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Appendix A Examples of transformation matrices

The rotation and scaling transformation matrices which in 2D are given by

Ā1 =





cosφ(t) − sinφ(t)

sinφ(t) cosφ(t)



 , Ā2 =





sx(t) 0

0 sy(t)



 ,

respectively, where φ(t) is the angle of rotation, sx(t) and sy(t) are the scaling factors. A composite transformation can be obtained

by multiplying every transformation matrix together. For example, a matrix for scaling and then rotation is given as Ā3 = Ā1Ā2.

Appendix B Proof of Theorem 1

Proof. From the definition of the region tracking potential function

P i
G =

M
∑

l=1

P i
Gl =

M
∑

l=1

kg ln cosh {max [0, fl(T (xi) − cl)]}, (B1)

the region tracking force ∆ξi takes the form of

∆ξi =

(

∂P i
G

∂T (xi)

)T

=
M
∑

l=1

kg max {0, tanh [fl(T (xi) − cl)]}

(

∂fl(T (xi) − cl)

∂T (xi)

)T

.

Noting the collision avoidance potential function

Ui
R =

∑

j∈Nc
i

URij , (B2)

the collision avoidance force ∆ρi can be expressed as:

∆ρi =

(

∂Ui
R

∂ (T (xi) − T (xj))

)T

=
∑

j∈Nc
i

4kp

(

R2 − r2
)

min
(

0, ‖T (xi) − T (xj)‖
2 − R2

)

(

‖T (xi) − T (xj)‖
2 − r2

)3
(T (xi) − T (xj))

=
∑

j∈Nc
i

Fij .

For the sliding variable si, i = 1, 2, . . . , N , it holds si = ẋi − ẋri = ∆ẋi + A−1Ȧ∆xi + A−1∆ζi = A−1
(

d
dt

(A∆xi) + ∆ζi
)

.

Furthermore, from the agent dynamics (1), it is easy to obtain

Mi(xi)ṡi + Ci(xi, ẋi)si + Di(xi)si + Mi(xi)ẍri + Ci(xi, ẋi)ẋri + Di(xi)ẋri + gi(xi) + τdi = τi. (B3)

Substituting the proposed controller (3) into (B3), the closed-loop system can be obtained as

Mi(xi)ṡi + Ci(xi, ẋi)si + Di(xi)si = −ksi
si − AT∆ζi + Yi(xi, ẋi, ẋri, ẍri)θ̃i + vi − τdi (B4)

where θ̃i = θ̂i − θi.
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Consider the following Lyapunov function

V =

N
∑

i=1

1

2
sTi Mi(xi)si +

N
∑

i=1

1

2kθi

θ̃T
i θ̃ +

N
∑

i=1

αiP
i
G +

1

2

N
∑

i=1

Ui
R +

N
∑

i=1

1

2kβi

β̃2
i +

N
∑

i=1

δi

kδi

(B5)

where P i
G is given in (B1), Ui

R is given in (B2) and β̃i = β̂i − βi.

The derivative of V along the solutions of (B4) is given as

V̇ =
1

2

N
∑

i=1

sTi Ṁi(xi)si +

N
∑

i=1

sTi Mi(xi)ṡi −
N
∑

i=1

δi(t) −
N
∑

i=1

θ̃T
i Y T

i si +

N
∑

i=1

αi

∂P i
G

∂T (xi)
Ṫ (xi) +

N
∑

i=1

β̃i ‖si‖

+
1

2

N
∑

i=1

∑

j∈Nc
i

∂URij

∂ (T (xi) − T (xj))

d

dt
(T (xi) − T (xj))

= −
N
∑

i=1

ksi
sTi si −

N
∑

i=1

sTi Di(xi)si −
N
∑

i=1

sTi AT∆ζi +

N
∑

i=1

αi∆ξTi
d

dt
(A∆xi) +

N
∑

i=1

sTi (vi − τdi)

+
1

2

N
∑

i=1

∑

j∈Nc
i

∂URij

∂ (T (xi) − T (xj))

d

dt
(T (xi) − T (xj)) +

N
∑

i=1

β̃i ‖si‖ −
N
∑

i=1

δi(t),

(B6)

where we have used the fact that Ṁi(xi) − 2Ci(xi, ẋi) is skew symmetric.

Denote aij = 1 for j ∈ N c
i and aij = 0 otherwise, then we have aij = aji and it holds

N
∑

i=1

∑

j∈Nc
i

∂URij

∂ (T (xi) − T (xj))

d

dt
(T (xi) − T (xj))

=

N
∑

i=1

N
∑

j=1

aij

∂URij

∂ (T (xi) − T (xj))

d

dt
(T (xi)) −

N
∑

i=1

N
∑

j=1

aij

∂URij

∂ (T (xi) − T (xj))

d

dt
(T (xj))

=
N
∑

i=1

N
∑

j=1

aij

∂URij

∂ (T (xi) − T (xj))

d

dt
(T (xi)) −

N
∑

j=1

N
∑

i=1

aji

∂URji

∂ (T (xj) − T (xi))

d

dt
(T (xi))

=

N
∑

i=1

N
∑

j=1

aij

∂URij

∂ (T (xi) − T (xj))

d

dt
(T (xi)) +

N
∑

j=1

N
∑

i=1

aij

∂URij

∂ (T (xi) − T (xj))

d

dt
(T (xi))

=2

N
∑

i=1

N
∑

j=1

aij

∂URij

∂ (T (xi) − T (xj))

d

dt
(A∆xi)

where we have used the fact
∂URij

∂(T (xi)−T (xj))
= −

∂URji

∂(T (xj)−T (xi))
.

