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Appendix A Notations

R, Rn Rm×n are the set of real numbers, the set of n × 1 real vectors and the set of m × n real matrices respectively. N(µ,Σ)

represents a Gaussian distribution with mean µ and covariance matrix Σ. Pr(·) stands for the probability of a random event. Sn+
and Sn++ are the sets of n × n positive semidefinite and positive definite matrices. When X ∈ Sn+, we simply write X > 0 (X > 0

if X ∈ Sn++ ). E(·) represents the expectation of a random event. O denotes a zero matrix with appropriate dimensions. det(·) is

the determinant of a matrix. x ∝ y means x is proportional to y.

Appendix B An example: estimation of traffic densities

Intelligent transport systems for traffic surveillance require some fundamental information including traffic density. Traffic density

is defined as the number of vehicles that occupy one unit length of road space per lane. Here we focus on a road segment with n lanes

that is a detection zone with an upstream detector and a downstream detector at the entrance and exit of each lane respectively. The

two detectors count the vehicles passing through. See [1] for a detailed description of the detectors. xi,k+1 = xi,k + d̃i,k +ui,k +ωi,k

is commonly used in the literature such as [2] to describe the traffic conservation, where xi,k denotes the total number of vehicles

in lane i at time step k, and ui,k represents the difference in the numbers of vehicles that enter and leave the upstream and down

stream detectors of lane i. The quantity ui,k is directly available from the detectors. However, usually no sensors are installed

within a freeway segment. Hence d̃i,k, the vehicles’ net gain due to lane-change maneuvers, is not observed in the equation. We

note, however, the net gain of lane-changing vehicles aggregated across all the lanes is equal to zero due to traffic conservation (We

understand this behavior as an injection attack that destroys estimates), i.e.
∑n

i=1 d̃i,k = 0. Consequently, the input variables

defined as di,k = d̃i,k + ui,k are observable at the aggregate level (the segment level).

Appendix C Discussions on problem formulation

To be more specific, at every time step k, the sensor generates an independent and identically distributed (i.i.d.) random variable

ξk, which is uniformly distributed over [0, 1]. Then the sensor compares ξk with a function φ(yk) : Rm → [0, 1]. The sensor

transmits if and only if ξk > φ(yk). Since ξk is uniformly distributed, one can interpret φ(yk) as the probability of idle and

1 − φ(yk) as the probability of transmitting for the sensor. The main purpose of the event-triggered mechanism here is to save

communication cost. Moreover, when an attacker tries to eavesdrop measurements, an event-triggered mechanism leverages less

information.

Even though the event triggered policy form in [5] is more general than the form in this paper, our form needs the lower memory

cost and computation cost. At the same time, both the forms use the Gaussianity-preserving property as discussed in [5]. Our

result can be extended to the result in [5] trivially.

Appendix D Proof of Theorem 1

To directly estimate the state under injection attacks is a tough problem. To begin with, we need some lemmas which are introduced

as follows:

Lemma 1. (1) Given Γ ∈ Rn1×n3 , V ∈ Sn1
++, Ψ ∈ Rn2×n3 , W ∈ Sn2

++. Let x, a, b be vectors with appropriate dimensions. If

V > 0, W > 0, and the matrix [ΓT ,ΨT ]T has a full column-rank, then the following statement holds:

(Γx+ a)
T
V (Γx+ b) + (Ψx+ b)

T
W (Ψx+ d)

=[x+ (Γ
T
V Γ + Ψ

T
WΨ)

−1
(Γ

T
V a+ Ψ

T
Wb)]

T
(Γ

T
V Γ + Ψ

T
WΨ)

× [x+ (Γ
>
V Γ + Ψ

>
WΨ)

−1
(Γ
>
V a+ Ψ

>
Wb)] + ?, (D1)

where ? indicates a term uncorrelated with x.
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(2) If V ∈ Sn1
++ and W ∈ Sn2

