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Dear editor,

In order to identify the influence of time-varying delays on

the stability of control systems represented in a discrete-

time mode, developing stability criteria of discrete-time de-

layed systems has received serious attention in the past few

decades (see [1–3] and their references).

Consider the following linear discrete-time system with a

time-varying delay:

{

x(k + 1) = Ax(k) +Adx(k − d(k)), k > 0,

x(k) = φ(k), k ∈ [−h2, 0],
(1)

where x(k) ∈ R
n and φ(k) denote the system state and the

initial condition, respectively; A and Ad are the system ma-

trices; and d(k) is the time-varying delay satisfying

0 = h0 < 1 6 h1 6 d(k) 6 h2 (2)

with h1 and h2 being constant. If no confusion arises, let

d = d(k), h12 = h2 −h1, h1d = d−h1 +1, h2d = h2 − d+1.

Among the methodologies for developing stability crite-

ria, the Lyapunov function method is popular since it can

be used to easily develop delay-dependent criteria, for delay

margin calculations, by introducing the following summa-

tion term:

Vr(xk) =
2

∑

l=1

(hl − hl−1)

−hl−1−1
∑

i=−hl

k−1
∑

j=k+i

ηT(j)Rlη(j), (3)

where Ri > 0, i = 1, 2, and η(k) = x(k + 1) − x(k). The

following terms appear in the forward difference:

S1 = h1

k−1
∑

i=k−h1

ηT(i)R1η(i), (4)

S2 = h12

k−h1−1
∑

i=k−d

ηT(i)R2η(i)+h12

k−d−1
∑

i=k−h2

ηT(i)R2η(i). (5)

Owing to the influence on the conservatism of crite-

ria, many efforts have been devoted to estimating these

terms, such as Wirtinger-like inequalities (WLIs) [4], auxil-

iary function-based inequality (AFBI) [5], and polynomial-

based inequality [6]. However, to date, these improved in-

equalities have not been used to estimate S2 for avoiding the

introduction of a non-convex cubic function with respect to

the delay. Although the vector extension idea developed

by [7] can achieve this target, too many decision variables

are required. Therefore, to make better use of the aforemen-

tioned improved inequalities, it is vital to directly determine

the negativity of the said cubic functions.

In this study, a matrix-injection-based transformation

method is developed to solve the above problem. This

method gives an equivalent condition to ensure the negativ-

ity of cubic functions and it is tractable due to its convexity

of the delay. By constructing an augmented Lyapunov func-

tion and using the proposed method combined with AFBI

and an extended reciprocally convex matrix inequality to

estimate the forward difference of the function, a stability

criterion of system (1) is established and its merit is demon-

strated via a numerical example. The notations used, if not

given in this study, are all listed in Appendix A.

Main results. The following delay-dependent summation

vectors appear in the lower bound of S2 when S2 is esti-

mated via the AFBI:

v1(k)=

∑k−h1
i=k−d

∑k−h1
j=i x(j)

h1d(h1d + 1)
, v2(k)=

∑k−d
i=k−h2

∑k−d
j=i x(j)

h2d(h2d + 1)
.

(6)

Similar to the discussion in [8], the Lyapunov function can-

didate should contain at least one cross term with vectors,

v1(k) and v2(k), to fully benefit from the AFBI. As an ef-

fective method, the following augmented term is helpful:

V1(xk) = ξT(k)Pξ(k), P = [Pij ]5×5 > 0, (7)

the forward difference of which can be expressed as

∆V1(xk) = ζT(k)Ψp(d)ζ(k), (8)
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where Ψp(d) is a cubic function of the delay and thus is

non-convex with respect to the delay. In developing the cri-

teria, it is important to find a tractable condition of the

cubic function. For this purpose, a matrix-injection-based

transformation method is developed as the following lemma.

