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Abstract In this paper, we consider the adaptive detection problem of range-spread targets embedded in

subspace interference plus structured Gaussian clutter. The target signal and interference are assumed to lie

in two linearly independent subspaces with unknown coordinates. The clutter component is modeled as a

complex Gaussian vector with an unknown persymmetric covariance matrix. We leverage the persymmetric

structure to design a two-step detector according to the Rao test criterion. The theoretical results show

that the proposed detector possesses the constant false alarm rate property with respect to the clutter

covariance matrix. Furthermore, the numerical results show that the proposed detector exhibits better

detection performance than the existing unstructured subspace detectors, particularly under a limited training

data size. In addition, the proposed detector outperforms the existing persymmetric subspace detectors.
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1 Introduction

With the increasing radar bandwidth, the adaptive detection of the wideband radar target has become a
crucial problem in the radar community [1,2]. The spreading of the wideband radar target energy into the
adjacent range cells [3–5] results in the so-called range-spread target. Moreover, multichannel adaptive
target detection in Gaussian clutter with an unknown covariance matrix has been an active topic [6–8],
and a set of target-free training data is usually assumed to be available to estimate unknown clutter
covariance matrices. However, natural or man-made interference sources are frequently encountered in
several applications, such as electronic countermeasures or civil broadcasting systems. The interference
must be considered in the detector design, and the subspace model [9, 10] is usually applied to describe
the uncertainties associated with interference pointing and Doppler frequency in many scenarios.

Several detectors have been designed to detect range-spread targets embedded in subspace interference
plus colored Gaussian clutter using sufficient amounts of training data, according to the generalized
likelihood ratio test (GLRT) [11] or the Rao test [12]. Moreover, in [13], a relative parameter is set to
comprise both signal coordinates and interference coordinates to derive a modified Rao (MRao) test.

None of the above-mentioned detectors consider the persymmetry of the clutter covariance matrix,
which may exist in radar systems utilizing a symmetrically spaced linear array or symmetrically spaced
pulse trains [14, 15]. In some scenarios, special structures may exist in the clutter covariance matrix.
A persymmetric structure is characterized by a Hermitian symmetry about its principal diagonal and
persymmetry about its sub diagonal. In particular, the persymmetric structure of the clutter covariance
matrix has been considered for the detection problem [11], and one-step and two-step detectors are
proposed in [14], according to the GLRT criterion. In [14], the persymmetric one-step GLRT (P1S-
GLRT) generally exhibited better detection performance than the two-step GLRT.

In the case in which the clutter covariance matrix and the coordinates of the target signal and interfer-
ence are unknown, it is difficult to obtain a uniformly most powerful test for the detection problem [14].
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The aim of this paper is to leverage persymmetry to propose a two-step detector according to the Rao
test criterion. Moreover, the proposed persymmetric two-step Rao (P2S-Rao) is theoretically proved
to achieve a constant false alarm rate (CFAR) with respect to the unknown clutter covariance matrix.
The numerical results show that the P2S-Rao can effectively reject the interference. Furthermore, the
P2S-Rao has a better detection performance than the existing unstructured subspace detectors [11–13],
particularly under a limited training data size. Moreover, the proposed P2S-Rao outperforms the existing
persymmetric subspace detectors in [14].

The rest of this paper is organized as follows. Section 2 presents the formulation of the detection
problem. Section 3 provides the derivation of the P2S-Rao detector. Section 4 presents the CFAR
property analysis. Section 5 presents the numerical analyses and performance comparison. Finally,
Section 6 presents the conclusion of the study.

2 Problem formulation

The problem of detecting the presence of a target across K range cells can be formulated in terms of two
hypotheses: H0 and H1. The hypothesis H0 contains interference and clutter only, and the hypothesis H1

contains useful target signals. Under hypothesis H1, the data from the tested cells can be expressed as

żt = ṡt + j̇t + ċt, (1)

where the target signal vector ṡt ∈ CN×1 and the interference vector j̇t ∈ CN×1 are assumed to be
deterministic, and Cm×n denotes the m × n complex-valued matrix space. It is supposed that ṡt and
j̇t belong to known full-column-rank unitary matrices Ḣ ∈ CN×p and J̇ ∈ CN×q, and can be denoted
by ṡt = Ḣpt and j̇t = J̇qt, respectively, where two vectors pt ∈ Cp×1 and qt ∈ Cq×1 are unknown
coordinate vectors for the target signal and the interference signal, respectively. The subspaces Ḣ and
J̇ are supposed to be linearly independent [11], and Ḃ = [Ḣ J̇ ] is a full-column-rank augmented matrix
such that p + q < N . The clutter vectors ċt, t = 1, 2, . . . ,K are independent and identically distributed
(IID), zero-mean, complex circular Gaussian vectors, with an unknown covariance matrix Ṁ ; they are
defined as ċt ∼ CN (0,Ṁ). Under hypothesis H0, żt = j̇t + ċt. To estimate Ṁ , it is often assumed that
a set of training data containing clutter only is available. The training data are defined as an N × R
matrix Ẏ = [ẏ1, . . . , ẏR], with ẏt ∼ CN (0,Ṁ), t = 1, 2, . . . , R being also IID.

