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Many practical nonlinear systems need to consider the out-

put constraint due to performance requirements and safety

specifications. In the past decade, barrier Lyapunov func-

tion (BLF) and nonlinear mapping (NM), which were first

defined in [1,2], respectively, have become two representative

tools to handle the output constraint. The biggest merit of

the NM-based approach is to directly deal with the original

output constraint rather than indirectly limit the relevant

error signal in the BLF-based approach. However, the cur-

rent NM-based approach can only prove that the output lies

in the constrained open set itself. As discussed in [1], when

the output is close to the constrained boundary at some mo-

ment, the corresponding control input will grow rapidly to

prevent the constraint violation. It is well known that the

large control input is often a source of system instability or

actuator damage in practical applications.

Based on these facts, two essential problems arise im-

mediately: Is it possible to precisely determine a specific

output-constrained subset, which can quantitatively depict

how far from the output to the constrained boundary? For

any initial point in the output-constrained open set, how to

further ensure that the output remains within this subset,

and then the theoretical basis can be established for de-

signing the controller to avoid the undesirable large control

input?

To solve these problems thoroughly, we introduce some

notations in Appendix A and the following concept named

barrier-transformed function (BTF).

Definition 1. Consider the non-autonomous system

ẋ = φ(t, x), x(0) ∈ Rn, (1)

where φ : R+ ×Rn → Rn is a continuous function. Suppose

that B ⊂ Rn is an open region containing the origin and

T : B → R is C1 and strictly monotonic. For each solution

x(t) of system (1) starting from x(0) ∈ B, if

(1) T (x(t)) → ∞ as x(t) → ∂B, and

(2) |T (x(t))| 6 L, ∀t > 0 with some L ∈ R+,

then T (x) is called the BTF of system (1).

Remark 1. BTF is partially motivated but is essentially

different from NM in [2,3]. In fact, NM is developed for only

autonomous systems. Since non-autonomous system (1) is

only continuous and may not satisfy the Lipschitz condition,

the solutions of (1) may be non-unique. Hence, BTF can be

regarded as an extension of NM.

Based on Definition 1, for the universal non-autonomous

system (1), the following Lemma 1 provides the analytical

form of output-constrained compact subset Ω̄y.

Lemma 1. Given positive constants k and k̄, let Ωy =

{x1 ∈ R : −k < x1 < k̄} be an open set and y = x1 be the

output of system (1) defined on (t, x) ∈ R+ × Ωy × Rn−1.

Suppose that there exists a strictly increasing BTF T1 :

Ωy → R such that Eq. (1) can be transformed to

ξ̇ = ψ(t, ξ), ξ(0) ∈ Rn, (2)

where ξ = [ξ1, . . . , ξn]T, ξ1 = T1(x1), ξi = xi, i = 2, . . . , n,

ψ : R+×Rn→Rn is a continuous function. Then for system

(2), let V : Rn → R be a C1 positive definite function, and

W : Rn → R be a continuous and positive definite function.

If

π1(‖ξ‖) 6 V (ξ) 6 π2(‖ξ‖), (3)
∂V (ξ)

∂ξ
ψ(t, ξ) 6 −W (ξ), (4)

where π1(·) and π2(·) are two class K∞ functions, then,

every solution x(t) of system (1) starting from x(0) ∈

Ωy ×Rn−1 is well-defined on [0,∞) and the output satisfies

y(t) ∈ Ω̄y ( Ωy, ∀t > 0,

Ω̄y := {y ∈ R : T−1
1

(−M) 6 y 6 T−1
1

(M),

M = π−1
1

(π2(‖ξ(0)‖)) > 0}.

(5)

Proof. According to the continuity of ψ(t, ξ), the solutions

ξ(t) of (2) are well-defined on [0, tf ), where 0 < tf 6 ∞.

Let the compact set Ω̄ξ = {ξ ∈ Rn : ‖ξ‖ 6M}. ξ(0) ∈ Ω̄ξ

can be directly obtained. Next, we prove ξ(t) ∈ Ω̄ξ, ∀t > 0.

Suppose that there exists a t1 ∈ (0, tf ) such that ξ(t1) /∈ Ω̄ξ

for the first time, and then

‖ξ(t1)‖ > π−1
1

(π2(‖ξ(0)‖)). (6)

From (4), we know that 0 6 V (ξ(t)) 6 V (ξ(0)) < ∞,

∀t ∈ [0, t1], which together with (3) and (6) implies that
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π2(‖ξ(0)‖)<π1(‖ξ(t1)‖)6 V (ξ(t1))6 V (ξ(0)) 6 π2(‖ξ(0)‖).

It is a contradiction, and then ξ(t) ∈ Ω̄ξ, ∀t ∈ [0, tf ). Since

the solutions ξ(t) are bounded on [0, tf ), then tf = ∞ can

be easily proved by using the contradiction argument again.

