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Abstract This paper focuses on the challenge of fixed-time control for spatiotemporal neural networks

(SNNs) with discontinuous activations and time-varying coefficients. A novel fixed-time convergence lemma

is proposed, which facilitates the handling of time-varying coefficients of SNNs and relaxes the restriction

on the non-positive definiteness of the derivative of the Lyapunov function. Besides, a more flexible and

economical aperiodically switching control technique is presented to stabilize SNNs within a fixed time,

effectively reducing the amount of information transmission and control costs. Under the newly established

fixed-time convergence lemma and aperiodically switching controller, many more general algebraic conditions

are deduced to ensure the fixed-time stabilization of SNNs. Numerical examples are provided to manifest

the validity of the results.
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1 Introduction

It is well established that the phenomenon of spatial diffusion is ubiquitous, such as chemical reac-
tions [1], disease transmission [2], and biological populations [3]. In fact, whether it is the transmission
of information between cells in biological neural networks (NNs), or the movement of electrons in non-
uniform electromagnetic fields in the implementation of circuits in artificial NNs, the phenomenon of
spatial diffusion also exists [4,5]. To quantitatively study the phenomenon of spatial diffusion, NNs with
reaction-diffusion terms, also known as spatiotemporal neural networks (SNNs), were suggested in [6],
showing that the evolution of the states of NNs depends on time variables and spatial variables. Nowa-
days, SNNs have slowly become a hot research topic, and have been widely applied to engineering fields,
for example, the shortest path solving, pattern recognition, and image processing [7,8]. Hence, the study
of SNNs has essential theoretical significance and application value.

Noteworthy, most existing research on SNNs focuses on systems with constant parameters and con-
tinuous activations [9–11]. Nevertheless, environmental mutations and external disturbances affect the
information transmission between neurons [12], that is, the diffusion coefficients and connection weights
of SNNs usually alter over time. Thence, it is important to establish a spatiotemporal system with
time-varying coefficients. Additionally, NNs with discontinuous activations frequently appear in practice
applications because of the switching of the electronic circuit and dry friction [13]. The dynamic behavior

*Corresponding author (email: wangleimin@cug.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-022-3633-9&domain=pdf&date_stamp=2023-4-7
https://doi.org/10.1007/s11432-022-3633-9
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-022-3633-9
https://doi.org/10.1007/s11432-022-3633-9


Hu X F, et al. Sci China Inf Sci May 2023 Vol. 66 152204:2

of NNs with discontinuous activations was studied for the first time in [14], by virtue of the differential
inclusion theory. After that, many researchers examined NNs with discontinuous activations. Compared
with NNs with continuous activations, NNs with discontinuous activations are more advantageous in
handling linear and nonlinear programming problems [15, 16]. Based on the above two aspects, time-
varying coefficients and discontinuous activations are incorporated into this paper to build more general
and practical SNNs.

Recently, the fixed-time stabilization (FXS) of SNNs has drawn much attention since it retains the ad-
vantages of strong robustness and anti-interference ability of finite-time stabilization, and the convergence
time is independent of the initial value [17–20]. To stabilize SNNs within a fixed time, many excellent
results have been reported [21–23]. A nonlinear controller was shown in [21] to guarantee the FXS of
the error states of SNNs without delays. In [22], an integral type controller was constructed to tackle
the challenge of fixed-time control for delayed SNNs. Different from the conventional feedback control
schemes in [21,22], an adaptive control algorithm was developed for SNNs in [23], which can automatically
adjust the feedback gains of the controller to adapt to dynamic alterations of the controlled system and
external environment.

Note that to achieve FXS of SNNs, the control schemes designed in [21–23] are all continuous. In
contrast to the continuous control method, the intermittent control strategy, as a discontinuous control
method, can effectively decrease the amount of information transmission and control costs. Presently,
the research related to the stabilization of SNNs via intermittent control methods mainly focuses on the
exponential and finite-time stabilization [24,25]. What they have in common is that the established Lya-
punov function V (t) satisfies ˙V (t) 6 λV (t) when the system is in the non-control phase, which indicates
that the state trajectory of the system may increase exponentially. However, existing analytical methods
cannot handle the increment of the Lyapunov function in the non-control phase to achieve stabilization
in a fixed time. That is, it is challenging to guarantee the FXS of SNNs via strictly intermittent control.
This motivates us to discuss the FXS of SNNs by utilizing a semi-intermittent control strategy.

Semi-intermittent control is actually a switching control, which is divided into a strong control phase
and a weak control phase. In [26], a periodically semi-intermittent control technique was established
to realize FXS. In [27], the requirement of a fixed control period and width was eliminated, and an
aperiodically semi-intermittent control scheme was suggested to attain FXS. However, the theoretical
results based on semi-intermittent control acquired in [26, 27] are only appropriate for systems with
constant coefficients, and they all restrict the derivative of the Lyapunov function to be non-positive.
This fact inspires two major issues to be considered in this paper. One is how to explore a novel fixed-
time convergence method based on semi-intermittent control to deal with the time-varying parameters
of SNNs. The other is whether the constraint on the derivative of the Lyapunov function can be further
relaxed so that it can be non-negative.