According to the above assumption, the detection problem can be formulated as the following binary
hypothesis test:





H0 :

{
żt ∼ CN (J̇qt,Ṁ), t = 1, 2, . . . ,K,

ẏt ∼ CN (0,Ṁ), t = 1, 2, . . . , R,

H1 :

{
żt ∼ CN (Ḣpt + J̇qt,Ṁ), t = 1, 2, . . . ,K,

ẏt ∼ CN (0,Ṁ), t = 1, 2, . . . , R.

(2)

When a symmetrically spaced linear array with its center at the origin or symmetrically spaced pulse
trains is used [14–16], Ḣ , J̇ and Ṁ have persymmetric structures. In this case, we have






Ḣ = DNḢ∗ ∈ CN×p,

J̇ = DN J̇∗ ∈ CN×q,

Ṁ = DNṀ∗DN ∈ CN×N ,

(3)

where the superscript (·)∗ denotes the conjugate; DN is an N ×N permutation matrix with unit antidi-
agonal elements and zeros elsewhere.
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3 Detector design

To leverage the persymmetric structure, we convert the complex-valued matrices Ḣ, J̇ and Ṁ to real-
valued matrices by applying a unitary matrix T [7], which can be expressed as

T=






1√
2

(
IN/2 DN/2

jIN/2 −jDN/2

)
, for even N,

1√
2




I(N−1)/2

0

0 D(N−1)/2√
2 0

jI(N−1)/2 0 −jD(N−1)/2


 , for odd N .

(4)

where Im denotes an m×m unit matrix, j =
√
−1, and the binary hypothesis test can be rewritten as





H0 :

{
zt ∼ CN (Jqt,M) , t = 1, 2, . . . ,K,

yt ∼ CN (0,M) , t = 1, 2, . . . , R,

H1 :

{
zt ∼ CN (Hpt + Jqt,M) , t = 1, 2, . . . ,K,

yt ∼ CN (0,M) , t = 1, 2, . . . , R,

(5)

with 



zt = T żt ∈ CN×1,

yt = T ẏt ∈ CN×1,

H = TḢ ∈ RN×p,

J = T J̇ ∈ RN×q,

M = TṀTH ∈ R
N×N ,

(6)

where the superscript (·)H denotes the conjugate transpose, and Rm×n denotes the m× n real-valued
matrix space.

In the sequel, we adopt the two-step criterion to design a Rao test for the detection problem in (5).
First, we assume that the clutter covariance matrix M is known and derive a detection statistic. Then,
we obtain the maximum likelihood (ML) estimate of the persymmetric matrix M using the training data,
which are then used to replace the true matrix M in the previously derived detection statistic.

The joint probability density function of Z = [z1, . . . , zK ] and Y = [y1, . . . ,yR] under hypotheses H0

and H1 can be respectively expressed as [12]

f0(Z,Y |Q,M )={πN(K+R)[det(M)]
K+R}−1

exp{−tr(M−1S)−tr[M−1(Z−JQ)(Z−JQ)
H
]} (7)

and

f1(Z,Y |P ,Q,M )={πN(K+R)[det(M)]
K+R}−1

exp{−tr(M−1S)−tr[M−1(Z−BD)(Z−BD)
H
]}, (8)

where P = [p1, . . . ,pK ]; Q = [q1, . . . , qK ]; S = Y Y H; B = [H J ]; D = [PT QT]T; the superscript
(·)T denotes the transpose; and det(·) and tr(·) denote the determinant and trace of a square matrix,
respectively.

