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Appendix A Notations

Throughout this study, the following symbols are used. Trace [-] denotes the trace of the matrix -, ‘Tdenotes the transponse of
the vector or matrix «, Amin [-] and Amax [-] respectively denote the minimal and the maximal eigenvalues of the matrix -, a marix
P; > 0 means that P; is a positive definite, symmetric matrix, and

20~ 2 ("0~m)
(0~m) (no~niy1)
z; z,
0~ O~ i+l L (ng~mnp) i1 L
2O~ = s $§Njn) = . \J 2, rkno " lk=inj = . ,J =4,
) 12_0 n) x; nj)
0 1 0 0
0 0
O~m;—1 O~m;—1
a; "7 = [aq‘,o ail - ai(m,ifl)] ;AT = )
: 1 0
0 o .- 0 1
—ai0 —Qi1 - —Qi(m;—2) T®i(m;—1)
In the control design process, a?Nm’iil,i € {1,--- ,n} is chosen such that A; (a?Nm’iil) is a Hurwitz matrix.

Appendix B Assumptions

To ensure that system (1) is controllable, it is reasonable to give the following assumption.

Assumption 1. For any 04; € Qg;,% € {1,2,--- ,n}, there exists a possibly unknown constant g;, > 0 such that |g;o + Q;F,igi >
Gim-
Remark 1. Assumption 1 is also used in [1]. Assumption 1 implies that the control coefficient g;o + QJL-g,i,i € {1,---,n} is not

equal to zero as long as 6y; falls within the set Q4;. This is a reasonable assumption used to guarantee the controllability of the
system to some extent.
The feasible reference signals are supposed to satisfy the assumption below.

Assumption 2. The reference signal y4 and its derivatives 9q4, - - - ,y((iml) are available, yq, Ya,--- , yt(;nlJrl) belong to the set

T 2
Q4 = { [yd Ya - y((;"’1+1) ] lyi+u5+ -+ (y((im1+1)) < dQ}, where d is a possibly unknown constant.
For accurate parameter estimation, the following assumption is usually necessary.
Assumption 3. For any ¢ € {1, ,n}, there exist a; > 0 and Te > 0 such that Apin(Ci(Te)) > ay.
Remark 2. As discussed in [6], the above assumption in fact means that the system is assumed to satisfy the so-called sufficient

excitation condition rather than stringent persistent excitation condition in [7]. Interested readers can refer to Ref. [6] for more
details.

Appendix C The Proof of Lemma 2
Define
&= $£mi’71) —Ci —wi(Bs — 9?)7 (C1)

then one has that
&i(0) =0, (C2)
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and ) .
&= Igmi) — i —@i(0; — 0)) = —k;&;. (C3)
Hence, for all t > 0,
& = Igmi_l) — i —wi(8; —0)) = 0. (C4)
Equ.(C4) is equivalent to
wil; = w00 + 2D _ ¢, (C5)
Pre-multiplying both sides by w;F yields
wiwil; = w} (wif)? + acimiil) - Ci) . (C6)

Taking integration yields
t t
/ w? (s)wi (5)ds0; = / wl(s) (wi(s)a? 2™ () - Ci(s)> ds, ©7)
0 0]

that is,
C;0; = D;. (C8)

According to the definitions of Cr; and Dr;, one has that
Crit; = Dri, (C9)

and Cr; is an asymmetric matrix, further, according to Assumption 3 in Appendix B, one has Amin (C1;) > a; > 0. From Equ.(C9),
one can conclude that

W; = Cril; — Dr; = Crif; — Cri; = Cr0;. (C10)

Meanwhile, one has [|Cr;|| = \/Amax[CgiCTi] = \/Amax[C%i] = Amax|C7i] < Trace [Cr;] < ;. This completes the proof.

Remark 3. In the accurate parameter estimation methods [3-5], Equ.(C8) is used to reconstruct the parameter estimation error.
Unfortunately, the regression matrix C; and the vector D; may increase persistently (even to infinite values) due to the unbounded
integral operation. In the proposed method, by introducing the truncation operation, Equ.(C9) is used for the reconstruction of the
parameter estimation error, which has the following two advantages: (1) Since Cr; and Dr; are bounded, the potential persistent
growth problem is avoided; (2) the online computation load is reduced. Additionally, the auxiliary systems utilized in [3-5] are
also discarded, which makes the parameter estimation error reconstruction mechanism more simpler and further reduces the online
computation load.