Driven by the above discussions, this paper focuses on the FXS of SNNs with discontinuous activations
and time-varying coefficients via aperiodically switching control. The innovations are summarized below.

• A novel fixed-time convergence lemma is demonstrated. It has two major advantages: one is that
it facilitates the treatment of the time-varying coefficients of SNNs. The other is that the derivative of
the Lyapunov function can be non-negative at some moments. Moreover, the newly proposed lemma
contains some existing results [26–30] as special cases.

• A more general aperiodically switching control approach is proposed. The approach only needs to
stabilize SNNs within a fixed time during the strong control phase. When the controller is in the weak
control phase, SNNs are only required to achieve Lyapunov stability. Compared to the control strategies
shown in [22, 31–35], the designed controller is more flexible and economical.

• Time-varying parameters and discontinuous activations are integrated into the SNNs, which is a
generalization of existing SNNs. Several new algebraic criteria are deduced to ensure the FXS of SNNs.
The obtained results can be generalized and applied to [36–39].

Notations. R+ and Z+ represent the sets of non-negative real numbers and integers, respectively. Rn

stands for n-dimensional Euclidean space. Let F[ϕι](̟ι) =
⋂
℘>0

⋂
µ(Υ)>0 co[ϕι(B(̟ι, ℘)\Υ)], where

B(̟ι, ℘) = {y ∈ R : |y − ̟ι| 6 ℘}, co[Ω] denotes the closure of the convex hull of Ω, and µ(Υ) is the

Lebesgue measure of Υ. Besides, ‖̟(t, ·)‖ =
(∫

Ξ

∑n
i=1 |̟i(t, υ)|̺dυ

) 1
̺ , where Ξ = {(υ1, υ2, . . . , υm)T||υj|

6 νj , j = 1, 2, . . . ,m} is the bounded compact set with smooth boundary ∂Ξ and measure mesΞ > 0.
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2 Problem formulation and preliminaries

Consider SNNs with discontinuous activations and time-varying coefficients as follows:

∂̟i(t, υ)

∂t
=

m∑

j=1

∂

∂υj

(
aij(t)

∂̟i(t, υ)

∂υj

)
− bi(t)̟i(t, υ)

+

n∑

ι=1

ciι(t)ϕι(̟ι(t, υ)) +

n∑

ι=1

diι(t)ϕι(̟ι(t− τι(t), υ)), (1)

where i = 1, 2, . . . , n. ̟i(t, υ) denotes the state of SNNs at t and υ ∈ Ξ. aij(t) and bi(t) are the diffusion
and self-feedback coefficients, respectively. ciι(t) and diι(t) represent the connection weights. τι(t) is the
bounded delay and meets τι(t) ∈ [0, τ ]. ϕι(·) stands for the activation function with ϕι(0) = 0, and meets
the assumptions as follows.

(A1) The function ϕι(·) is continuous apart from a countable set of isolate points {ριr}, where the
right and left limits ϕ+

ι (ρ
ι
r) and ϕ

−
ι (ρ

ι
r) exist. Besides, in every compact subinterval of R, ϕι(·) has finite

discontinuous points.
(A2) For any ̟ι, there exist constants ζι, ξι > 0, such that sup |φι| 6 ζι|̟ι|+ξι, where φι ∈ F[ϕι](̟ι).
Because of the discontinuity of the activation function ϕι(·), the solution of system (1) should be

defined in the Filippov sense [40]. By virtue of the differential inclusion theory and measurable selection
theorem [41], there exists φι(̟ι) ∈ F[ϕι](̟ι) satisfying

∂̟i(t, υ)

∂t
=

m∑

j=1

∂

∂υj

(
aij(t)

∂̟i(t, υ)

∂υj

)
− bi(t)̟i(t, υ)

+

n∑

ι=1

ciι(t)φι(̟ι(t, υ)) +

n∑

ι=1

diι(t)φι(̟ι(t− τι(t), υ)). (2)

The initial and Dirichlet boundary values of SNNs are ̟i(θ, υ) = ℑi(θ, υ), (θ, υ) ∈ [−τ, 0) × Ξ and
̟i(t, υ) = 0, (t, υ) ∈ [−τ,+∞)× ∂Ξ, respectively.

Remark 1. For general NNs, the dynamic behavior depends only on the time variable. Strictly speaking,
the diffusion phenomenon is inevitable when electrons move in a non-uniform electromagnetic field. Thus,
considering NNs with reaction-diffusion terms can show the influence of the diffusion phenomenon on
the dynamic behavior of NNs. Moreover, in contrast to the NNs with reaction-diffusion terms studied
in [35–39], the proposed model has two major improvements. One is that the activation functions are
discontinuous. In fact, neuron activations at high gains approximate discontinuous functions, and NNs
with discontinuous activations have essential applications in engineering practice [13, 16]. The other is
that the coefficients of SNNs are time-varying. Since different interference factors exist in practice, the
coefficients of the system are not constant. Consequently, it is more general and practical to incorporate
discontinuous activations and time-varying parameters to construct SNNs. It is worth highlighting that
because of the discontinuity of the activation functions, the classical theory of differential equations does
not apply, and the Lipschitz condition, in the usual sense, no longer holds. Thus, the mathematical
complexity induced by the simultaneous presence of discontinuous activations and the Laplace operator
in the system brings certain challenges to the theoretical analysis of this study.