Moreover, it holds
N
∑

i=1

sTi (vi − τdi) +
N
∑

i=1

β̃i ‖si‖ −
N
∑

i=1

δi(t)

6 −
N
∑

i=1

[

β̂2
i ‖si‖

2

β̂i ‖si‖ + δi(t)
+ βi ‖si‖ + β̃i ‖si‖ − δi(t)

]

=

N
∑

i=1

δi(t)β̂i ‖si‖

β̂i ‖si‖ + δi(t)
−

N
∑

i=1

δi(t)

60.

Then, from (B6) we have

V̇ 6 −
N
∑

i=1

ksi
sTi si −

N
∑

i=1

sTi Di(xi)si −
N
∑

i=1

sTi AT∆ζi +
N
∑

i=1

αi∆ξTi
d

dt
(A∆xi) +

N
∑

i=1

∆ρT
i

d

dt
(A∆xi) .

By noticing the definition of ∆ρi and the fact that

Asi =
d

dt
(A∆xi) + ∆ζi,

we can obtain

V̇ 6 −
N
∑

i=1

ksi
sTi si −

N
∑

i=1

sTi Di(xi)si −
N
∑

i=1

∆ζT
i ∆ζi

60.

It ensues that V is bounded. Then, Barbalat’s Lemma can be used to show that si → 0 and ∆ζi → 0.

Noting that

si =A
−1

(

d

dt
(A∆xi) + ∆ζi

)

=A−1(Ṫ (xi(t)) + ∆ζi),

it follows that Ṫ (xi(t)) → 0 and T (xi(t)) converge to some constant vectors where i = 1, . . . , N .
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Appendix C Simulation results

For the considered multi-robot system, we have

Mi ṡi + ηisi + Yiθi + τdi = τi

where Yi = [ẍri, ẋri] and θi = [Mi, ηi]
T .

For the 2-D case, the basic region shape is specified as a circle with radius D = 4m which can be described by

f(x) = x2
x + x2

y − D2
6 0

where x = [xx, xy ]
T . The time-varying region is obtained from f [A(t)(x− xo(t))] 6 0 where

A(t) =





1/sx(t) 0

0 1/sy(t)









cosφ(t) sinφ(t)

− sinφ(t) cosφ(t)





with the translation xo(t) = [t − 4, 0]T . The time-varying scaling functions and the rotation angle are set as

t 6 T1 : sx(t) = 1 + t/T ; sy(t) = 1 − t/(2T1);φ(t) = 0

T1 < t 6 T2 : sx(t) = 2; sy(t) = 0.5;φ(t) =
π(t−T1)

2(T2−T1)

T2 < t : sx(t) = 2; sy(t) = 0.5;φ(t) = π/2

with T1 = 15s, T2 = 30s. The center of this time-varying desired region is xo(t) and the scaling and rotation of the desired region

are commanded during the motion.

The initial positions of the agents are distributed on a grid centered at [−4, 0] as shown in Fig. C1. The initial velocities are

set as zero. The region tracking potential function parameter kg = 0.2. The collision avoidance potential function parameter

kp = 0.5. The sensing range R = 1 and the minimum distance parameter r = 0.4. The controller (3) is designed with parameters

ksi
= 1, kβi

= 0.1, kδi
= 0.5, kθi

= 0.1 and αi = 1. The initial states of β̂i and δi are set to 0 and 10, respectively.

The time-varying region tracking result is shown in Fig. C1 where the snap shots at several time instants are shown. It can be

seen that all the robots track the desired time-varying region successfully. The time evolution of the variables ∆ζi is plotted in

Fig. C2. It can be seen that ∆ζi approaches to zero. The control inputs are shown in Fig. C3. The estimation of the mass and

damping parameter of the robots are shown in Figs. C4 and C5, which converge asymptotically to some finite steady state values.

The estimation of the upperbound of the input disturbance is shown in Fig. C6, demonstrating that each adaptive gain β̂i also

converges to a finite steady state value.

Figure C1 Trajectories of the robots. The blue solid line denotes the boundary of the desired time-varying region. The red

circles represent the robots. The dotted green lines denote the trajectories of the robots.
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Figure C2 Trajectories of ∆ζi which converge to zero asymp-

totically.

Figure C3 Trajectories of the control inputs which are con-

tinuous.

Figure C4 Estimation of the mass where the initial estima-

tion is 0.5 and the true value is 1.