Appendix D The Definition and Properties of Projection Operator

T

A set of projection operators Pry, (B:) = [ [Préu (6“)] [Préi(pf’ﬁpgi) (Bi(Pfi+Pgi))i| ] ,i = 1,---,n, are introduced,
R R R T -

where 0; = [9“"" ’e'i(?’fi+Pgi)} s Bi = {ﬁilv“‘ 75’5(Pfi+pgi):| , Bij,3 = 1,--- ,psi + Dgi are continuous functions, and

{Préij (ﬂu)] ,j=1,---,pfi + pgi are defined as

O,éi]' = 0;*; and ﬁij >0
[Pré” (57;3')} =40,0;; = 0,; and B;; <0 - (D1)

Bij,otherwise

The projection operators possess the following properties (See Ref. [8] and references therein).
Property 1. 0~1T [Pré_ (ﬂ,)—ﬁ,] <0,i=1,---,n.
k2
Property 2. If 9, = Pry (Bi),i=1,---,n, then the condition 91;(0) € Q; = Qy; X Qg; implies that éi(t) € Q; for all t > 0.

Remark 4. Property 2 means that if the initial value 0; (0) € Q, then for all t > 0, él(t) € Q;. Therefore, according to

Assumption 1, g0 + é;‘:ql are non-zero. This point is very important since the term % will be used in the subsequent
9010490
control algorithm. That is, the introduction of the projection operator can avoid the singularity problem of the control law.

Appendix E The Proof of Theorem 1
For any i € {1,--- ,n — 1}, define

Y+1)1 = T(i41)1 — T(i+1)d>
Yi+1)2 = T(i+1)2 — T(i+1)1»

Y(it1)mipr = T(it1)e — T(itl)m;4q—1s (E1)
then one has that
Tit1l = T(i+1)d T Zi+1 + Z;n:(i+l)y(i+l)jv (E2)
and
. 1 .
Yia+1)1r = ———Yu+1)1 — T(i+1)d>

T(i+1)1
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) 1
Y(it+1)2 = — Y(i+1)2 T Y(i+1)1>
T(i+1)2 T(i+1)1
1
Ylitl)ymisg = ——Y(i+D)mipq T T Y(i+1)(miyq—1)- (E3)
(i+1)m;4q T41ymisy (i+1)m;4q T4 1)(mi g1 —1) (i+1)(miqpq—1)

From (1), (2) and (E2), one has that
ngi) = fio + 07, fi + (gio + 9;91') Tit1 — IE;M)

= fio + é}rifi + (gw + é;rigi) (m(i+1)d + 2zit1 + Z?:(iJrl)y(iJrl)j) - 335:%) - é}rifi - é;rigixwy (E4)

Note that the estimations of 0; and 6,; are respectively éfi and égi, the estimation errors are respectively éfi = éfi — 0f; and

i = by — 001 02— | 00 | o |05 | G g = | Ori T Ors _| ~
gi = Ugi —Ugi, U2 = s b2 = | , 0, =0, —0; = | and ¢; = . Then one can obtain that
9i Ogi 0gi — 0gi giTit1
2™ = fio + 0. fi + (gw + é;,rigi) (w(i+1)d +ziy1 + Zj/:(i+1)y(i+1)j> —a2lmi) T, (E5)

Substituting (3) into (E5), one has

2(m) = _gdrmimt Ovmi =) (gi() + é;rigi) <Zi+1 + Z:l:(i+l>y(i+1)j> — 67 s (E6)

Hence, define
~my — T ~r —
Vi = (ZEO my 1)) Piz§0 my 1), (E7)

where the matrix P; > 0 is introduced in Lemma 1, then one has that

. s —1\T o — s —1)\T ~
Vi = (2077 0) T (AT P+ Poas) 20770 =2 (2070 T puad] o
(0~m;—1)\T 0 < M(i41)
+2 (7 * P; N Zit1 + ) Y(i+1)j
( ) | gio + 9371577: ‘ 27:1 (13

