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This study proposes a low-cost, real-time, very large-scale

integration (VLSI) architecture for optical flow estimation.

The architecture adopts parallel spatiotemporal filters to ex-

tract bio-inspired motion features at each pixel location and

uses hardware random forests to infer the motion speed.

Our system achieves higher estimation accuracy at low com-

putational hardware costs under real-time constraint than

previous biological motion estimation systems. A field-

programmable gate array (FPGA) prototype of our VLSI

system was implemented on a Xilinx Zynq-7045 FPGA chip.

It achieved 30 frame/s motion estimation on 320 × 240 im-

age sequences. The mean endpoint error was only 0.5 pixels

for the horizontal translation at 8 pixels/frame, 0.7 pixels

for in-plane rotation at 3◦/frame, and 0.8 pixels for fast

looming at a rate of 6%/frame, respectively.

The real-time and low-cost estimation of optical flows

(i.e., motion vectors on two-dimensional (2D) image pixel

arrays) is fundamental to many computer vision tasks [1].

To achieve this goal, biological optical flow VLSI systems

leverage spatiotemporal filters to extract motion energy

features [2] for pixel motion speed inference [3–6], which

need much less computational costs than deep learning sys-

tems [7]. However, they could not handle high motion ve-

locities accurately due to their lack of counting in temporal

frequency aliasing in the motion energy (Appendix B). To

break this limitation, this study proposes a low-cost, high-

accuracy real-time optical flow VLSI system with embedded

random forests to infer motion vectors from the motion en-

ergy. Our random forest core adaptively and implicitly de-

aliases temporal frequencies to provide accurate estimates

on high velocities at a high processing throughput.

Algorithm flow. Figure 1(a) presents our optical algo-

rithm flow using motion energy features and the random

forest model. It consists of four steps. (i) Difference-

of-Gaussian (DoG) filtering. A 2D DoG filter is applied

to input image frames, mimicking human retina ganglion

cell functions to suppress detrimental spatial components.

(ii) 3D Gabor filtering and motion energy computation.

It mimics the function of human cortical V1 cells. Sep-

arated horizontal (H) and vertical (V) channels apply 3D

spatiotemporal Gabor filters to the DoG-filtered frames. In

the H channel, each 3D Gabor filter is tuned to a particular

spatiotemporal frequency pair (fx, ft) (with fy fixed at 0).

Meanwhile, in the V channel, each 3D Gabor filter is tuned

to a spatiotemporal frequency pair (fy, ft) (with fx fixed at

0). The horizontal and vertical motion energy features at

each pixel are computed from the pixel values of the Gabor

filtered images in the two channels. The 3D filter is decom-

posed into a 1D temporal Gabor filter, a 1D spatial Gaussian

filter, and a 1D spatial Gabor filter for low-cost hardware

implementation. (iii) Velocity inference. The random forest

model (an ensemble of decision trees) [8] is used to robustly

infer the motion vector of each pixel from their horizon-

tal and vertical motion energies. Each decision tree infers

independently, and their averaged result is the outcome of

the random forests. The decision tree involves only a few

comparisons without complicated multiplications commonly

met in other intelligence models. (iv) Confidence labeling.

An inferred motion velocity is labeled as confident only if

its motion energy vector has an L1 norm above a thresh-

old. Confidence flags are valuable in high-level visual tasks.

Details about the algorithm are presented in Appendix B.

VLSI hardware design. The proposed optical flow VLSI

hardware architecture is depicted in Figure 1(b). It consists

of a DoG filter block, a temporal Gabor unit (TGaU) ar-

ray, a steerable Gaussian unit (stGU) array, a spatial Gabor

unit (SGaU) array, a motion energy compute unit (MEU)

array, an L1-norm block, a random forest core containing a
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Figure 1 (Color online) (a) Our optical flow algorithm flow using biological motion energy features and random forests;

(b) proposed optical flow VLSI system architecture; (c) timing diagram of the array-level pipeline; (d) optical flows estimated

by our FPGA prototype. Red arrows in (d) represent motion vectors without the confidence flag.

decision tree unit (DTU) array with an averaging unit (AU),

and some memory buffers. The pipelined working flow of the

computational units is illustrated in Figure 1(c). The stGU

unit can be dynamically steered (i.e., reconfigured) as ei-

ther a vertical or a horizontal 1D Gaussian filter at runtime.

Hence, the pipelined arrays can be reused for horizontal and

vertical velocity component estimations to significantly save

hardware costs. The DTU only holds a few simple logic com-

ponents (i.e., comparators, multiplexers, and registers) and

a moderate amount of memories. Its parameters are learned

off-chip before inference. Our hardware architecture is scal-

able for different tradeoffs among the estimation accuracy,

processing latency, and resource costs. Details on the archi-

tecture and circuit design are presented in Appendix C.

FPGA implementation. We prototyped the optical flow

VLSI architecture on a Xilinx Zynq-7045 FPGA chip. It

ran at a 100 MHz clock frequency, processed 320 × 240 im-

ages at 30 frame/s in real time, and consumed only < 20%

logic resources and half of the memories on the FPGA chip.

The experimental platform and prototype hyperparameter

configurations can be found in Appendix D. To evaluate the

FPGA prototype, we selected 20 real-world urban images

from the Internet and resized them to a 320 × 240 grayscale

format. Then, we used PC software to generate motion se-

quences under various motion patterns and speeds. Some

optical flow results estimated by the FPGA prototype are

shown in Figure 1(d). We adopted the standard endpoint er-

ror (EE) metric [9] to measure the optical flow accuracy. The

mean EE of our prototype was 0.5 pixels for the rapid hori-

zontal translation at 8 pixels/frame, 0.7 pixels for 3◦/frame

for the fast rotation, and 0.8 pixels for the quick looming

at a rate of 6%/frame, respectively. For relative work com-

parisons and in-depth discussion about our algorithm and

hardware design, refer to Appendix D.

Conclusion. This study proposes a low-cost real-time

VLSI hardware system for accurate optical flow estimations

based on biological motion energy features and embedded

random forests. We employed pipeline processing arrays

to improve the hardware system throughput. A 100 MHz

FPGA prototype was implemented and achieved 30 frame/s

real-time performance on 320 × 240 images. It consumed

only < 20% logic resources and half of the memory resources

on the FPGA. The optical flow error was only 0.5 pixels for

the 1D horizontal translation at a high velocity of 8 pix-

els/frame and merely 0.7 and 0.8 pixels for the challenging

3◦/frame in-plane rotation and 6%/frame looming, respec-

tively.
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