First, for a known M , the Rao test for complex-valued signals is given by

λ1=
∂ ln f1(Z,Y |P ,Q,M )

∂Θr

∣∣∣∣
T

Θ=Θ̂0

[I−1(Θ̂0)]Θr,Θr

∂ ln f1(Z,Y |P ,Q,M )

∂Θ∗
r

∣∣∣∣
Θ=Θ̂0

H1

≷
H0

T1, (9)

where λ1 and T1 represent the detection statistic and threshold, respectively; Θ = [ΘT
r ΘT

s ]
T, Θr =

vec(P ), Θs = vec(Q) and Θ̂0 is the ML estimation of Θ under hypothesis H0; vec(·) denotes the
vectorization of a matrix; [I−1(Θ)]Θr,Θr

denotes the sub-matrix of I−1(Θ) corresponding to the vector
Θr, with I(Θ) denoting the Fisher information matrix (FIM) with respect to Θ [17]; that is,

I(Θ) = E

{
∂ ln f1(Z,Y |P ,Q,M )

∂Θ*

∂ ln f1(Z,Y |P ,Q,M )

∂ΘT

}
. (10)
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For convenience, the FIM is often partitioned as follows:

I(Θ) =

[
IΘr,Θr

(Θ) IΘr,Θs
(Θ)

IΘs,Θr
(Θ) IΘs,Θs

(Θ)

]
, (11)

and [I−1(Θ)]Θr,Θr
can be expressed as

[I−1(Θ)]Θr,Θr
= [IΘr,Θr

(Θ)− IΘr,Θs
(Θ)I−1

Θs ,Θs
(Θ)IΘs,Θr

(Θ)]
−1

. (12)

[I−1(Θ)]Θr,Θr
= [IΘr,Θr

(Θ)]
−1

because IΘr,Θs
(Θ) is a null matrix. Taking the derivatives of the

logarithm of (8) with respect to Θr and Θ∗
r results in

∂ ln f1(Z,Y |P ,Q,M )

∂Θr
= vec

{
[(Z −BD)HM−1H ]

T
}
, (13)

∂ ln f1(Z,Y |P ,Q,M )

∂Θ*
r

= vec[HTM−1(Z −BD)], (14)

respectively. Let X = Z −BD; then, plugging (13) and (14) into (10) yields

IΘr,Θr
(Θ) = E

[
vec(HTM−1X)vecT(HTM−TX∗)

]

= E
{
(IK ⊗HTM−1)vec(X)[(IK ⊗HTM−T)vec(X*)]

T
}

= (IK ⊗HTM−1)E[vec(X)vec(XH)](IK ⊗M−1H)

= (IK ⊗HTM−1)(IK ⊗M)(IK ⊗M−1H)

= IK ⊗HTM−1H , (15)

where ⊗ denotes the Kronecker product, and we have used vec(ABC) = (CT⊗A)vec(B) in the derivation
of (15). Substituting (13) and (15) into (9) leads to the Rao test for a given Q

λ1 = vecT[(XHM−1H)
T
](IK ⊗HTM−1H)−1vec(HTM−1X)

= vecT[(XHM−1H)
T
][IK ⊗ (HTM−1H)

−1
]vec(HTM−1X)

= vecT(XHM−1H)
T
vec[(HTM−1H)

−1
HTM−1X]

= tr[XHM−1H(HTM−1H)
−1

HTM−1X], (16)

where we have used (A ⊗B)−1 = A−1 ⊗B−1 and tr(ATB) = vecT(A)vec(B). The ML estimate of Q
under hypothesis H0 can be obtained as [18]

Q̂0 = (J̃TJ̃)
−1

J̃TZ̃, (17)

where Z̃ = M−1/2Z ∈ CN×K and J̃ = M−1/2J ∈ RN×q.
Note that P is a zero matrix under hypothesis H0. Substituting (17) into (16) gives

λ1 = tr
(
Z̃HP⊥

J̃
P

H̃
P⊥

J̃
Z̃
)
, (18)

where H̃ = M−1/2H ∈ RN×p, P
H̃

= H̃(H̃TH̃)
−1

H̃T ∈ RN×N , P
J̃

= J̃(J̃TJ̃)
−1

J̃T ∈ RN×N and

P⊥
J̃

= IN − P
J̃
.