~my — T ~m — ~s — T ~
< —pi (Zg() my 1)) Piz,fo mg 1)_2(250 my, 1)) Puc9,-T<,01:

i

(O~m,; —1) T 0 < M(i41)
+2(z; P; R Zit1 + ) Y(i+1)j | » (E8)
( ) | gio + 9371571‘ ‘ 27:1 (1

where P;;. is the last colu{nn of the matrix P;, and the parameter p; > 0 is introduced in Lemma 1.
From the definition of 6;, one has that

6 = 0. (E9)

Hence, define o
Voi = 67 6;, (E10)

then one has that ) .
Vi = 29?91_' (E11)

From (4), one has

y y ~m; — T ~r — ~ -
Vei+Voi < —p (ZEO * 1)) Pizﬁo i _ 27:0; Cr:0;

(0~m;—1\T 0 ( M (i+1) )
+2(z K P; N Ziy1 + ) Y(i+1)5
( ) gio + egig'i + ZJ:l (i+1)j

~my — T ~rm s — ~ ~
<—(m (z0mim Y iz 1)+2~/19?cmai)

(O~m;—DNT 0 ‘ m(i41)
IO I R [ CERD Dl T (©12)
L~ gigt |

In addition, one has the fact that
(ONmi,l))T 0 mipq
(= Pi 5T zipr Dy,
gio + 04,9 7=

11

_ (,O0~mi—\T 3 55 0 < ™1

=z PZ P, R Zit1 + ) Y(it+1)j
( ) gio + 03,191‘ ’ 27:1 (13
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1 L orm—n|[? 1 2 3P/ 2 mip1 2
Sg(mwl +1) ‘ P2 z7( Ll | 590 Pz (zi+1 + ZJ::' y(i+1)j)
1 Loommin|? Lo N2 P 2 mit1 2
+ E(mzurl +1) ’ P2 z§ Ll 5 <9yigi) P2 zig + Zj:;r Y(i+1)s
~ms—1)\T ~rms —
(mip1 +1) (zl@ my 1)) Pizlgo m;—1)
1 2 AT\ 2 (0~mypq—1) (2 mit1 2
+ 5)\max(Pi) (91'0 + (‘ggigi) ) <| Zit1 + H + ijf Yi+1)5 ) » (El?’)
1 1 1
where P,2 denotes the positive definite symmetric matrix which satisfies that Pi2 Pi2 =P;
From (6), one has
(E14)

2" = o+ 07 o+ (gm0 + 03,90 ) u — 2l
= fno + 07, fn + (gn(} + é_;rngn) w—a(P) 07 fo — 0% gnu

Note that the estimations of 6, and 64, are respectively éfn and égn, the estimation errors are respectively éfn = éfn — 05, and
Opp — 6
i I and On = I . Then one can obtain that

- . 0 " 6 .
Ogn = Ogn — O, 0 = | T | 0= | T 00 =00 — 0, = |
Ogn Ogn Ogn — Ogn gnu
Zf:nn) = an + é?nfn + (gnO + énggn) u — IEZLn) - éz“ﬂnv (E15)
Substituting (7) into (E15), one has
Zim”) _ 7a?b~m"_1z£f)~m”_1) _ g:wn. (E16)
Hence, define
T
V., = (zjfw"'"*“) P, 20~mn=b), (E17)
where the matrix P, is introduced in Lemma 1, then one has that
V. < (O~mp—1)\ T (O~mp —1) (O~mp—1)\ T 5T
zn < —pin 2y Przy, —2(2, Pricty on (E18)
where P, is the last colu~mn of the matrix P,, and the parameter u, > 0 is introduced in Lemma 1.
From the definition of 6,,, one has that
0y =0, (E19)
Hence, define o
Von = 0,10, (E20)
then one has that .
. 2
Vo = 2070,, (E21)
From (8), one has
. . T ~ -
Ve + Von < =g (207770 ) 7 Pz ™Y = 29,00 O (E22)
For any ¢ € {2,--- ,n}, define
1 m; 2
Vyi = Ezjzly”, (E23)
then one has that
. 1 5 .
Vyi = ——yi1 — Yi1Zid
Ti1
1, 1
- T Y2 + —Yi1Yi2
Ti2 Til
LA
Tz(ml)yl(ml) Tt’(mi—l) yi(wnifl)y'(mi)
1 5 m;—1 1 1 2
< ———yf — o - —_— ”
S 27'1‘1 yzl ijg |:<27'ij 27_“]_71)) ym:|
1 1
- ( - 7) y?ml — Yi1&id- (E24)
Ti(m;)  2Titm;—1)
(E25)

Define
V= Zizl (Vai + Vi) + Zizzvyi.