Then, many definitions and lemmas are presented.

Definition 1. System (1) is fixed-time stabilizable if for an appropriate controller, there exists a settling
time (ST) T independent of the initial value ℑi(θ, υ) such that limt→T |̟i(t, υ)| = 0 and ̟i(t, υ) = 0,
∀t > T .

Definition 2. A continuous function K : R+ → R+ belongs to K∞, if K is strictly monotonically
increasing with K(0) = 0 and limψ→+∞ K(ψ) = +∞.

Lemma 1 ([42]). Let H (x) be a continuous function defined on a bounded compact set Ω = {x =
(x1, x2, . . . , xm)T

∣∣|xj | 6 νj , j = 1, 2, . . . ,m} with smooth boundary ∂Ω and mesΩ > 0 and satisfying

H (x)
∣∣
∂Ω

= 0. Then for ̺ > 2,

∫

Ω

|H (x)|̺dx 6
̺2ν2j
4

∫

Ω

|H (x)|̺−2

∣∣∣∣
∂H

∂xj

∣∣∣∣
2

dx. (3)
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Lemma 2. Let V (t, ψ(t)) : R+ ×Rn → R+ be a non-negative continuous function, and there exist K1,
K2 ∈ K∞, such that K1(‖ψ‖) 6 V (t, ψ(t)) 6 K2(‖ψ‖). For convenience, the abbreviation V (t) denotes
V (t, ψ(t)). Besides, the derivative of V (t) along the trajectories of system (2) satisfies

˙V (t) 6

{
I(t)V (t)−N (t)V p(t)−W(t)V q(t), ts 6 t < σs,

0, σs 6 t < ts+1,
(4)

where ts > 0, σs > 0, s ∈ Z+, 0 < p < 1, q > 1. N (t), W(t), and I(t) are continuous functions, and

N (t) > 0, W(t) > 0. Let I+(t) = max{I(t), 0}. If
∫ +∞

t0
I+(ς)dς < +∞, and there exist N > 0, W > 0,

for any t′, t′′ such that
∫ t′′
t′

N (ς)dς > N (t′′ − t′) and
∫ t′′
t′

W(ς)dς > W(t′′ − t′), then V (t) = 0 when

t > T2 = ts∗ +
1

NE1(1− χ)(1 − p)
, (5)

where s∗=min{s ∈ Z+ : ts > T1= t0 +
1

WE2(1−χ)(q−1)
}, χ=lim sups→∞

ts+1−σs

ts+1−ts
, E1=e

−(1−p)
∫

+∞

t0
I+(ς)dς

,

and E2 = e
(1−q)

∫
+∞

t0
I+(ς)dς

.
Proof. The proof process is divided into the following steps.

Step 1. The solution of (2) is Lyapunov stable.
Since N (t) > 0 and W(t) > 0, one has

˙V (t) 6 I(t)V (t) 6 I+(t)V (t), ∀t ∈ R+. (6)

Multiplying both sides of (6) by V −1(t) and integrating from t0 to t, one deduces

V (t) 6 V (t0)e
∫

t

t0
I+(ς)dς

6 K2(‖ψ(t0)‖)e
∫

+∞

t0
I+(ς)dς

. (7)

By virtue of V (t) > K1(‖ψ‖),

‖ψ(t)‖ 6 K−1
1

(
K2(‖ψ(t0)‖)e

∫
+∞

t0
I+(ς)dς

)
. (8)

For any ǫ̃ > 0, we select δ̃ = K−1
2 (K1(ǫ̃)e

−
∫

+∞

t0
I+(ς)dς

). Then, it can be deduced from (8) that
‖ψ(t)‖ < ǫ̃ holds for any initial state ‖ψ(t0)‖ < δ̃. That is, the solution of (2) is Lyapunov stable.

Step 2. When t > T1, V (t) 6 1 holds.
From (4), it is easy to obtain

˙V (t) 6

{
I+(t)V (t)−W(t)V q(t), ts 6 t < σs,

0, σs 6 t < ts+1.
(9)

Multiplying both sides of (9) by V −q(t)e
−(1−q)

∫
t

t0
I+(ς)dς

, we have

Q̇1(t) 6

{
−W(t)e

−(1−q)
∫

t

t0
I+(ς)dς

, ts 6 t < σs,

0, σs 6 t < ts+1,
(10)

where Q1(t) = V 1−q(t)e
−(1−q)

∫
t

t0
I+(ς)dς

/(1− q).
When ts 6 t < σs,

Q1(t)−Q1(t0) 6−
s−1∑

ı=0

∫ σı

tı

W(ς)e
−(1−q)

∫
ς

t0
I+(~)d~

dς −

∫ t

ts

W(ς)e
−(1−q)