According to the training data, the ML estimate of the persymmetric matrixM can be obtained as [19]

M̂ = Re

(
1

R

∑R

t=1
yty

H
t

)
∈ R

N×N , (19)

where Re (·) represents the real part of a complex quantity. The constraint R > ⌈N/2⌉ has to be met

to ensure the non-singularity of M̂ , where ⌈·⌉ represents the smallest integer not smaller than a given

parameter. By replacing the unknown matrix M with M̂ into (18), we obtain P2S-Rao as

λP2S-Rao = tr
(
ẐHP⊥

Ĵ
P

Ĥ
P⊥

Ĵ
Ẑ
)H1

≷
H0

TP2S-Rao, (20)
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where λP2S-Rao and TP2S-Rao denote the detection statistic and threshold after replacement, with




Ẑ = [ẑ1, . . . , ẑK ] = M̂−1/2Z ∈ CN×K ,

Ĥ = M̂−1/2H ∈ RN×p,

Ĵ = M̂−1/2J ∈ RN×q,

P
Ĥ

= Ĥ(ĤTĤ)
−1

ĤT ∈ RN×N ,

P⊥
Ĵ

= IN − Ĵ(ĴTĴ)
−1

ĴT ∈ R
N×N .

(21)

4 CFAR property analyses

In this section, we prove that the proposed P2S-Rao possesses the CFAR property with respect to the
clutter covariance matrix and build a process for profiling the proposed detector.

To prove the CFAR property of P2S-Rao, we first rewrite (20) as

λ P2S-Rao = tr[ZHFH(HTM̂−1H)−1HTFZ], (22)

where F = M̂−1 − M̂−1J(JTM̂−1J)
−1

JTM̂−1 ∈ RN×N . Define J‖ = M−1/2J
(
JTM−1J

)−1/2 ∈
RN×q, and then we have JT

‖ J‖ = Iq. There exists an orthogonal matrix U=
[
J‖,J⊥

]
∈ RN×N with

JT
⊥J⊥ = IN−q and JT

⊥J‖ = 0(N−q)×q, (23)

where 0m×n denotes an m× n zero matrix; the N × (N − q) semi-orthogonal matrix J⊥ can be obtained

via the singular value decomposition (SVD) of J̃ .
Let 




Z̄=UTM−1/2Z ∈ CN×K ,

H̄=UTM−1/2H ∈ RN×p,

J̄=UTM−1/2J ∈ RN×q,

F̄=UTM1/2FM1/2U ∈ RN×N ,

M̄=UTM−1/2M̂M−1/2U ∈ RN×N .

(24)

Then, Eq. (22) can be recast as

λP2S-Rao = tr
[
Z̄HF̄ H̄

(
H̄TM̄−1H̄

)−1
H̄TF̄ Z̄

]
. (25)

We can verify that under hypothesis H0, Z̄ is distributed as Z̄∼CN (0N×K , IN ), and it is proven in [19]

that M̂ is distributed as M̂∼ 1
2RW (2R,M), where W (n,Σ) denotes a real Wishart distribution with n

degrees of freedom and parameter matrix Σ. Herein, the matrices are partitioned as Z̄ =
[
Z̄T

1 , Z̄
T
2

]T
with

Z̄1 ∈ Cq×K and Z̄2 ∈ C(N−q)×K ; H̄ = [H̄T
1 , H̄

T
2 ]

T
with H̄1 ∈ Rq×p and H̄2 ∈ R(N-q)×p; M̄ = [M̄11 M̄

T
21

M̄21 M̄22
]

with M̄11 ∈ Rq×q, M̄21 ∈ R(N−q)×q and M̄22 ∈ R(N−q)×(N−q). The inverse of M̄ is defined as

M̄−1 =

[
C11 C12

C21 C22

]
, (26)

where C11 ∈ Rq×q, C12 ∈ Rq×(N−q) , C21 ∈ R(N−q)×q, and C22 ∈ R(N−q)×(N−q) are the submatrices of
M̄−1 defined for convenience. Then, it is straightforward to verify that F̄ can be recast as [20]

F̄ = UTM1/2[M̂−1 − M̂−1J(JTM̂−1J)
−1

JTM̂−1]M1/2U

= M̄−1 − M̄−1J̄(J̄TM̄−1J̄)
−1

J̄TM̄−1

= M̄−1 − M̄−1E0(E
T
0 M̄

−1E0)
−1

ET
0 M̄

−1

=

[
0q×q 0q×(N−q)

0(N−q)×q M̄−1
22

]
, (27)
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whereE0 =
[
Iq,0q×(N−q)

]T
, M̄22 =

(
C22 −C21C

−1
11 C12

)−1
, and we have used J̄ = E0(J

TM−1J)
1/2

.
Substituting (27) into (25), we have

λP2S-Rao = tr
[
Z̄H

2 M̄
−1
22 H̄2

(
H̄TM̄−1H̄

)−1
H̄T

2 M̄
−1
22 Z̄2

]
. (28)

It can be verified that under hypothesis H0, Z̄2 and M̄22 are distributed as Z̄2 ∼ CN
(
0(N−q)×K , IN−q

)

and M̄22 ∼ 1
2RW (2R, IN−q), respectively. Using the (N − q) × p matrix H̄2, we can construct a real

orthogonal matrix as V =
[
H̄2‖ , H̄2⊥

]
∈ R(N−q)×(N−q), with H̄2‖ = H̄2

(
H̄T

2 H̄2

)−1/2 ∈ R(N−q)×p and

H̄2⊥ being an (N − q) × (N − p − q) semi-orthogonal matrix that can be obtained via the SVD of H̄2.