Its time derivative can be calculated from Egs.(E12,E13,E22,E24) as follows:

. s —1)\ T s - _
V< 72?:1 (Mz‘ (21(0 K 1)) PiZEO i=h +2’7i9;'TCTi0i>
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+ ZT:IIQ(TMJA +1) (zEONmi*U)T P20~
n— R o N
# XL st (st + (90)") (557 T )

m;—1 1 2
PR DUl Dl [( ﬁ)y]

275

-y ( ;) W, - 7 unbia. (£20)

’L(’"L ) 2Ti(mi*1)

It is not difficult to obtain that @;4,Vi € {2,--- ,n} is a function of the variables z<0 miT \j=1~i—1, Ziy Y21, s Y2mas t s Yil,
©y Yimy s 61, - < 0~,;_1, Yds Yd, " » y<m1+1) Cr1, -+, Cr;—1) and the design parameters P1, - -+, Pi—1, v1, ***, Yi—1, a?wm171,
< a?j;ﬂi*lil, T21, s T2mgs s T(i—1)1s * "'y T(i—1)m;_1» where 711 = 0, -+, Tim; = 0. Note that according to Lemma

2, |Cril] < m,Vi € {1,--- ,n}. Hence, there exists a non-negative continuous function 7;, which is dependent on the variables
Z;ONm - ljmimio1y Zis Y21, o 0s Y2mgs * s Yils ** 0 Yimgs 01, -+, Oi 1, Ya, Y, = y(m1+1) and the design parameters Py, - - -,
Pi—1,v1, 00, Yi-1, G?N"L171, B a?jzniflily T, oty Mim1, T21, *° 05 T2mg, *°*5 T(i—1)15 **°» T(i—1)m;_» Such that

[#al < M. (E27)

N 2 o — N
It is also not difficult to obtain that gfo + (93‘191) is a non-negative continuous function of the variables Z(D my—1) . 041 and

~ — . ~ 2 . O~m,;—1
y[(i0 ™1 1), meanwhile g§0+(0;ﬂgi) ,Vi € {2,--+ ,n—1}, is a non-negative continuous function of the variables z( i )\]:1~i71,
5 5 o~
Y21, Y2mgs s Yi2y s Yimys 01, 00, Oi1, fgi and y( ~™ | and the design parameters Tamgs s T2, "ty T(im1)m;_1»
O~mq—1 U~m17171
S T(i—1)1s Timgs * s Ti2, G sty Qg .
For any V(0) > 0, the set
(0~m;—1) = =
Q= zZ; |i:1~my217‘~,y2m27‘~7yn1,“',ymn,,”@l,'“79n|V<V(0) (E28)
T
is a compact set. Note that [yd Yd - yilmlJrl) ] € Q4. Therefore, n;,Vi € {2, ,n} has the maximal value on 2, denoted by
~my— O~my_q—1
7; which among all of the design parameters only depends on Py, - -+, Pi_1, Y1, * "+ Yie1, T1, - "y Ti—1, acl) mi 1’ cee ai,;nl 1 ,
N N 2
T21, 0 T2mgs s T(i—1)1, " s T(im1)m,;_ - Since Og; € Qg 9?0 + (931‘11) ,Vi € {1,--- ,n—1} also has the maximal value on ,
denoted by g; which among all of the design parameters only depends on the design parameters Tamq, =+, T21, -, T(i_l)m(i—l)’
_ O~y _qy—1
T(i—1)1> Timgs s Ti2, a? mi=loo a;_, G=D7" Where ao ™0™ = 0. Therefore, on the set €2, one has that

Ve (M( Ovmi=1) T pO~mi=D +2yié?CTiéi>
3 2mig 1) (070) T P
n zj;umxm (S e s v,
DYICC IS v vioal [ CRE e I

