ(t))) , t > 0, t ̸= tk,

∆y(tk) = Cσ(tk)y
(
(tk − d(tk))

−) ,
y(t) = eλ0tθ(t), t ∈ [−τmax, 0].

(C3)

The switching sequence is denoted by 0 = t0 < t1 < t2 < ... < tk < tk+1 < .... Then for the first interval [t0, t1), let σ(t) = σ(t0),

t ∈ [t0, t1). Define ||θ|| = sup
−τmax6t60

Vυ(θ(t)), where υ is defined in Lemma 1. Hence for any ρ > 1 one can check

Vυσ(t0)
(y(0)) = Vυσ(t0)

(θ(0)) 6 ||θ|| < ρ||θ||.

Next, the following inequality will be proved

Vυσ(t0)
(y(t)) < ρ||θ||, ∀t ∈ [t0, t1). (C4)

By contradiction, assume that (C4) is not always correct. Note that Vυσ(t0)
(y(t)) is continuous, then there exist a time t∗ and at

least one index j0 ∈ {1, 2, ..., n} such that

(
yj(t)

υσ(t0)j

) rmax
rj

< ρ||θ||, t 6 t
∗
, j ∈ {1, 2, ..., n}, (C5)

(
yj0 (t

∗)

υσ(t0)j0

) rmax
rj0

= ρ||θ||, (C6)

D−

(
yj0 (t)

υσ(t0)j0

) rmax
rj0 |t=t∗ > 0, (C7)

where D− denotes the left derivative.

Case 1: If t∗ − τ(t∗) > 0, then t∗ − τ(t∗) ∈ [0, t∗]. Combining (C5) with (C6) can lead to

yj(t
∗ − τ(t

∗
)) 6 (ρ||θ||)

rj
rmax υσ(t0)j , j ∈ {1, 2, ..., n}.

Since ρ > 1, (ρ||θ||)
1

rmax > (||θ||)
1

rmax . Therefore, if ||θ||
1

rmax > λ∗, then (ρ||θ||)
1

rmax > λ∗. Furthermore, it follows from

Assumption 2 and Assumption 3 that

gσ(t0)(y(t
∗ − τ(t∗)) 6 gσ(t0)

(
(ρ||θ||)

r1
rmax υσ(t0)1, (ρ||θ||)

r2
rmax υσ(t0)2, ..., (ρ||θ||)

rn
rmax υσ(t0)n

)
= gσ(t0)

(
δrλθ

υσ(t0)

)
6 δrλθ

gσ(t0)

(
υσ(t0)

)
,

where λθ = (ρ||θ||)
1

rmax . Noting that fσ(t0) is cooperative, this in turn implies
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fσ(t0)j0
(y(t∗)) 6 fσ(t0)j0

(
(ρ||θ||)

r1
rmax υσ(t0)1, (ρ||θ||)

r2
rmax υσ(t0)2, ..., (ρ||θ||)

rn
rmax υσ(t0)n

)
= fσ(t0)j0

(
δrλθ

υσ(t0)

)
6 λ

rj0
θ fσ(t0)j0

(
υσ(t0)

)
.

Then

D−

(
yj0

(t)

υσ(t0)j0

) rmax
rj0 |t=t∗

= rmax
rj0

(
yj0

(t∗)

υσ(t0)j0

) rmax
rj0

−1 ẏj0
(t∗)

υσ(t0)j0

= rmax
rj0

(
yj0

(t∗)

υσ(t0)j0

) rmax
rj0

−1
1

υσ(t0)j0

(
λ0yj0 (t

∗) + fσ(t0)j0
(y(t∗)) + eλ0τ(t∗)gσ(t0)j0

(y (t∗ − τ(t∗)))
)

6 rmax
rj0

λ
rmax−rj0
θ

1
υσ(t0)j0

(
λ0λ

rj0
θ υσ(t0)j0

+ λ
rj0
θ fσ(t0)j0

(υσ(t0)) + eλ0τmaxλ
rj0
θ gσ(t0)j0

(υσ(t0))
)

= rmax
rj0

λ
rmax−rj0
θ λ

rj0
θ

(
λ0 +

fσ(t0)j0
(υσ(t0))

υσ(t0)j0
+ eλ0τmax

gσ(t0)j0
(υσ(t0))

υσ(t0)j0

)
= rmax

rj0
λrmax
θ

(
λ0 +

fσ(t0)j0
(υσ(t0))

υσ(t0)j0
+ eλ0τmax

gσ(t0)j0
(υσ(t0))

υσ(t0)j0

)
< 0,

where the last inequality is from (C1). This contradicts (C7).

Case 2: If t∗ − τ(t∗) < 0, then

y(t
∗ − τ(t

∗
)) = e

λ0(t∗−τ(t∗))
θ(t

∗ − τ(t
∗
)) 6 θ(t

∗ − τ(t
∗
)),

which means

Vυσ(t0)
(y(t

∗ − τ(t
∗
))) < ρ||θ||.