∫
ς

t0
I+(~)d~

dς

6−
s−1∑

ı=0

∫ σı

tı

W(ς)dς −

∫ t

ts

W(ς)dς

6−W

[
s−1∑

ı=0

(σı − tı) + t− ts

]
. (11)
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Based on the definition of χ, one deduces

s−1∑

ı=0

(σı − tı) + t− ts = t− t0 −
s−1∑

ı=0

(tı+1 − σı) > t− t0 − χ

s−1∑

ı=0

(tı+1 − tı) > (1− χ) (t− t0) . (12)

On the other hand,

Q1(t)−Q1(t0) =
V 1−q(t)e

−(1−q)
∫

t

t0
I+(ς)dς

− V 1−q(t0)

1− q
>

V 1−q(t)

E2(1− q)
. (13)

Substituting (12) and (13) into (11) yields

V 1−q(t)

E2(1− q)
6 −W (1− χ) (t− t0) . (14)

If t > T1, then

V 1−q(t)

E2(1 − q)
6

1

E2(1− q)
. (15)

Note that q > 1. Thence, V (t) 6 1 holds if t > T1.
When σs 6 t < ts+1, it can be acquired from (10) that

Q1(t)−Q1(t0) 6−
s∑

ı=0

∫ σı

tı

W(ς)e
−(1−q)

∫
ς

t0
I+(~)d~

dς 6 −W
s∑

ı=0

(σı − tı) . (16)

Moreover,

s∑

ı=0

(σı − tı) = ts+1 − t0 −
s∑

ı=0

(tı+1 − σı) > ts+1 − t0 − χ

s∑

ı=0

(tı+1 − tı) > (1− χ) (t− t0) . (17)

Similar to (13)–(15), V (t) 6 1 holds if t > T1.
Step 3. When t > T2, V (t) = 0 holds.
From (4), it can be obtained that

˙V (t) 6

{
I+(t)V (t)−N (t)V p(t), ts 6 t < σs,

0, σs 6 t < ts+1.
(18)

Multiplying V −p(t)e
−(1−p)

∫
t

t0
I+(ς)dς

on both sides of (18), one deduces

Q̇2(t) 6

{
−N (t)e

−(1−p)
∫

t

t0
I+(ς)dς

, ts 6 t < σs,

0, σs 6 t < ts+1,
(19)

where Q2(t) = V 1−p(t)e
−(1−p)

∫
t

t0
I+(ς)dς

/(1− p).
When ts 6 t < σs, the proof is divided into two cases.
Case I. t < T1 < σ,  < s, and  ∈ Z+.
From (19), it yields

Q2(t)−Q2(T1) 6−

∫ σ

T1

N (ς)e
−(1−p)

∫
ς

t0
I+(~)d~

dς −
s−1∑

ı=+1

∫ σı

tı

N (ς)e
−(1−p)

∫
ς

t0
I+(~)d~

dς

−

∫ t

ts

N (ς)e
−(1−p)

∫
ς

t0
I+(~)d~

dς

6− E1N

[
σ − T1 +

s−1∑

ı=+1

(σı − tı) + t− ts

]
. (20)
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Besides,

σ − T1 +

s−1∑

ı=+1

(σı − tı) + t− ts > t− t+1 − χ

s−1∑

ı=+1

(tı+1 − tı) > (1− χ)(t− t+1). (21)

Therefore,

Q2(t) 6 Q2(T1)− E1N (1− χ)(t− t+1). (22)

That is

V
1−p(t) 6

[1− E1N (1− χ)(1− p)(t− t+1)]

e
−(1−p)

∫
t

t0
I+(ς)dς

. (23)

Obviously, V (t) = 0 holds if t > t+1 +
1

NE1(1−χ)(1−p)
. From the definition of s∗, one gets s∗ = + 1.

That is, V (t) = 0 holds if t > T2.
Case II. σ 6 T1 6 t+1,  < s, and  ∈ Z+.
Take the integral from T1 to t on both sides of (19). Then

Q2(t)−Q2(T1) 6 −E1N

[
s−1∑

ı=+1

(σı − tı) + t− ts

]
6 −E1N (1− χ)(t− t+1). (24)

Similar to (22) and (23), V (t) = 0 holds if t > T2.
When σs 6 t < ts+1, it can be proved in two cases.
Case I. t < T1 < σ,  < s, and  ∈ Z+.
It can be deduced from (19) that

Q2(t)−Q2(T1) 6 −E1N

[
σ − T1 +

s∑

ı=+1

(σı − tı)

]
6 −E1N (1− χ)(t− t+1). (25)

Similar to (22) and (23), V (t) = 0 holds if t > T2.
Case II. σ 6 T1 6 t+1,  < s, and  ∈ Z+.
Take the integral from T1 to t on both sides of (19). Then

Q2(t)−Q2(T1) 6 −E1N
s∑

ı=+1

(σı − tı) 6 −E1N (1 − χ)(t− t+1). (26)

Similar to (22) and (23), V (t) = 0 holds if t > T2.
From the proof above, it is obvious that when t > T2, V (t) = 0 is true.