27’1] 27’1'(]-,1)
-3, < )ym + 300 lyala

~ — T ~ —
= (p1 = 2(ma + 1)) (200770 T pys{0m Y
_ Z (Nz 2(m1+1 + 1)) ( (Ole—l)) Piz 0~7n7—1)
— fin ( (ONmnfl)) Pnz7(10~mn71) _ Z:;lz’)’iég‘CT«Lét

n—1 Amax(Pi) _ (0~m;pq—1\T (0~my; 41 —1)
Pyt AP i)
Zl:l >\min(Pi+1) +1 +1

my—1 1 ,
Zz— <2n1 ) v+ (n—1)e Zl_ Z |:<27_” 27_1“71)) y1]:|
- g my 2
— Z < Ti(my) 27’1(m 71)> ylmZ + Z max(Pi—l)gi—lzjzly”
— (g1 — 2(ma + 1)) (ZO0~m1—D T Py 2 0~m1=D)
H 1 ¢
n—1 Amax (Pi—1) _ ) (0~m; —1)\ T (Ommy—1)
_ i —2(mgey +1) = R g o i Pus! .
> <” (miy1+1) N (P V1 ( )

Amax(Pn—1) _ O~mp—1)\T O~y —1 n ST 5
= (o= 2 ) () T RSt S5 vt orid,

_2
n ih _ 2
- E — = — Amax(Pi-1)gi— ;
i=2 <2T11 4e ( V3 1> Ya

1
Ti(ms)  2Ti(my—1)
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n my—1 1 1 _ 2
(st - e ) )

27'7;]‘ 27—i(j71)

1 1
-3, < e~ Amaxmfl)gifl) Yim, + (n = 1)e, (E29)

Ti(mg)  2Tilmg—1)
where € > 0 is a small constant and the equality

n—1 Amax(Pi) ( (0~mi+1—1))T (0~m;qq—1)
A A T > Piyi1z,
Zi:l >\min(Pi+1)g1 it %

n Amax(Pi—1) _ (O~m;—\NT (0~m;—1)
= Zmaxti—1) 5 (2 P, 20~ E30
Sy o (o ) Pia (E30)

is used in the derivation.
Note that according to Assumption 3,
o ~ .
vit; Cribi 2 vic;0; 0;. (E31)

Hence, if the design parameters satisfy that

1 —2(m2 +1) > &,
Amax (Pi—1)
s — 2(my 1) - Amex i e > ki=2,--,n—1
Hi — 2(mip1 + 1) N (Pr) Jim1Zmi=20n =1,
~ Amax(Pno1) S
Hn )\min(Pn) gn—-1 2 K,
20575 2 K,
1 72
— = = Amax(Pi—1)Ji—1 = K,i =2, My
27—i1 4e
1 1 . X
o —Amax(Pi-1)i-1 2 K0 =2, i =2, my — 1,
275 2Tig-1)
1 1 _ .
— = —————— = Amax(Pi—1)Ji-1 2 K, 1 =2, ,n, (E32)
Ti(mg)  2Ti(m;—1)
where k > 0 is a constant, then one has that
V< -8V +e (E33)
where € = (n — 1)e. By the comparison principle, one has that
€ € — Kt
Vi) =+ (V(0)——)e . (E34)
K K
Clearly, if Kk > Vfo) , then one has that
V(0) (1 - e*“) > & (1 - e*“) , (E35)
K
or equivalently,
. (V(O) - 5) et < V(0). (E36)
K K
Hence, one has that
V(t) < V(0). (E37)

This implies that © is an invariant set. Additionally, it is easy to know that V(¢) ultimately converges to the set

T
O~my—1 T P P €
Qf :{[(zf : )li:1~n) 19217"'7y2m27"'7yn17"‘1yn711.n79}‘""76;{i| :V<;}’ (E38)

of which the size can be made arbitrarily small by tuning the design parameters, since € does not depend on k. Hence, it is easy
to conclude that all the closed-loop signals are semi-global uniformly ultimately bounded, and the ultimate bounds of the tracking
error z1; and the parameter estimation errors éi,i =1,---,n, can be adjusted arbitrarily by tuning the design parameters. This
completes the proof.