++, then

x
T
V x+ (Ψx− b)TW (Ψx− b)

=
[
x− (V + Ψ

T
WΨ)

−1
Ψ

T
Wb
]T

(V + Ψ
T
WΨ)

× [x− (V + Ψ
T
WΨ)

−1
Ψ

T
Wb] + b

T
(

ΨV
−1

Ψ
T

+W
−1
)−1

b. (D2)

Proof. The first expression can be verified by direct manipulations and observing that (ΓTV Γ+ΨTWΨ) is nonsingular. (ΓTV Γ+

ΨTWΨ) is nonsingular if [ΓT ,ΨT ]T has a full column-rank because of the truth that (ΓTV Γ+ΨTWΨ) = [ΓT ,ΨT ]
[ V 0

0 W

]
[ΓT ,ΨT ]T .

The second expression can be acquired by direct manipulations with the matrix inversion lemma.

Lemma 2. Let x ∈ Rn be a variable with Gaussian distribution and ([ΓT , Γ̃T ]) be an n × n invertible partitioned matrix.

Assume that β = Γ̃x and α = Γx, where β follows N(µ, W̃ ) and α follows N(ω,W ). Both ω and W > 0 are known. Provided

hyperparameter vector µ has a noninformative distribution, then

f(x) ∝ f(Γx). (D3)

Proof. Let f(µ) denote the marginal distribution function of µ. Note that for a given µ, [ΓT , Γ̃T ]T x followsN

 ω

µ

 ,

 W C̃

C̃T W̃

,

where C̃ represents the covariance matrix. Then,

f([Γ
T
, Γ̃

T
]
T
x) =

∫
f([Γ

T
, Γ̃

T
]
T
x|µ)f(µ) dµ

∝
∫

f([Γ
T
, Γ̃

T
]
T
x|µ) dµ

= f(Γx), (D4)

where the final equality can be deduced by using marginal properties of multivariate Gaussian distributions . Since f(x) ∝
f([ΓT , Γ̃T ]T x), we finally get f(x) ∝ f(Γx).

Remark 1. This lemma provides the direction for the design of subsequent filters. In other words, through the Bayesian law, we

can transform the filtering problem of the original problem into a partially fully known filtering problem, which will be shown in

the proof of Theorem 1.

The following result provides an optimal estimation x̂k based on Ik. First, let Sk denote

Mk−1

NkCk

. Under the conditions

Qk > 0 and Rk > 0, we obtain that P−1
k|k is non-singular if Sk has a full column-rank. Since

Sk =


Dk−1 O

O I

NkCkGk−1 NkCkG
⊥
k−1

 ,

the condition that Πk has a full column-rank is equivalent to Sk has a full column-rank. In the next steps, we will verify Theorem

1 by induction. First, the result is assumed to be true at k − 1. Second, define sk = Mk−1xk. Noting Mk−1Gk−1dk−1 = r̃k−1, it

can be derived that sk = Mk−1Ak−1xk−1 + r̃k−1 +Mk−1ωk−1. Then, by the induction hypothesis, one can obtain

sk ∼ N
(
Mk−1Ak−1x̂k−1|k−1 + r̃k−1, P̃k|k−1

)
, (D5)

where

P̃k|k−1 = Mk−1Pk|k−1M
T
k−1.

Then, consider the case when γk = 1. Due to Bayesian Law, it is true that

f(xk|Ik) = f(xk|yk, Ik−1) ∝ f(yk|xk, Ik−1)f(xk|Ik−1)

Define M̃k−1 = [FT
0k−1, 0]Ω−1

k−1and s̃k = M̃k−1xk = M̃k−1Ak−1x̂k−1|k−1 + δxk−1 + M̃k−1ωk−1. Noting that [MT
k−1, M̃

T
k−1] is a

n×n invertible matrix, it follows from the Lemma 2 that f(xk|Ik−1) ∝ f(sk|Ik−1). With similar derivations, one can also obtain

f(yk|xk, Ik−1) ∝ f(Nkyk|xk, Ik−1). Hence, it can be gotten that

f(xk|Ik) ∝ f(Nkyk|xk, Ik−1)f(sk|Ik−1).