Remark 2. To implement FXS utilizing the aperiodically switching control method, the novel fixed-time
convergence Lemma 2 is established. In the interval [ts, σs), ˙V (t) 6 I(t)V (t)−N (t)V p(t)−W(t)V q(t)
holds, where I(t)V (t) is to guarantee that system (2) achieves Lyapunov stability, −W(t)V q(t) is to make
the states of system (2) converge to one in a fixed time T1, and −N (t)V p(t) is to further assure that the
states of system (2) converge to zero within a fixed time T2. In the interval [σs, ts+1), ˙V (t) 6 0 holds,
which means that it is only necessary to guarantee that system (2) is Lyapunov stable when t ∈ [σs, ts+1).

Remark 3. Recently, a generalized Lyapunov method was proposed in [30] to achieve FXS. It should be
noted that the form of the fixed-time convergence lemma proposed in [30] implies that the control input
needs to be activated continuously. Compared with the continuous control method, the discontinuous
control method is more economical and practical and can reduce the amount of information transmission.
To further reduce the control cost, fixed-time convergence methods based on discontinuous control have
drawn wide attention. However, the results presented in [26, 27] require the derivative of the Lyapunov
function to be non-positive, and restrict the parameters of the fixed-time convergence lemma to be
constant, which is unconducive to dealing with SNNs with time-varying coefficients. Based on the above
considerations, this paper develops a novel fixed-time convergence lemma based on aperiodically switching
control.
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Remark 4. Notably, in the newly proposed fixed-time convergence lemma, I(t), N (t), and W(t) are
all time-varying, which is beneficial to dealing with the time-varying coefficients of system (1). Moreover,
Lemma 2 does not restrict I(t) to be negative definite. That is, ˙V (t) can be non-negative at certain times.
Consequently, Lemma 2 relaxes the requirement for V (t) to be monotonically decreasing in the fixed-
time convergence lemmas in [26, 27]. It is worth pointing out that if I(t) = 0, N (t) = α, and W(t) = β,
Lemma 2 degenerates into Lemma 5 in [27], and Lemma 4 in [26] if further ts = sT and σs = (s + θ)T
with T > 0, 0 < θ < 1. Besides, if we further set W(t) = 0, Lemma 2 can be transformed into the
finite-time convergence lemmas based on the switching control in [28, 29]. In summary, the fixed-time
convergence lemma demonstrated in this paper incorporates and generalizes the work in [26–29].

Remark 5. On the other hand, the novel fixed-time convergence lemma can be reduced to Theorem 3
in [30] if σs = ts+1, and to Theorem 1 in [30] if furtherW(t) = 0. Thence, the novel fixed-time convergence
lemma is also suitable for the analysis of fixed-time and finite-time stabilization based on the continuous
feedback control scheme. Whereas, it should be highlighted that the constraints on I(t), N (t), and W(t)
in Lemma 2 are still relatively harsh. How to further relax the constraints of time-varying coefficients in
the fixed-time convergence lemma is a valuable and challenging problem, which will be considered deeply
in subsequent studies.

3 Main results

This section proposes a novel aperiodically switching control scheme and discusses the FXS of SNNs.

To stabilize system (1), the aperiodically switching controller is given as follows:

Vi(t, υ) =





V
♮
i(t, υ), ‖̟(t, ·)‖ 6= 0,

0, ‖̟(t, ·)‖ = 0,

}
ts 6 t < σs,

V
♯
i(t, υ), σs 6 t < ts+1,

(27)

where

V
♮
i(t, υ) =

(
̺−1I(t) − �i(t))̟i(t, υ)− �i(t)sign(̟i(t, υ))−

n∑

ι=1

Æiι(t)sign(̟i(t, υ))|̟ι(t− τι(t), υ)|

−
N (t)̟i(t, υ)

̺‖̟(t, ·)‖̺(1−p)
−

W(t)̟i(t, υ)

̺‖̟(t, ·)‖̺(1−q)
,

V
♯
i(t, υ) =− �i(t)̟i(t, υ)− �i(t)sign(̟i(t, υ))−

n∑

ι=1

Æiι(t)sign(̟i(t, υ))|̟ι(t− τι(t), υ)|,

with i = 1, 2, . . . , n, s ∈ Z+, 0 < p < 1, q > 1, ̺ > 2, I(t), N (t), and W(t) are the same as defined well
in Lemma 2, and the parameters �i(t), �i(t) and Æiι(t) are to be designed.

Remark 6. Actually, controller (27) is an aperiodically switching control scheme. When controller (27)
is in the strong control phase t ∈ [ts, σs), the state trajectories of the controlled system converge to zero
within a fixed time. When controller (27) is in the weak control phase t ∈ [σs, ts+1), the controlled system

achieves Lyapunov stability. In general, controller V♮
i(t, υ) has three more feedback control parameters

I(t), N (t), and W(t) than controller V
♯
i(t, υ). That is, the form of the controller in the weak control

phase is more concise than that in the strong control phase.

Remark 7. In contrast to the continuous control scheme with constant control strength, the con-
troller (27) can effectively reduce control costs. Compared with the periodically switching control, the
controller (27) does not need to transmit the feedback information of the controlled system periodically,
and it has a wider application range. Moreover, the controller (27) degenerates into the control scheme
with constant control strength if σs = ts+1. If the control widths of the strong and weak control phases
are constant, the controller (27) becomes the periodically switching control. Consequently, the presented
control strategy is more general.