Remark 5. At the ith step, 2 < i < n, to obtain zEONmiil)

z;. are required to be computed. In fact, they can be obtained by some algebraic operations. Let us take a:(zjc), 1<j<me—1as
an example to show this point. From Equ.(5), one has that

, it seems that the 1st- to (m; — 1)th-order derivatives of the signal

1
To1 = — (w24 — T21),
T21

ZToz = — (T21 — T22),
T22
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- 1 - -
T2(mg—1) = m(wz(mz—z) - w2(m2—1)),
o—
. 1
L2c = (IZ(w1271) - z2c)'
T2mo
Hence,
1. .
wgi) = (i27n271 - 1720)
T2mo
1 1

= ————— (T2(mg—2) — T2(my—1)) — - (Z2(my—1) — T2¢)

T2mg | T2(mg—1)

Continue this process recursively, it is easy to know that 2§ ,3 < j < ma—1 can also be computed algebraically from the available
1

2c
; - = . L1
variables To1, - - - 1y Z2(mg—1)) T2c and the parameters 22 Tamy
Remark 6. From the above control design process, one can see that: firstly, if m; = 1 for all 4 € {1,2,--- ,n}, the proposed
adaptive DSC can be reduced to the traditional one; secondly, if m; = 2 for some 7 € {1,2,--- ,n}, one can set 731 = T2 = T4,

which is helpful to reduce the number of the design parameters; and thirdly, by regarding every high-order subsystem as a whole
instead of converting it into a set of first-order ones, less virtual control laws are required to be derived, which makes the proposed
control algorithm more direct and concise.

Remark 7. Different from most of the adaptive backstepping or DSC results, where only the boundedness of the parameter
estimation errors is established, the proposed adaptive DSC method could guarantee that the estimations of the unknown parameters
converge to their true values with very small errors by utilizing the accurate estimation error reconstruction mechanism. This is
very useful to improve the performance of the closed-loop system.

Remark 8. For any ¢ € {1,2,--- ,n}, p; and P; are introduced in Lemma 1, and the solution of p; and P; can be found in [2].
Once P; satisfies
O~my;—1 O~m;—1
AL (@™ TP+ PA(a]m ™ T < —pa Py,
then for any o > 0, o P; also satisfies the above matrix inequality. This implies that Amin[P;] or Amax[Pi] can be adjusted arbitrarily
without affecting the value of p;. In theory, the selection of control parameters can be conducted step-by-step in the following
order. In the first step, the parameters p1, P1,v1 are selected to satisfy pi1 — 2(ma2 + 1) > & and 2a1y1 > k. In the second

step, given that the value of 72 is related to pi, P1,~v1, the parameters po, P2,v2,725,j = 1,2,--- ,mo are selected to satisfy

B2 = 2(ms +1) = XG> K, 20272 > & and

1 72 _ .
— = = Amax(Pi—1)Ji—1 = K, i =2
27'i1 4e
1 1 _ . .
— ———— = Amax(Pi-1)i-1 2 K,1 =2, =2,--- ,m; — 1,
2mij  2Ti(j-1)
1 1 _ .
— = —————— = Amax(Pi—1)Gi—1 = K, i = 2.
Ti(mg)  2Tim;—1)
Likewise, in the ¢th (¢ € {3,4,--- ,n}) step, given that the value of 7; is related to p1, -+, pi—1, P1, -+, Pic1, Y1, -+ * Vi1, T21,
©y T2mgs s T(i—1)1s s T(i—1)ym;_,, the parameters p;, P;,vi, Tij,J = 1,2,---,m; can be selected according to the similar

conditions.

Appendix F Numerical Example

Consider the single-link flexible-joint robot system, as shown in Fig.F1, the dynamic model of which can be expressed as follows

I§1 + MgLsin(q1) + K(q1 — q2) =0,
Jg2 — K(q1 — q2) = u,

where q1 and g2 represent the angular positions of the link and the motor, respectively, M is the link mass, g = 9.8m - s~ 2 is the
gravity constant, L is the location of the mass center, I is the link inertia, K is the torsional spring constant, J is the motor inertia,
w denotes the input torque delivered by the motor.