Figure C5 Estimation of the damping parameter where the

initial estimation is 0 and the true value is 0.5.

Figure C6 Adaptation of βi where the initial estimation is

0.

A comparison with a controller designed with a conventional region tracking potential function such as in [1–3] is performed to

show the advantage of reduced control input with the proposed region tracking potential function (B1). The following quadratic

potential function

P i
G =

M
∑

l=1

kg (max [0, fl(T (xi) − cl)])
2 (C1)
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is used to obtain the region tracking force ∆ξi. A smaller potential function gain kg = 0.02 is used to mitigate the large control

inputs while all the other parameters and initial conditions remain the same as in the previous example. The time-varying region

tracking result is shown in Fig. C7 which shows that time-varying region tracking can still be achieved. The time evolution of

the variables ∆ζi is plotted in Fig. C8. It can be seen that ∆ζi approaches to zero. The estimations of the mass and damping

parameters of the robots are shown in Figs. C10 and C11 which converge asymptotically to some finite steady state values. The

estimation of the upperbound of the input disturbance is shown in Fig. C12. However, comparing the controller input in this case

as shown in Fig. C9 with that in Fig. C3, it can be seen that even with a smaller potential function gain, much larger control efforts

are needed in the initial phase with the potential function (C1).

Figure C7 Trajectories of the robots with the conventional region tracking potential (C1). The blue solid line denotes the

boundary of the desired time-varying region. The red circles represent the robots. The dotted green lines denote the trajectories

of the robots.

Figure C8 Trajectories of ∆ζi with the conventional region

tracking potential (C1).

Figure C9 Trajectories of the control inputs with the con-

ventional region tracking potential (C1).
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Figure C10 Estimation of the mass with the conventional

region tracking potential (C1) where the initial estimation is

0.5 and the true value is 1.

Figure C11 Estimation of the damping parameter with the

conventional region tracking potential (C1) where the initial

estimation is 0 and the true value is 0.5.
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Figure C12 Adaptation of βi with the conventional region

tracking potential (C1) where the initial estimation is 0.

To show the convergence speed and the controller input magnitude trade-off in choosing the controller parameters for the

proposed controller (3), we simulate the time-varying region tracking with a different set of parameters ksi
= 0.1, kβi

= 0.05, kδi
=

0.2, kθi
= 0.05. All the other parameters are the same as in the previous case. The region tracking results are shown in Figs. C13

and Fig. C14. Compared with Figs. C2 and C3 it can be seen that with smaller controller parameters, the control input gets smaller

while the convergence speed becomes slower at the same time.

Figure C13 Trajectories of ∆ζi which converge to zero

asymptotically.

Figure C14 Trajectories of the control inputs which are con-

tinuous.

Furthermore, a 3-D case is also simulated to demonstrate the performance of the region tracking controller in high-dimensional
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space. In this case, xi ∈ R
3 and τdi = 0.1 sin(i × t) ∗ 13 where 13 = [1, 1, 1]T . The basic shape is now specified by a ball with

radius D = 4m which can be described by

f(x) = x2
x + x2

y + x2
z − D2

6 0

where x = [xx, xy, xz]
T . The time-varying region is obtained from f [A(t)(x− xo(t))] 6 0 where

A(t) =









1/sx(t) 0 0

0 1/sy(t) 0

0 0 1/sy(t)

















cosφ(t) sin φ(t) 0

− sinφ(t) cosφ(t) 0

0 0 1









with the translation xo(t) = [t − 4, 0, 0]T . The time-varying scaling functions and the rotational angle are the same as in the 2D

case. The initial positions of the robots are distributed on a grid centered at [−4, 0, 0]T as shown in Fig. C15. The initial velocities

are set to zero. All the other controller parameters are the same as in the 2-D case.

The time-varying region tracking result is shown in Fig. C15 where the snap shots at several time instants are shown. It can

be seen that all the robots track the desired time-varying region successfully. The time evolution of the variables ∆ζi is plotted

in Fig. C16. It can be seen that ∆ζi approaches to zero. The control inputs are shown in Fig. C17. The estimation of the mass

and damping parameters of the robots are shown in Figs. C18 and C19, which converge asymptotically to some finite steady state

values. The estimation of the upperbound of the input disturbance is shown in Fig. C20, demonstrating that each adaptive gain

β̂i also converges to a finite steady state value.

Figure C15 Trajectories of the robots in the 3-D case. The blue solid line denotes the boundary of the desired time-varying

region. The red circles represent the robots. The dotted green lines denote the trajectories of the robots.

Figure C16 Trajectories of ∆ζi in the 3-D case. Figure C17 Trajectories of the control inputs in the 3-D case.
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Figure C18 Estimation of the mass in the 3-D case where

the initial estimation is 0.5 and the true value is 1.

Figure C19 Estimation of the damping parameter in the 3-D

case where the initial estimation is 0 and the true value is 0.5.

Figure C20 Adaptation of βi in the 3-D case where the initial

estimation is 0.
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