Theorem 1. Letting (A1) and (A2) hold, system (1) can realize FXS if there exist positive real numbers
γℓ, λℓ meeting

∑̺
ℓ=1 γℓ =

∑̺
ℓ=1 λℓ = 1, ̺ > 2, and the parameters of controller (27) satisfy i� 6 0,
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� = 1, 2, 3, where

i1 = ζi|cii(t)| − bi(t)− �i(t)− m∑

j=1

4(̺− 1)aij(t)

̺2ν2j
+

1

̺

n∑

ι 6=i,ι=1

(
̺−1∑

ℓ=1

ζ̺γℓι |ciι(t)|
̺λℓ + ζ

̺γ̺
i |cιi(t)|

̺λ̺

)
,

(28)

i2 =− �i(t) + n∑

ι=1

ξι (|diι(t)|+ |ciι(t)|) , (29)

i3 =−
n∑

ι=1

(Æiι(t)− ζι|diι(t)|) . (30)

Moreover, the ST is estimated as T † = ts∗ +
1

NE1(1−χ)(1−p)
, s∗ = min{s ∈ Z+ : ts > t0 +

1
WE2(1−χ)(q−1)

}.

Proof. Choose the Lyapunov function below:

V (t) =
n∑

i=1

∫

Ξ

|̟i(t, υ)|
̺dυ. (31)

When ts 6 t < σs and ‖̟(t, ·)‖ 6= 0, the control input V
♮
i(t, υ) is activated. Based on the chain

rule [43], one has

˙V (t) =

n∑

i=1

∫

Ξ

̺|̟i(t, υ)|
̺−2̟i(t, υ)

∂̟i(t, υ)

∂t
dυ

6

n∑

i=1

∫

Ξ

[
− ̺ (bi(t) + �i(t)) |̟i(t, υ)|

̺ + ̺|̟i(t, υ)|
̺−2̟i(t, υ)

m∑

j=1

∂

∂υj

(
aij(t)

∂̟i(t, υ)

∂υj

)

+

n∑

ι=1

̺|diι(t)||̟i(t, υ)|
̺−1 (ζι|̟ι(t− τι(t), υ)|+ ξι) +

n∑

ι=1

̺|ciι(t)||̟i(t, υ)|
̺−1 (ζι|̟ι(t, υ)|+ ξι)

−
n∑

ι=1

̺Æiι(t)|̟i(t, υ)|
̺−1|̟ι(t− τι(t), υ)| − ̺�i(t)|̟i(t, υ)|

̺−1 + I(t)|̟i(t, υ)|
̺

]
dυ

−N (t)‖̟(t, ·)‖̺p −W(t)‖̟(t, ·)‖̺q. (32)

By virtue of Lemma 1, one derives

∫

Ξ

̺|̟i(t, υ)|
̺−2̟i(t, υ)

m∑

j=1

∂

∂υj

(
aij(t)

∂̟i(t, υ)

∂υj

)
dυ

= −̺(̺− 1)

m∑

j=1

aij(t)

∫

Ξ

|̟i(t, υ)|
̺−2

(
∂̟i(t, υ)

∂υj

)2

dυ

6 −
m∑

j=1

4(̺− 1)aij(t)

̺ν2j

∫

Ξ

|̟i(t, υ)|
̺dυ. (33)

From the generalization of Young’s inequality, that is,
∏̺
ℓ=1 Xℓ 6

∑̺
ℓ=1

X
εℓ
ℓ

εℓ
, where Xℓ > 0, εℓ > 1,

and
∑̺

ℓ=1
1
εℓ

= 1, one deduces

n∑

i=1

n∑

ι=1

̺|ciι(t)||̟i(t, υ)|
̺−1ζι|̟ι(t, υ)|

=

n∑

i=1

n∑

ι 6=i,ι=1

̺ζι|ciι(t)||̟i(t, υ)|
̺−1|̟ι(t, υ)|+

n∑

i=1

̺ζi|cii(t)||̟i(t, υ)|
̺

6

n∑

i=1

n∑

ι 6=i,ι=1

(
̺−1∑

ℓ=1

ζ̺γℓι |ciι(t)|
̺λℓ |̟i(t, υ)|

̺ + ζ̺γ̺ι |ciι(t)|
̺λ̺ |̟ι(t, υ)|

̺

)
+

n∑

i=1

̺ζi|cii(t)||̟i(t, υ)|
̺
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=

n∑

i=1

n∑

ι 6=i,ι=1

(
̺−1∑

ℓ=1

ζ̺γℓι |ciι(t)|
̺λℓ + ζ

̺γ̺
i |cιi(t)|

̺λ̺

)
|̟i(t, υ)|

̺ +

n∑

i=1

̺ζi|cii(t)||̟i(t, υ)|
̺, (34)

where the positive real numbers γℓ, λℓ meet
∑̺
ℓ=1 γℓ =

∑̺
ℓ=1 λℓ = 1.