Defining the state variables as 1 = ¢1, 2 = g2 and the output as y = ¢q1, then one can obtain that

21 = —0p1sin(z1) — Og1 (21 — x2),
Io = 0f2(11 — ZEQ) —+ 95271,7
Yy =71,
where 051 = M;]L, 0g1 =%, 050 =5, 0=1
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Figure F1 Single-link flexible-joint robot

The nominal values of the system parameters are set as: Ip = 0.105kg - m?, My = 1.265kg, Lo = 0.25m, Ko = 1.073N - m/rad
and Jo = 0.06784kg - m?. Hence, the nominal values of 671, 041, 052 and 042 are 0519 = 29.5167, 6410 = 10.2190, 0520 = 17.7794
and 6420 = 14.7059. The bounds of these unknown parameters are assumed to be Imin = 0.91p, Imax = 1.11g, Muin = 0.9Mo,
Mmax = 1.1Mo, Lmin = 0.9Lg, Limax = 1.1Lg, Kmin = 0.9K0, Kmax = 1.1Kg, Jmin = 0.9Jo, Jmax = 1.1Jy. Hence, one has that
0r1 € [21.7350,39.6835], 041 € [8.3610,12.4899], 052 € [12.9104,19.2859] and 042 € [13.3690, 16.3399].

By using the proposed adaptive DSC approach, the control algorithm can be designed as follows

21 =1 — Yd, %1 = T1 — Yd,

ZTad = éll [_éfl sin(z1) + 0121 — G?N12§0N1) + ild] ’
g

To1Z21 + T21 = Tad, T21(0) = x24(0),
Toadk2c + Tae = a1, T2.(0) = Z21(0),
22 = Tp — Tac, Z2 = &2 — T2,

u= L [—éfg(xl — z3) — ad™ 120D +9'C'2c] ,
[

with the adaptive laws as follows

p1 = [—sin(z1); —z1 + 2], p2 = 21 — z25u],
Ci= —kiGi+ (09)T @i + kidi, €i(0) = 4(0),i = 1,2,
W = —kiw; + ¢, wi(0)=0,i=1,2,

Ci = wlw;,Ci(0) =0,i=1,2,
D; =w! (wie? +d@; — (i), Di(0)=0,i=1,2,

C;(tr),if C;i(tr) > 0 and Trace [C;(t7)] < 75 .
Cri = i=1,2,
C;(t), otherwise

D;(tr),if Ci(tr) > 0 and Trace [C;(t1)] < m; .
Drp; = i=1,2,
D;(t), otherwise

W; =Cri0; — Dri,i =1,2,

Py é i ~ T ~ O+
b= :Préi<(25° V) Pucw—wwi)ei(O):e?: =12,

Ogi Bgi0
In the simulation, the parameters and the desired trajectory are set as a)™~! = [38.21,12.2], a3™! = [400.0001, 40], 721 = 0.002,
0.0177 0.0001 250.6251 0.0125
122 = 0.001, k1 = 0.01, k2 = 0.1, w3 = 40, w2 = 100, v1 = 100, v2 = 4, P, = , Py =
0.0001 0.0004 0.0125 0.6253

ya = 1 + sin(t) + sin(2t). Meanwhile, the initial conditions are set as

€1(0)| |05 z2(0) | |35 G | |1

#1(0) 1|7 | #200) 0| | ¢(0) 0
The actual values of 6;,7 = 1,2 are set as

PR LFE T O I G IR CPE T N
g1 10|’ 042 16

With the above parameter settings, the simulation results are shown in Fig.F2. From Figs.F2(a)-F2(c), one can see that z1(t)
can track the desired trajectory yq(t) with a small tracking error z1(t). The curves of xz2(t) and #2(t) are shown in Fig.F2(d).
From Figs.F2(e)-F2(h), one can observe that 1 (t), 9A$,1(t)7 éfz(t) and f,2(t) converge to the actual values 051, 041, 072 and 62,
respectively. The curve of u(t) is depicted in Fig.F2(i).
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To s 10 15 20 25 w0 3 40 45 50 0 5 10 15 20 25 30 3 40 45 50 5 10 15 2 25 30 35 40 45 50
Time(Sec) Time(Sec) Time(Sec)
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30f= ==

To s 10 15 20 25 w0 3 40 45 50 0 5 10 15 20 25 3 35 40 45 50 0 5 10 15 20 25 3 35 40 45 50
Time(Sec) Time(Sec) Time(Sec)

() (e) (H
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25
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(€3] () ®
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Time(Sec)

Figure F2 Simulation results: (a): The output z1(¢) and the desired trajectory yq(t); (b): @1(t) and yq(t); (c): Tracking errors;
(d): State variables z2(t) and @2(¢); (e): Adaptive law 071 (t); (f): Adaptive law 641 (t); (g): Adaptive law 072(t); (h): Adaptive
law 042(t); (i): Control input wu(t).
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