Let Z̄2V = V TZ̄2, E1 = [IT
p ,0

T
(N−p−q)×p]

T
, M̄22V = V TM̄22V [21], and Eq. (28) can be rewritten as

λP2S-Rao = tr
[
Z̄H

2V M̄−1
22V

E1

(
H̄TM̄−1H̄

)−1
ET

1 M̄
−1
22V

Z̄2V

]
, (29)

where we have used V TH̄2 = E1

(
H̄T

2 H̄2

)1/2
. Under hypothesis H0, Z̄2V and M̄22V are distributed as

Z̄2V ∼ CN
(
0(N−q)×R, IN−q

)
and M̄22V ∼ 1

2R
W (2R, IN−q) , (30)

respectively. Using the N × p matrix H̄ , we can construct a real orthogonal matrix as W =
[
H̄‖, H̄⊥

]
∈

RN×N , with H̄‖ = H̄
(
H̄TH̄

)−1/2 ∈ RN×N and H̄⊥ being an N × (N − p) semi-orthogonal matrix that
can be obtained via the SVD of H̄. Performing the orthogonal transformation into H̄ and M̄ in (29)
with W yields

λP2S-Rao = tr
[
Z̄H

2V M̄−1
22V

E1

(
ET

2 M̄
−1
W

E2

)−1
ET

1 M̄
−1
22V

Z̄2V

]
, (31)

where M̄W = WTM̄W , E2 = [IT
p ,0

T
(N−p)×p]

T
, and we have used WTH̄ = E2

(
H̄TH̄

)1/2
[21].

It can be verified that under hypothesis H0, M̄W is distributed as

M̄W ∼ 1

2R
W (2R, IN ) . (32)

Remark 1. The results in (30)–(32) show that the P2S-Rao is statistically independent of M under
hypothesis H0; therefore, the proposed P2S-Rao achieves CFAR with respect to M .

Next, we build a process for profiling the proposed detector. Eq. (20) can be recast as

λP2S-Rao =

K∑

t=1

ẑH
t P

⊥
Ĵ
P

Ĥ
P⊥

Ĵ
ẑt =

K∑

t=1

ẑH
t

(
P

Ĥ
P⊥

Ĵ

)H
P

Ĥ
P⊥

Ĵ
ẑt =

K∑

t=1

∥∥P
Ĥ
P⊥

Ĵ
ẑt
∥∥2. (33)

From (33), it can be observed that there are four procedures in the P2S-Rao (Figure 1). (1) Using the
unitary matrix T to transform the test data żt, t = 1, 2, . . . ,K and the training data ẏt, t = 1, 2, . . . , R,
as well as the target signal subspace Ḣ and the interference subspace J̇ . (2) Using the ML estimate of
M to quasi-whiten the transformed test data zt, t = 1, 2, . . . ,K and the transformed matrices H and J .
The aim of this operation is to suppress the colored Gaussian clutter. (3) Projecting the quasi-whitening
data onto the complementary space of the quasi-whitened interference subspace using the operator P⊥

Ĵ
;

this operation aims to suppress interference, and then, the operator P
Ĥ

is used to integrate the target

signal. (4) Finally, the squared Euclidean norm ‖·‖2 and the noncoherent integration (i.e., summation)
are leveraged to congregate the target energy.

Remark 2. The interference is eliminated in the third procedure, and hence, the proposed P2S-Rao
has the capability of interference rejection; that is, the P2S-Rao is insensitive to the interference.

5 Numerical results

In this section, several numerical analyses are conducted to investigate the performance of the proposed
P2S-Rao.
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Figure 1 Construction steps of the proposed P2S-Rao.