Substituting (33) and (34) into (36) gets

˙V (t) 6

n∑

i=1

∫

Ξ

̺

[
i1|̟i(t, υ)|

̺ + i2|̟i(t, υ)|
̺−1 + i3|̟i(t, υ)|

̺−1|̟ι(t− τι(t), υ)|

]
dυ

+ I(t)V (t)−N (t)V p(t)−W(t)V q(t)

6 I(t)V (t)−N (t)V p(t)−W(t)V q(t). (35)

Moreover, when σs 6 t < ts+1, the control input V♯
i(t, υ) is activated. Similarly, we can obtain

V̇ (t) 6

n∑

i=1

∫

Ξ

̺

[
i1|̟i(t, υ)|

̺ + i2|̟i(t, υ)|
̺−1 + i3|̟i(t, υ)|

̺−1|̟ι(t− τι(t), υ)|

]
dυ 6 0. (36)

According to Lemma 2, it can be concluded that V (t) = 0 if t > T †. Thence, system (1) realizes FXS
via control strategy (27).

Remark 8. Based on the proposed aperiodically switching control and fixed-time convergence lemma,
the conditions to ensure the FXS of SNNs are given in Theorem 1. Note that the classical fixed-time
convergence lemma was employed in [22, 31, 32] to discuss the problem of fixed-time control for SNNs.
That is, if ˙V (t) 6 −NV p(t) − WV q(t) with N , W > 0 holds for t ∈ [t0,+∞), and then V (t) = 0
if t > 1

N (1−p) + 1
W(q−1) . Evidently, if I(t) = 0, N (t) = N , W(t) = W , and σs = ts+1 in control

scheme (27), the deduced results can be extended for [22,31,32]. Furthermore, the problem of finite-time
control for SNNs was investigated in [33, 34] by utilizing the classical finite-time convergence lemma.
Namely, if ˙V (t) 6 −NV p(t) with N > 0, then the state trajectories of SNNs can converge to zero

within the finite time T = V
1−p(t0)

N (1−p) . In fact, if W(t) = 0 in Lemma 2, inequality (23) can be altered to

V 1−p(t) 6 e
(1−p)

∫
t

t0
I+(ς)dς

[V 1−p(t0)−E1N (1−χ)(1−p)(t− t0)], and then V (t) = 0 if t > V
1−p(t0)

E1N (1−χ)(1−p)
.

Consequently, if I(t) = W(t) = 0, N (t) = N , and σs = ts+1 in controller (27), the theoretical results
presented in this paper are applicable to [33, 34]. Generally, the control method and the FXS conditions
proposed in this paper are more flexible and universal.

Obviously, if the effect of spatial diffusion is ignored, system (1) simplifies to NNs with discontinuous
activations as follows:

˙̟ i(t) =− bi(t)̟i(t) +

n∑

ι=1

ciι(t)ϕι(̟ι(t)) +

n∑

ι=1

diι(t)ϕι(̟ι(t− τι(t))). (37)

Furthermore, controller (27) becomes the following control scheme:

V̂i(t) =

{
V̂
♮
i(t), ts 6 t < σs,

V̂
♯
i(t), σs 6 t < ts+1,

(38)

where

V̂
♮
i(t) = (I(t) − �i(t))̟i(t)− �i(t)sign(̟i(t)) −

n∑

ι=1

Æiι(t)sign(̟i(t))|̟ι(t− τι(t))|

− (N (t)|̟i(t)|
p +W(t)|̟i(t)|

q) sign(̟i(t)),

V̂
♯
i(t) =− �i(t)̟i(t)− �i(t)sign(̟i(t)) −

n∑

ι=1

Æiι(t)sign(̟i(t))|̟ι(t− τι(t))|.

Similar to the proof of Theorem 1, we derive Corollary 1 to ensure the FXS of system (37).
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Corollary 1. Letting (A1) and (A2) hold, system (37) can achieve FXS if the control parameters of
controller (38) satisfy k� 6 0, � = 1, 2, 3, where

k1 =− bi(t)− �i(t) + n∑

ι=1

ζι|ciι(t)|, (39)

k2 =− �i(t) + n∑

ι=1

ξι (|diι(t)|+ |ciι(t)|) , (40)

k3 =−
n∑

ι=1

(Æiι(t)− ζι|diι(t)|) . (41)

Remark 9. In [30], the FXS of system (37) was investigated. If σs = ts+1, then aperiodically switching
control strategy (38) degenerates to the controller designed in [30]. Therefore, the presented method
includes the one in [30] as a special case. Noteworthy, the controller proposed in [30] is always in the

strong control phase, that is, for any t ∈ [t0,+∞), V̂i(t) = V̂
♮
i(t). Compared with [30], the presented

aperiodically switching control scheme has lower control costs.

Remark 10. In [27], an adaptive aperiodically switching strategy was presented to explore the fixed-
time control for memristive NNs with discontinuous activations. Indeed, the obtained results still hold
when the time-varying coefficients in system (37) are switching memristive coefficients. Thus, when
I(t) = 0 and appropriate adaptive control parameters are chosen, the FXS criterion obtained in this
paper can be applied to [27].

4 Numerical simulations

This section presents several simulations to display the validity of the designed controller and the deduced
criteria.