Hence, ξ(t) ∈ Ω̄ξ, ∀t > 0.

According to Definition 1, the inverse function x1 =

T−1
1

(ξ1) of T1 exists. Then, Ω̄y in (5) can be determined by

Ω̄ξ and |ξ1| 6 ‖ξ‖ such that y(t) ∈ Ω̄y , ∀t > 0.

Finally, we prove Ω̄y ( Ωy . When M = 0, the con-

clusion clearly holds. When M > 0, since T1 : Ωy → R

is strictly increasing, we have T−1
1

(−M) < T−1
1

(M) and

T−1
1

(±M) ∈ Ωy , which imply that [T−1
1

(−M), T−1
1

(M)] (

(−k, k̄). Therefore, Ω̄y ( Ωy.

Remark 2. In Lemma 1, we suppose that BTF T1(x1)

is strictly increasing. When T1(x1) is strictly decreasing,

the conclusion y(t) ∈ Ω̄y ( Ωy, ∀t > 0 still holds with

Ω̄y = {y ∈ R : T−1
1

(M) 6 y 6 T−1
1

(−M)}.

Application in high-order nonlinear systems. As an ap-

plication of Lemma 1, we investigate the state-feedback sta-

bilization of high-order nonlinear systems














ẋi = x
pi
i+1

+ fi(t, x̄i), i = 1, . . . , n− 1,

ẋn = upn + fn(t, x),

y = x1,

(7)

with an asymmetric output constraint

y(t) ∈ Ωy = {y(t) ∈ R : −k < y(t) < k̄}, ∀t > 0, (8)

under the following weaker growth assumption.

Assumption 1. For i = 1, . . . , n, there exist continu-

ous functions f̄i : Ri → R+ and constants ω ∈ [0,∞),

τ ∈ (− 1∑
n
i=1

p0···pi−1
, 0] with p0 = 1 such that

|fi| 6 f̄i(x̄i)
i

∑

j=1

(

|xj |
mi+τ

mj + |xj |
ri+ω

rj

)

, (9)

with constants mi, ri being defined by

m1 = r1 = 1, mi+1 =
mi + τ

pi
, ri+1 =

ri + ω

pi
, (10)

where x ∈ Rn, u ∈ R and y ∈ R are measurable system

states, control input and output, respectively, pi ∈ R
>1

odd
are

the powers of system (7), fi : R+ × Ri → R are unknown

continuous functions with fi(t, 0) = 0, i = 1, . . . , n, the Lip-

schitz condition is not necessary for f1, . . . , fn, and k and k̄

are two predetermined positive constants.

The inequality (9) in Assumption 1 includes both low-

order and high-order nonlinear terms with respect to system

states. Hence, Eq. (9) is weaker than the restrictions with

only low-order or only high-order nonlinearities.

The detailed design of u(t) is provided in Appendix C.

We state the main result of constraint and stability,

whose proof is placed in Appendix D.

Theorem 1. If Assumption 1 holds for high-order non-

linear system (7), then there exists a continuous state-

feedback controller u(t) such that for any initial value x(0) =

[x1(0), . . . , xn(0)]T ∈ Ωy × Rn−1,

(1) the solutions x(t) of (7) are well-defined on [0,∞),

and there exists a specific output-constrained compact sub-

set Ω̄y defined in (5) such that y(t) ∈ Ω̄y ( Ωy, ∀t > 0;

(2) all the closed-loop signals are uniformly bounded on

[0,∞);

(3) the equilibrium point x = 0 of the closed-loop system

is uniformly asymptotically stable.

Figure 1 clearly depicts the research idea of constraint

analysis in this study. When T1(x1), ξ(0) and V (ξ) are

specified, the location of y(0) in Figure 1(b) can be de-

termined, and the output-constrained compact subset Ω̄y

in Figure 1(c) certainly exists such that y(0) ∈ Ω̄y ( Ωy .

Hence, the trajectory of y(t) does not instantly jump from

Ωy to Ω̄y . For any t > 0, y(t) ∈ Ω̄y ( Ωy and limt→∞ y(t) =

0 in Figure 1(d) can be further ensured by Theorem 1. Such

a new analysis approach establishes the theoretical basis for

designing the controller to avoid the undesirable large con-

trol input.

(a) (b)

(c)(d)

Figure 1 Sketch of constraint analysis. (a) Open set Ωy ;

(b) location of y(0); (c) compact subset Ω̄y ; (d) output con-

straint and asymptotic stability.

To verify the validity of control scheme, we provide the

simulation in Appendix E.

Future work. (1) For more general n-dimensional high-

order nonlinear systems, can we design an output-feedback

controller? (2) We will try to combine some advanced algo-

rithms (see [4–7]) with the proposed analysis approach.
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