Then, it can be derived that

f(xk|Ik) ∝ f(Nkyk|xk, Ik−1)f(sk|Ik−1)

∝ exp{−
1

2
(Mk−1xk −Mk−1Ak−1x̂k−1 − r̃k−1)

T
(P̃k|k−1)

−1
(Mk−1xk −Mk−1Ak−1x̂k−1 − r̃k−1)}

× exp{−
1

2
(Nkyk −NkCkxk − q̃k)

T
Vk(Nkyk −NkCkxk − q̃k)}, (D6)
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Finally by the item 1 of Lemma 1 and noticing that Sk has a full column-rank, the above equation further implies that the

conditional distribution of xk is a Gaussian distribution with mean

x̂k|k =Pk|k{M
T
k−1(Mk−1Pk|k−1M

T
k−1)

−1
[Mk−1Ak−1x̂k−1|k−1 + r̃k−1] + (NkCk)

T
Vk(Nkyk − q̃k)} (D7)

and covariance matrix

Pk|k = [M
T
k−1(Mk−1Pk|k−1M

T
k−1)

−1
Mk−1(NkCk)

T
VkNkCk]

−1
. (D8)

Define Kk = Pk|k(NkCk)TVk. The above conditional mean can be rearranged to have the form of (7).

For γk = 0, it follows form the the Bayesian law that

f(xk|Ik) = f(xk|γk = 0, Ik−1)

∝ Pr(γk = 0|xk, Ik−1)f(xk|Ik−1).

By Lemma 2 and noting that the fact Pr(γk = 0) is determined by Ik−1 and yk, one can have

f(xk|Ik) ∝ f(sk|Ik−1)

∫
Rp

Pr(γk = 0|xk, yk, Ik−1)f(yk|xk, Ik−1) dyk

= f(sk|Ik−1)

∫
Rp

Pr(γk = 0|yk, Ik−1)f(Nkyk|xk, Ik−1) dyk

= f(sk|Ik−1)

∫
Rp

exp{−
1

2
y
T
k Ykyk} exp{−

1

2
(Nkyk −NkCkxk − q̃k)

T
Vk(Nkyk −NkCkxk − q̃k)} dyk

= f(sk|Ik−1)

∫
Rp

exp{−
1

2
[(yk −WkN

T
k Vk(NkCkxk + q̃k)

T
W
−1
k (yk −WkN

T
k Vk(NkCkxk + q̃k)]dyk

× exp{−
1

2
(NkCkxk + q̃k)

T
(NkY

−1
k N

T
k + V

−1
k )

−1
(NkCkxk + q̃k)}

∝ f(sk|Ik−1) exp{−
1

2
(NkCkxk + q̃k)

T
(NkY

−1
k N

T
k + V

−1
k )

−1
(NkCkxk + q̃k)}, (D9)

where the second to last equality is due to item 2 of Lemma 1. Then, by item 1 of Lemma 1 and noticing that Sk has full

column-rank, it is true that

f(xk|Ik) ∝ exp{−
1

2
(Mk−1xk −Mk−1Ak−1x̂k−1 − r̃k−1)

T
(P̃k|k−1)

−1
(Mk−1xk −Mk−1Ak−1x̂k−1 − r̃k−1)}

× exp{−
1

2
(NkCkxk + q̃k)

T
(NkY

−1
k N

T
k + V

−1
k )

−1
(NkCkxk + q̃k)}

= exp{−
1

2
(xk − x̂k|k)

T
P
−1
k|k(xk − x̂k|k)} (D10)

with

x̂k|k =Pk|k{M
T
k−1(Mk−1Pk|k−1M

T
k−1)