Table 1 Values of ξt for different MDS models

Model number
Range cell number

1 2 · · · 1/h0

Model 1 1/h0 1/h0 1/h0 1/h0

Model 2 0.5 0.5/(h0 − 1) 0.5/(h0 − 1) 0.5/(h0 − 1)

Model 3 0.9 0.1/(h0 − 1) 0.1/(h0 − 1) 0.1/(h0 − 1)

Model 4 1 0 0 0

In the Monte Carlo numerical procedure, 100/Pfa and 104 independent trials are performed to calculate
the detection threshold for a preassigned probability of false alarm (Pfa) and the probability of detection
(Pd), respectively. To alleviate computation complexity, we set Pfa = 10−3. The subspace matrices H

and J can be modeled as those in [14]. P and Q are randomly generated as non-zero matrices. The
(i , j )-th element of the clutter covariance matrix is set as [M ]i,j = σ2

cρ
|i−j|, where ρ is the clutter one-lag

correlation coefficient, and σ2
c denotes the clutter power level. The signal-to-clutter ratio (SCR) and the

interference-to-clutter ratio (ICR) are respectively defined as

SCR = tr(PHḢHṀ−1ḢP )/K, (34)

ICR = tr(QHJ̇HṀ−1J̇Q)/K. (35)

In addition, it is assumed that all K range cells have interference and clutter components, while only
the h0 range cells may have target signal components. Let ξt indicate the ratio of target signal energy
from the t-th range cell to the total target energy. Herein, four typical models of multiple dominant
scatterers (MDSs) are evaluated (Table 1).

5.1 CFAR assessment

To verify the CFAR property of the P2S-Rao, Figure 2 shows the curves of Pfa versus detection threshold
for different values of σ2

c and ρ. Four curves with different parameters coincide with each other. This
indicates that the proposed detector possesses the CFAR property under the design assumptions, which
is consistent with Remark 1.

5.2 Influence of target parameters

Figure 3 shows the curves of Pd versus SCR for four typical MDS models from Table 1. When the target
signal energy is uniformly distributed in range cells (i.e., Model 1), the P2S-Rao detector performs best,
and the detection performance decreases as most of the target energy is nearly concentrated in one range
cell. Model 1 is used in the following analyses, except stated otherwise.

Moreover, Figure 4 shows Pd versus SCR, with K = 5, 10, 15, 20. The performance of the P2S-Rao
slightly improves as K increases, but the performance difference is trivial for large K values. In addition,
Figure 5 shows the curves of Pd versus SCR with h0 = 1, 3, 7, 10. As the value of h0 increases, the
performance of P2S-Rao improves, while the performance gain decreases.
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Figure 3 (Color online) Pd versus SCR of P2S-Rao with

Models 1–4 for N = 12, K = 15, R = 7, p = 4, q = 4,

Pfa = 10−3, ρ = 0.9, h0 = 3, ICR = 15 dB.
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Figure 4 (Color online) Pd versus SCR of P2S-Rao with

Model 1 for N = 12, K = 5, 10, 15, 20, R = 7, p = 4, q = 4,

Pfa = 10−3, ρ = 0.9, h0 = 3, ICR = 15 dB.

Figure 5 (Color online) Pd versus SCR of P2S-Rao with

Model 1 for N = 12, K = 15, R = 7, p = 4, q = 4, Pfa =10−3,

ρ = 0.9, h0 = 1, 3, 7, 10, ICR = 15 dB.

5.3 Influence of interference and clutter parameters

In Figure 6, the Pd of P2S-Rao is plotted as a function of SCR, with ICR=5, 10, 15, 20 dB. All curves
coincide with each other for different ICRs; that is, the P2S-Rao detector can effectively reject the
interference, which is consistent with Remark 2.

Figure 7 refers to the detection performance of P2S-Rao for different numbers of channels (N =
8, 10, 12, 14), with R fixed at 7. The performance of P2S-Rao degrades with increasing N, possibly because
the dimension of the unknown M depends on the number N , and in the case in which the training data
size is fixed, the increase in N will reduce the estimation accuracy of M , thereby deteriorating the
detection performance. Figure 8 shows the curves of Pd versus SCR, with N = 8, 12, 16, 20; R is always
equal to N. The P2S-Rao performance is enhanced as N increases, with the constraint of N = R.

In addition, Figure 9 shows Pd of P2S-Rao versus SCR with R = 8, 16, 24, 32. As R increases, the
detection performance improves because a larger R leads to a more accurate estimate of M . In Figure 10,
the detection performance of P2S-Rao is demonstrated for different clutter one-lag correlation coefficients.
The nearly superposed curves show that the P2S-Rao performs robustly for different clutter correlations.