Lemma 1. Assume that y ∈ R is a time-varying param-

eter, ς ∈ Rm is a vector, and Ξ(y) ∈ Sm is a time-varying

matrix, expressed as Ξ(y) = y3ΓT
1 Ξ1Γ1 + y2He{ΓT

1 Ξ2Γ2}+

Ξ3(y) with Ξ1 ∈ Sp, Ξ3(y) ∈ Sm being convex with re-

spect to y, Ξ2 ∈ Rp×q , Γ1 ∈ Rp×m and Γ2 ∈ Rq×m being

obtained under the requirement that Γ1 satisfies the least

number of rows. Then the following holds:

y3
[

ςTΓT
1 Ξ1Γ1ς

]

+y2
[

ςTHe{ΓT
1 Ξ2Γ2}ς

]

+ ςTΞ3(y)ς < 0, (9)

if there exist N1 ∈ R
p×p and N2 ∈ R

m×p such that

G(y) =

[

G11(y) G12(y)

∗ G22(y)

]

< 0, (10)

where G11(y) = Ξ3(y) − He{yN2Γ1}, G12(y) = N2 −

y(ΓT
1 NT

1 − ΓT
2 ΞT

2 ), and G22(y) = yΞ1 +N1 +NT
1 .

Based on Lemma 1, a stability criterion is developed us-

ing the AFBI and an extended reciprocally convex matrix

inequality to estimate S2.

Theorem 1. For given h1 and h2, system (1) with the

delay satisfying (2) is asymptotically stable if there exist

matrices P = [Pij ]5×5 ∈ S
5n
+ , {Qi, Ri} ∈ S

n
+, matrices

N1 ∈ R2n×2n, N2 ∈ R10n×2n, Si ∈ R3n×3n, i = 1, 2, such

that the following holds for both d = h1 and d = h2:

Ψ(d) =









Ψ1(d)





(d−h1)E
T
3 ST

1 +(h2−d)ET
2 S2

h12

02n×3n





∗ − diag{R2, 3R2, 5R2}









< 0. (11)

Note that the detailed proof and the advantages of

Lemma 1 and Theorem 1 are discussed in Appendixes B

and C.

A numerical example. Consider system (1) with

A =

[

1.00 0.01

−0.10 0.99

]

, Ad =

[

0.003 0.001

0.010 0.005

]

. (12)

For different h1, the allowably maximal h2 provided by

Theorem 1 and those reported in literature are listed in Ta-

ble 1, where the number of decision variables (NDVs) and

the maximal order of linear matrix inequalities (MoLs) in-

dicate the criteria complexity.

Table 1 The allowably maximal h2 and the complexity

indexesa)

Criteria
h1 Complexity indexes

20 30 40 50 NDVs MoLs

Th.5 [4] 90 110 126 136 10.5n2+3.5n 7n

Th.1 [5] 97 124 144 156 29.5n2+8.5n 12n

Th.3 [6] 101 129 146 158 64n2+4n 16n

Th.1 [7] 127 140 150 158 79.5n2+4.5n 17n

Th.1 129 141 151 160 56.5n2+4.5n 15n

a) Th. denotes Theorem.

The results show the advantages of Lemma 1 from two

aspects. (1) Compared with the criteria in [5,6], Theorem 1

more obviously improves the results obtained by the WBI-

based criterion in [4]. The reason is that, due to the usage of

Lemma 1, both S1 and S2 are established by using tighter

AFBI to significantly reduce the conservatism. (2) Com-

pared with the criteria in [7], Theorem 1 not only provides

less conservative results but also requires lower complexity,

which greatly shows the advantage of Lemma 1 in compar-

ison with the treatments for avoiding d3-dependent terms

applied in [7].

Conclusion. This study has investigated the stability of

discrete-time systems with a time-varying delay. To handle

the negativity condition of the forward difference of Lya-

punov function, a matrix-injection-based method has been

developed to convert the original negativity condition to an

equivalent tractable matrix inequality by injecting a few ma-

trices. By using this method and an augmented Lyapunov

function, a stability criterion with less conservatism for the

delayed linear discrete-time system has been developed. The

case study via a numerical example has shown the merit of

the criterion. It is predictable that the proposed method,

together with the methods recently reported by [9], can fur-

ther improve the results.
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