−1
[Mk−1Ak−1x̂k−1|k−1 + r̃k−1]− (NkCk)

T
(Vk − VkNkWkN

T
k Vk)q̃k} (D11)

and covariance matrix

Pk|k = [M
T
k−1(Mk−1Pk|k−1M

T
k−1)

−1
Mk−1 + (NkCk)

T
(Vk − VkNkWkN

T
k Vk)NkCk]

−1
. (D12)

Define Kk = Pk|k(NkCk)T (Vk − VkNkWkN
T
k Vk), the above conditional mean can be directly rearranged to have the form of

(7).

In addition, by noting that the results where x0 follows (x̂0, P0|0) with x̂0|0 = x̂0 and P0|0 = P0 respectively, the inductive

proof is completed.

However, computation of covariance matrix involves the inverses of two matrix. When n is large, the computational cost is high.

So we turn to handle the computation issue in the following part.

Remark 2. By the standard result on optimal filtering, it is well known that the mean of the conditional distribution is the

MMSE estimation. Notice that xk|Ik follows a gaussian distribution, which shows that the conditional mean x̂k|k is the MMSE

estimator of xk.

Lemma 3. ([3], Lemma 2) Let P > 0, R > 0 and F be a matrix such that DF = O. Provided that both the matrix DT and

matrix [CT , DT ]T have full column-rank, then it can be shown that

[
DT

(
DPDT

)−1
D + CTR−1C

]−1

= P − PCTH−1CP +
[
F − PCTH−1CF

]
×
[
FTCTH−1CF

]−1 [
F − PCTH−1CF

]T
.

(D13)[
DT

(
DPDT

)−1
D + CTR−1C

]−1

CTR−1 = PCTH−1 +
[
F − PCTH−1CF

]
×
[
FTCTH−1CF

]−1
FTCTH−1, (D14)

where H = CPCT + R.
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Notice that Kk and Pk|k can be written in the following form:

Kk = Pk|k(NkCk)
T

(Vk − (1− γk)VkNkWkN
T
k Vk) (D15)

and

Pk|k = [M
T
k−1(Mk−1Pk|k−1M

T
k−1)

−1
Mk−1 + (NkCk)

T
(Vk − (1− γk)VkNkWkN

T
k Vk)NkCk]

−1
. (D16)

Then by Lemma 3, the following statement is true.

Kk =Pk|k−1(NkCk)
T

Θ
−1
k +

[
Fk−1 − Pk|k−1(NkCk)

T
Θ
−1
k NkCkFk−1

]
×
[
F

T
k−1(NkCk)

T
Θ
−1
k NkCkFk−1

]−1
F

T
k−1C

T
k Θ
−1
k ,

(D17)

Pk|k =Pk|k−1 − Pk|k−1(NkCk)
T

Θ
−1
k NkCkPk|k−1

+
[
Fk−1 − Pk|k−1(NkCk)

T
Θ
−1
k NkCkFk−1

]
×
[
F

T
k−1(NkCk)

T
Θ
−1
k NkCkFk−1

]−1

×
[
Fk−1 − Pk|k−1(NkCk)

T
Θ
−1
k NkCkFk−1

]T
,

(D18)

with Θk = NkCkPk|k−1(NkCk)T + (Vk − (1− γk)VkNkWkN
T
k Vk)−1, which completes the proof.

Appendix E Stability analysis
In this section, we investigate the stability of the proposed event-triggered estimator. In other words, the purpose here is to evaluate

the asymptotic property of the error covariance matrix (11) as k →∞. As it is shown in [5] that the estimation error matrix Pk|k
becomes a stochastic process due to the event-triggering signal sequences {γk}. Inspired by [5], we define a new Gaussian system

model With the help of the new system, we can give a certain condition that guarantee the stability of the origin one:

xk+1 = Akxk +Gkdk + ωk, (E1)

y̆k = NkCkxk + q̆k + v̆k, (E2)

with the same assumptions on x0, ωk and dk as those of Section II. v̆k is a Gaussian variable with zero mean and covariance matrix

R̆k = (Vk − (1− γk)VkNkWkN
T
k Vk).