Similar to the analysis in Case 1, D−

(
yj0

(t)

υσ(t0)j0

) rmax
rj0 |t=t∗ < 0 can be obtained, which also yields a contradiction. Thus, (C4)

is true for any ρ > 1. Let ρ tend to 1+, then

Vυσ(t0)
(y(t)) 6 ||θ||, ∀t ∈ [t0, t1).

This combines with Lemma 1 leads to

Vυσ(t1)
(y(t)) 6 β||θ||, ∀t ∈ [t0, t1).

That is, for any t ∈ [t0, t1),

(
yj(t)

υσ(t1)j

) rmax
rj 6 β||θ||. Let t tend to t−1 , then

yj(t
−
1 ) 6 (β||θ||)

rj
rmax υσ(t1)j . (C8)

Since −τmax 6 t1 − d(t1) 6 t1, the following inequality is always true

yj

(
(t1 − d(t1))

−
)

6 (β||θ||)
rj

rmax υσ(t1)j . (C9)

Combining (C8) and (C9) gives

yj(t1) = yj(t
−
1 ) + Cσ(t1)jjyj

(
(t1 − d(t1))

−)
6 (β||θ||)

rj
rmax (1 + Cσ(t1)jj)υσ(t1)j

6 (β||θ||)
rj

rmax hυσ(t1)j .

Then it follows that

Vυσ(t1)
(y(t1)) 6 βη||θ||.

Applying the similar analysis to the one of the first interval, one can verify that

Vυσ(t1)
(y(t)) 6 βη||θ||, ∀t ∈ [t1, t2)

and

Vυσ(t2)
(y(t2)) 6 (βη)

2||θ||.

By induction, for each k ∈ {1, 2, ..., n, ...}, the following inequality can be obtained

Vυσ(tk)
(y(t)) 6 (βη)

k||θ||, t ∈ [tk, tk+1). (C10)

It should be pointed out that even if lim
t→+∞

tk − d(tk) = +∞ holds for the impulsive delay, (C10) is always true. The reasons are

that tk − d(tk) 6 tk and βη > 1. Furthermore, for any t ∈ [0,+∞), assume that t ∈ [tk, tk+1), then we have

Vυσ(tk)
(y(t)) 6 (βh)

k||θ|| 6 (βη)
N0+ t

τa ||θ||.

It follows from (C2) and (C3) that
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Vυσ(tk)
(x(t)) = e−λ0tVυσ(tk)

(y∗(t))

6 e−λ0tVυσ(tk)
(y(t))

6 (βη)N0e−λ0t(βη)
t

τa ||θ||

= (βη)N0e
−(λ0− ln(βη)

τa
)t||θ||.

Furthermore, from Lemma 1, we can get

Vυ(x(t)) 6 Vυσ(tk)
(x(t)) 6 (βh)

N0e
−(λ0− ln(βη)

τa
)t||θ||.

Since the switching signal satisfies τa >
ln(βη)

λ0
, that is λ0 − ln(βη)

τa
> 0, this implies that system (1) is ES.

Appendix D The proof of Theorem 2
Proof: From (5), we have

λ0 +

a
p
jj +

i=n∑
i=1,i̸=j

1

υpj

ã
p
jiυpi

+ e
λ0τmax

i=n∑
i=1

1

υpj

|bpji|υpi < 0, ∀p ∈ M, j ∈ {1, 2, ..., n}. (D1)

For the linear system (4), since r1 = r2 = ... = rn, the multiple max-separable Lyapunov function can be written as

Vυp (x) = max
16j6n

( |xj |
υpj

) rmax
rj

= max
16j6n

( |xj |
υpj

)
.

Similar to the proof of (C4), suppose
|xj(t)|
υσ(t0)j

< ρ||θ||, t 6 t
∗
, j ∈ {1, 2, ..., n}, (D2)

|xj0 (t
∗)|

υσ(t0)j0

= ρ||θ||, (D3)

D−
|xj0 (t)|
υσ(t0)j0

|t=t∗ > 0, (D4)

Then the left derivative of |xj0 (t
∗)|/υpj0 needs to be calculated, that is

D−
|xj0

(t)|
υpj0

|t=t∗ =
sign(xj0

(t∗))ẋj0
(t∗)

υpj0

=
sign(xj0

(t∗))

υpj0

(
λ0xj0 (t

∗) +
i=n∑
i=1

ap
j0ixi(t

∗) + eλ0τ(t∗)
i=n∑
i=1

bpj0ixi(t
∗)

)
6 1

υpj0

(
λ0|xj0 (t

∗)| + ap
j0j0

|xj0 (t
∗)| +

i=n∑
i=1,i̸=j0

ãp
j0i|xi(t

∗)| + eλ0τmax
i=n∑
i=1

|bpj0i||xi(t
∗)|
)

.

It follows from (D1) that D−
|xj0

(t)|
υpj0

|t=t∗ < 0, which contradicts (D4). Then the rest proof which shows similarities with the one

of Theorem 1 is left out here.
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