5.4 Performance comparison

We compare the proposed P2S-Rao with the existing unstructured subspace detectors, including 1S-
GLRT [11], 2S-GLRT [11], 1S-Rao [12], 2S-Rao [12], and MRao [13], and the existing structured P1S-
GLRT [14]. In [14], the P1S-GLRT generally outperformed the two-step one; herein we only consider the
P1S-GLRT owing to space limitations.
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Figure 6 Pd versus SCR of P2S-Rao with Model 1 for N =

12, K = 15, R = 7, p = 4, q = 4, Pfa = 10−3, ρ = 0.9, h0 = 3,

ICR = 5, 10, 15, 20 dB.

Figure 7 Pd versus SCR of P2S-Rao with Model 1 for N =

8, 10, 12, 14, K = 15, R = 7, p = 4, q = 4, Pfa = 10−3, ρ = 0.9,

h0 = 3, ICR = 15 dB.
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Figure 8 Pd versus SCR of P2S-Rao with Model 1 for N =

R = 8, 12, 16, 20, K = 15, R = 7, p = 4, q = 4, Pfa =10−3, ρ =
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Figure 9 Pd versus SCR of P2S-Rao with Model 1 for N =

12, K = 15, R = 8, 16, 24, 32, p = 4, q = 4, Pfa = 10−3, ρ =

0.9, h0 = 3, ICR = 15 dB.
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Figure 10 Pd versus SCR of P2S-Rao with Model 1 for N = 12, K = 15, R = 7, p = 4, q = 4, Pfa = 10−3, ρ = 0, 0.1, 0.5, 0.9,

h0 = 3, ICR = 15 dB.

First, we consider the computational complexity of different detectors. The observed data from range
cells are complex-valued, but the matrices H , J and M are real-valued after the unitary transformation
T . In the case in which the persymmetry is not considered or the transforming procedure in [14] is
used, all data and variables are still complex-valued. For the computational complexity discussed herein,
the impact of the addition operation is ignored in each decision-making process, and only the actual
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Table 2 Computational complexity of different detectors

Detector Detection statistics Computational complexity

P2S-Rao tr(W1) N 3+N 2(4K+8R+6p+6q)+N(2K2+p2+2q2+3Kp)+Kp2+p3+q3

P1S-GLRT W6 12N 3+4N 2(5K+R+2p+4q)+4N [8K2+2(p+q)2+2q2]+4(p+q)3+4q3+4(2K)!+64K3

1S-Rao tr[W−1

2
W3(W2−W3)

−1] 8N 3+4N 2(K+2R+2p+4q)+4N(2K2+p2+4q2+2Kp)+16K3+4p3+8q3+4Kp2

2S-Rao tr(W3) 4N 3+4N 2(R+2p+2q)+4N(K2+p2+2q2+2Kp)+4p3+4q3+4Kp2

MRao tr[W−1

2
W5(W2−W5)

−1] 12N 3+4N 2(3K+3R+2p+6q)+4N [3K2+2(p + q)2+4q2]+16K3+4(p+q)3+8q3

1S-GLRT tr(W2W
−1

4
) 8N 3+4N 2(2K+2R+2p+4q)+4N [2K2+2(p + q)2+2q2]+4(p+q)3+4q3+4K!+8K3

2S-GLRT tr(W2−W4) 8N 3+4N 2(2K+2R+2p+4q)+4N [2K2+2(p+q)2+2q2]+4(p+q)3+4q3
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Figure 11 (Color online) Pd versus SCR of different detectors with Model 1 for N = 12, K = 15, R = 13, 24, p = 4, q = 4,

Pfa = 10−3, ρ = 0.9, h0 = 3, ICR = 15 dB. (a) R = 13; (b) R = 24.

real-valued multiplication is considered.
For easy expression of detection statistics, let






W1 = ẐHP⊥
Ĵ
P

Ĥ
P⊥

Ĵ
Ẑ ∈ CK×K ,

W2 = IK + Z̃
H
P⊥

J̃
Z̃ ∈ CK×K ,

W 3 = Z̃
H
P

⊥
J̃
P

H̃
P

⊥
J̃
Z̃ ∈ CK×K ,

W 4 = IK + Z̃
H
P⊥

B̃
Z̃ ∈ CK×K ,

W 5 = Z̃
H
(P

B̃
−P

J̃
)Z̃ ∈ CK×K ,

W 6 = det(I2K + ~ZH ~P1
~Z)/ det(I2K + ~ZH ~P2

~Z) ∈ C1×1,

(36)

where ~P1 = ~M−1 − ~M−1J̇(J̇H ~M−1J̇)
−1

J̇H ~M−1 ∈ CN×N with ~M = [Ẏ Ẏ H +DN (Ẏ Ẏ H)
∗
DN ]/2 ∈

CN×N , ~P2 = ~M−1 − ~M−1Ḃ(ḂH ~M−1Ḃ)
−1

ḂH ~M−1 ∈ CN×N , ~Z = [ ~Ze, ~Zo] ∈ CN×2K with ~Ze =

(Ż +DN Ż∗)/2 ∈ CN×K and ~Zo=(Ż −DN Ż∗)/2 ∈ CN×K , P
B̃
=B̃(B̃HB̃)

−1
B̃H and P⊥

B̃
=IN −P

B̃
.

