• Supplementary File •

Newton Design: Designing CNNs with the Family of Newton's Methods

Zhengyang Shen^{1,2}, Yibo Yang³, Qi She², Changhu Wang², Jinwen Ma^{1*} & Zhouchen Lin^{4,5*}

¹School of Mathematical Sciences, Peking University, Beijing 100871, China;

²Bytedance AI Lab, Haidian District, Beijing 100871, China;

³JD Explore Academy, Beijing 100176, China;

⁴Key Lab. of Machine Perception, School of Intelligence Science and Technology, Peking University, Beijing 100871, China; ⁵Pazhou Lab, Guangzhou 510320, China

Appendix A A Brief Introduction of The Family of Newton's Method

As for the optimization problem

 $\min F(x),$

the iteration of Newton's method is

$$x_{k+1} = x_k - \left[\nabla^2 F(x_k)\right]^{-1} \nabla F(x_k),$$

where $\nabla F(x)$ and $\nabla^2 F(x)$ are the gradient and the Hessian matrix of F(x), respectively. Since it is always time-consuming to calculate the inverse Hessian matrix, we can also use a matrix H_k to approximate $[\nabla^2 F(x_k)]^{-1}$, and obtain the iteration of the quasi-Newton method

$$x_{k+1} = x_k - H_k \nabla F(x_k).$$

 H_k can be acquired using multiple methods, such as the rank one correction formula, DFP and BFGS algorithm, etc.

Appendix B The Convergence Rate of Quasi-Newton Method

Theorem 1. If $A \in \mathbb{S}^n$ and $||A||_2 < 1, x \in \mathbb{R}^n$, Φ is the ReLU function, then the iteration $x_{k+1} = \Phi(Ax_k)$ converges to x^* with a linear convergence rate.

Proof. Firstly, we prove that the map $y = \Phi(Ax)$ is a contractive map. Let $x^{(1)}, x^{(2)} \in \mathbb{R}^n, A = (a_1, a_2, \cdots, a_n)^T$. According to Lagrangian median theorem, there exists $s_i \in \mathbb{R}^n, i = 1, 2, \cdots, n$, such that

$$y_i^{(2)} - y_i^{(1)} = \Phi(a_i^T x^{(2)}) - \Phi(a_i^T x^{(1)})$$

= $\Phi'(a_i^T s_i) a_i^T (x^{(2)} - x^{(1)}).$ (B1)

thus

$$||y^{(2)} - y^{(1)}||_{2} = ||\Phi(Ax^{(2)}) - \Phi(Ax^{(1)})||_{2}$$
(B2)
= $||[\Phi'(a_{1}^{T}s_{1})a_{1}, \cdots, \Phi'(a_{n}^{T}s_{n})a_{n}]^{T}(x^{(2)} - x^{(1)})||_{2}$
$$\leq ||[\Phi'(a_{1}^{T}s_{1})a_{1}, \cdots, \Phi'(a_{n}^{T}s_{n})a_{n}]^{T}||_{2}||x^{(2)} - x^{(1)}||_{2}$$

= $||DA||_{2}||x^{(2)} - x^{(1)}||_{2}.$

where D is a diagnal matrix, and the diagnal elements are 0 or 1. In addition,

$$\|DA\|_{2}^{2} = \max_{\|y\|_{2}=1} \{y^{T} (DA) (DA)^{T} y\}$$

$$= \max_{\|y\|_{2}=1} \{(D^{T} y)^{T} A A^{T} (D^{T} y)\}$$

$$\leq \max_{\|y\|_{2}=1} \{y^{T} A A^{T} y\} = \|A\|_{2}^{2},$$
(B3)

^{*} Corresponding author (email: jwma@math.pku.edu.cn, zlin@pku.edu.cn)

 \mathbf{so}

$$\|y^{(2)} - y^{(1)}\|_{2} \leq \|A\|_{2} \|x^{(2)} - x^{(1)}\|_{2}, (\|A\|_{2} < 1),$$
(B4)

i.e., $y = \Phi(Ax)$ is a contractive map.

According to the contractive map principle, the iteration $x_{k+1} = \Phi(Ax_k)$ converges to x^* , and similarly

$$\|x_{k+1} - x^{\star}\|_{2} = \|\Phi(Ax_{k}) - \Phi(Ax^{\star})\|_{2}$$

$$\leq \|A\|_{2} \|x_{k} - x^{\star}\|_{2}$$
(B5)

so it has a linear convergence rate.