With the model above, the time-based estimation can be written in the following form:

x̂k|k = Ak−1x̂k−1|k−1 + P̆k|kM
T
k−1(Mk−1P̆k|k−1M

T
k−1)

−1

× r̃k−1 + K̆k(y̆k − q̃k −NkCkAk−1x̂k−1|k−1), (E3)

the gain matrix

K̆k = P̆k|k(NkCk)
T
R̆
−1
k , (E4)

and the conditional covariance matrix is given by

P̆k|k = [M
T
k−1(Mk−1P̆k|k−1M

T
k−1)

−1
Mk−1 + (NkCk)

T
R̃kNkCk]

−1
, (E5)

P̆k|k−1 = Ak−1P̆k−1|k−1A
T
k−1 +Qk. (E6)

Theorem 1. The estimation error ek = xk − x̂k|k of the filter (E3)-(E5) follows the recursive equation.

ek =
(
Ak−1 − K̆kNkCkAk−1

)
ek−1 +

[
I − K̆kNkCk,−K̆k

]
[ωk−1, vk]

T
. (E7)

Proof. Let Lk−1 = P̆k|kM
T
k−1

(
Mk−1P̆k|k−1M

T
k−1

)−1
, the error dynamics are given by

ek =Ak−1xk−1 +Gk−1dk−1 + ωk−1 − Ak−1x̂k−1|k−1

− Lk−1r̃k−1 − K̆k

(
ỹk − q̃k −NkCkAk−1x̂k−1|k−1

)
=
(
Ak−1 − K̆kNkCkAk−1

)
ek−1 +

(
Gk−1 − K̆kNkCkGk−1

)
dk−1

− Lk−1r̃k−1 +
(
I − K̆kNkCk

)
ωk−1 − K̆kv̆k.

(E8)

Noting that r̃k−1 = M̃k−1Gk−1dk−1, it can be obtained that

(Gk−1 −KkNkCkGk−1) dk−1 − Lk−1r̃k−1 = [I −KkNkCk − Lk−1Mk−1]Gk−1dk−1. (E9)

Inserting (E4) and (E5) to (E9), we can obtain (E7) by noting that I −KkNkCk − Lk−1Mk−1 = O, which completes the proof.
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Now we can represent the covariance matrix update equation as

P̆k|k =φ(K̆k, P̆k−1|k−1)

=
(
Ak−1 − K̆kNkCkAk−1

)
Pk−1|k−1

(
Ak−1 − K̆kNkCkAk−1

)T

+
(
I − K̆kNkCk

)
Qk−1

(
I − K̆kNkCk

)T
+ K̆kRkK̆

T
k .

(E10)

In this way, we can give the condition that guarantee the stability.

Next, we will explain Theorem 2 separately in the following two lemmas.

Lemma 4. If there exists K̃k such thatAk−K̃kNk+1Ck+1Ak are exponentially stable for every k and Πk has a full column-rank,

the covariance matrix satisfying (E10) is asymptotically bounded. Consequently, for the event-triggered estimator in (9)-(9), the

estimation error covariance matrix Pk|k is asymptotically bounded and the closed-loop matrix of the estimator is exponentially

stable for each sample path of {γk}.
Proof. Since the pairs Ak − K̆kNk+1Ck+1Ak are exponentially stable, there exists a bounded K̃k such that I − K̆kNkCk is

bounded. From Lemma 4.2 in [3], the solution Pk to the Lyapunov equation Pk = φ(K̃k, Pk−1) is bounded as k → ∞. Since the

optimality of K̆k, we have P̆k|k 6 Pk. Moreover, due to that the update covariance matrix Pk|k is the same as P̆k|k when the

initial condition is the same, we can conclude that the event-triggered MMSE estimator is asymptotically bounded.