Table 2 lists the computational complexities for different detectors. Considering the constraint rela-
tionships of p + q < N and R > N , the P2S-Rao exhibits a smaller computational complexity than most
of the unstructured detectors (except 2S-Rao) and the structured P1S-GLRT.

Figure 11 compares the P2S-Rao with the unstructured subspace detectors and the P1S-GLRT for
different R values. The P2S-Rao outperforms the unstructured subspace detectors for different numbers
of training data, which indicates that leveraging the persymmetric structure of the clutter covariance
matrix can result in a distinct gain in the detection performance of P2S-Rao. Moreover, the proposed
P2S-Rao offers a higher probability of detection than the structured P1S-GLRT under the assumptions
of this paper.

In Figure 12, the Pds of P2S-Rao and the other above-mentioned detectors are plotted as a function
of Pfa in the small sample case. The P2S-Rao can effectively control the probability of false alarms. The
P2S-Rao can achieve the same probability of detection with a lower probability of false alarm than the
other detectors. For example, to achieve a probability of detection not smaller than 0.8, the probability
of a false alarm is approximately 10−3 for P2S-Rao; this value is significantly higher for other detectors.
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Figure 12 (Color online) Pd versus Pfa of different detectors

with Model 1 for N = 12, K = 15, R = 13, p = 4, q = 4,

Pfa = 10−3, ρ = 0.9, h0 = 3, ICR = 15 dB, SCR = 10 dB.

Figure 13 (Color online) Pd versus SCR′ of different detec-

tors with Model 1 for N = 12, K = 15, R = 13, p = 4, q = 4,

Pfa=10−3, ρ = 0.9, h0=3, ICR = 15 dB, cos2φ = 0.5.
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Figure 14 (Color online) Pd versus SCR′ of P2S-Rao and P1S-GLRT with Model 1 for N = 12, K = 15, R = 13, p = 4, q = 4,

Pfa=10−3, ρ = 0.9, h0 = 3, ICR = 15 dB, cos2φ = 1, 0.7, 0.5, 0.1.

In practical applications, owing to several factors such as wavefront distortions and array calibration
errors, the nominal signal subspace matrix Ḣ may deviate from the actual signal subspace matrix Ḧ.
The mismatch case is discussed herein. The mismatch angle φ can be defined as [22]

cos2φ =
|tr(ḦHṀ−1Ḣ)|2

tr(ḦHṀ−1Ḧ)tr(ḢHṀ−1Ḣ)
(37)

which is the squared cosine of the angle between the actual signal subspace Ḧ and the nominal value Ḣ

in the whitening space.

The signal-to-clutter ratio in the mismatched case can be expressed as

SCR′ = tr(PHḦHṀ−1ḦP )/K. (38)

Figure 13 shows the Pds of different detectors versus SCR′ for the typical value cos2φ = 0.5. All of
the detectors suffer performance penalties in the presence of a mismatch, but the P2S-Rao still outper-
forms the other detectors. Furthermore, different detectors are compared for different mismatch cases in
Figure 14. To avoid jampacking too many curves in the graph, we only select P1S-GLRT for comparison
because both P2S-Rao and P1S-GLRT almost outperform the other detectors (Figure 13). Particularly,
cos2φ = 1 indicates the matched case. The two detectors both suffer performance degradation with
increasing mismatch; nevertheless, the proposed P2S-Rao outperforms the P1S-GLRT in all cases.
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6 Conclusion

By leveraging the persymmetric structure of the clutter covariance matrix, this paper designs the P2S-
Rao for the adaptive detection of range-spread targets embedded in subspace interference plus unknown
Gaussian clutter. Theoretical analyses show that the proposed P2S-Rao possesses the CFAR property
with respect to the clutter covariance matrix and features less computational complexity than the consid-
ered competitors. The numerical results show that the P2S-Rao can effectively reject the interference and
outperform the unstructured subspace competitors in both matched and mismatched cases. Moreover,
the P2S-Rao outperforms the existing persymmetric P1S-GLRT.
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