Remark 3. It is worth pointing out that from the above derivations, the stable condition does not depend on R̃k. Furthermore,

it can be directly observed that when Ak is stable, the condition is satisfied and hence the estimator is exponentially stable.

Specifically, when the system is time-invariant, the condition that (A,NCA) is stabilizable can guarantee the stability of the

estimator. To confirm the situation that Ak − K̃kNk+1Ck+1Ak is exponentially stable, one can refer to [5] for more details

Lemma 5. The expectation of covariance matrix is bounded by a sequence of Pk|k, which means: E(Pk|k) 6 Pk|k, where

Pk|k = [M
T
k−1(Mk−1Pk|k−1M

T
k−1)

−1
Mk−1

+ (NkCk)
T

(Vk − VkNkWkN
T
k Vk)NkCk]

−1
. (E11)

with

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1, (E12)

and P 0|0 = P0|0.

Proof. Noticing that Pk|k 6 Pk|k because of the truth that Vk − (1 − γk)VkNkWkN
T
k Vk > Vk − VkNkWkN

T
k Vk, we complete

the proof.

The above discussion investigates the performance of the event-based estimator from the perspective of the average estimation

error covariance. Due to the stochastic sequences {γk}, it is unlikely to give a tighter upper bound. In the next section, we will

show the performance of the proposed estimator by an example.

Appendix F Simulations
In this section, we give a numerical example and illustrate the performance of proposed event-triggered estimator. Consider the

following stable linear time-varying system of the form in (1) and (2) with the matrix parameters

Ak =


a11,k a12,k a13,k

a21,k a22,k a23,k

a31,k a32,k a33,k

 ,
with

a11,k = exp[−h+ sin(kh)− sin(kh− h)],

a12,k = 0, a13,k = 0,

a21,k = 2 sinh(h/2) exp[−3h/2 + sin(kh)− sin(kh− h)],

a22,k = exp[−2h+ sin(kh)− sin(kh− h)], a23,k = 0,

a31,k = 0, a32,k = 0,

a33,k = exp[−2h+ sin(kh)− sin(kh− h)],

h = 0.2 and

Qk =


0.4 0.2 0.1

0.2 0.5 0.3

0.1 0.3 0.5

 , Rk =


0.1 0.03 0.05

0.03 0.1 0.02

0.05 0.02 0.1

 ,

Gk =

 0.1 0 0.2

0.2 0.1 0.3

T

, Hk =

 0.1 0.2 0.1

0.3 0.6 0

T

,

Ck =


cos(kh) sin(kh) 1.5

1 sin(2kh) cos(2kh)

0 sin(3kh) 2

 ,

Yk =


0.05 0.02 0

0.02 0.05 0.01

0 0.01 0.1

 ,
Dk =

[
1 0

]
, Ek =

[
1 0

]
.
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Figure F1 The partially known injection attacks d1,k
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Figure F2 The partially known injection attacks d2,k
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Figure F3 The partially known injection attacks e1,k
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Figure F4 The partially known injection attacks e2,k
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Figure F5 Estimation performance of state 1
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Figure F6 Estimation performance of state 2

dks and eks are shown in Fig.(F1) - (F4).

The state trajectories are estimated by the event-triggered MMSE estimator in Theorem 1, and the performance is demonstrated

in Fig.(F5)-(F7), where the communication rate (communication per time step) is 0.74. The inspection here is that although the

communication cost between the sensor and the remote estimator is significantly reduced, event-triggered MMSE estimation can

still track the state of the system in the presence of partially observed injection attacks. Also, decreased communication rate

contributes to the less information eavesdropped by the attacker. In conclusion, the result shown here indicates that the states can

be estimated safely and monitored with satisfactory performance even though the whole system is in an adversarial environment.
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Figure F7 Estimation performance of state 3
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