Example 1. Consider the following spatiotemporal system:

∂̟i(t, υ)

∂t
=
∂

∂υ

(
ai(t)

∂̟i(t, υ)

∂υ

)
− bi(t)̟i(t, υ)

+

2∑

ι=1

ciι(t)ϕι(̟ι(t, υ)) +

2∑

ι=1

diι(t)ϕι(̟ι(t− τι(t), υ)), (42)

where i = 1, 2, υ ∈ Ξ = [−5, 5], a1(t) = a2(t) = 0.1| sin(t)|, b1(t) = 0.5| sin(t)|, b2(t) = 0.5| cos(t)|, c11(t) =
2 sin(t), c22(t) = −0.3 cos(t), c12(t) = c21(t) = −1, d11(t) = −2, d12(t) = 0.1 sin(t), d21(t) = −1.2 cos(t),

d22(t) = −1.5, τι(t) =
et

1+et , and ϕι(̟) is selected to be tanh(̟). Apparently, ϕι(̟) satisfies (A1) and
(A2) with ζι = 1 and ξι = 0. Figure 1 depicts the spatiotemporal evolutions of system (42) with initial
values ̟1(θ, υ) = −0.6, ̟2(θ, υ) = 0.5, (θ, υ) ∈ [−1, 0)× Ξ. From Figure 1, it is easy to see that system
(42) is unstable.

To achieve the FXS of system (42), we design the controller (27) with the following control parameters:�1(t) = 2.5| sin(t)| + 3, �2(t) = 0.8| cos(t)| + 2, �1(t) = �2(t) = 0, Æ11(t) = 2, Æ22(t) = 1.5, Æ12(t) =
0.1| sin(t)|, Æ21(t) = 1.2| cos(t)|, I(t) = 1

1+t2 , N (t) = W(t) = 1, ̺ = 2, p = 1
2 , q = 2, ts = 4s,

σs = 4(s+0.7), s ∈ Z+. It is easy to calculate that the above parameters satisfy Theorem 1 with χ = 0.3,
N = W = 1, E1 = e−

π

4 , E2 = e−
π

2 . The spatiotemporal evolutions of system (42) with control are shown
in Figure 2, which confirms that system (42) achieves FXS with the ST T † = 14.8721.

Remark 11. From the simulation results of Example 1, it can be seen that the designed switching
controller can guarantee the realization of FXS of SNNs, and the ST of SNNs is estimated. Nevertheless,
only asymptotic or exponential stability of SNNs can be achieved in [12, 36–38]. Additionally, compared
with the studies on the finite-time or fixed-time stability of SNNs in [31–34], the results in this paper can
be reduced to finite-time stability, and the conditions imposed on the fixed-time convergence lemma are
relaxed. Accordingly, this paper extends the related results in [12,31–34,36–38] on the stability of SNNs.

Example 2. Consider the following system:

˙̟ i(t) =− bi̟i(t) +
2∑

ι=1

ciιϕι(̟ι(t)) +
2∑

ι=1

diιϕι(̟ι(t− τι(t))), (43)
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Figure 1 (Color online) Spatiotemporal evolutions of system

(42).

Figure 2 (Color online) Spatiotemporal evolutions of system

(42) with control.

where i = 1, 2, b1 = b2 = 1, c11 = 2, c12 = −0.1, c21 = −5, c22 = 3, d11 = −1.5, d12 = −0.1, d21 = −0.2,
d22 = −2.5. τι(t) =

et

1+et , and

ϕι(x) =

{
tanh(x) + 0.02, x > 0,

tanh(x) − 0.01, x < 0.

Apparently, ϕ(x) meets (A1) and (A2) with ζι = 1 and ξι = 0.03. The evolution processes of system
(43) with initial values ̟1(θ) = −0.2, ̟2(θ) = 0.5, θ ∈ [−1, 0) are depicted in Figures 3 and 4, which
illustrates that system (43) is unstable.

To stabilize system (43), the parameters of controller (38) are chosen as ts = s, σs = s+0.8, I(t) = 0,�1(t) = 2, �2(t) = 3, �1(t) = 3, �2(t) = 4, Æ11(t) = 2, Æ12(t) = 0.5, Æ21(t) = 0.5, Æ22(t) = 4, N (t) =
W(t) = 1, p = 1

2 , and q = 2. Based on simple calculations, it can be confirmed that the conditions in

Corollary 1 hold with χ = 0.2, N = W = 1, E1 = E2 = 1. That is, system (43) via controller (38) can
achieve FXS. To intuitively illustrate the effectiveness of the theoretical results, the state trajectories
of system (43) via controller (38) with 30 sets of random initial values in [−1, 1] and [−100, 100] are
described in Figures 5 and 6, respectively. From Figures 5 and 6, the state trajectories of system (43)
via controller (38) can converge to zero within T † = 4.25.

Remark 12. In [28, 29], the finite-time stabilization of NNs via switching control was investigated,
which means that the ST is influenced by the initial value of the system. However, the initial values of
several practical systems may be obtained inaccurately or known in advance. Different from [28,29], the
FXS results of NNs are obtained in this paper. As can be seen from Figures 5 and 6, the states of the
system can converge to the origin within a fixed time under the randomly set initial value, which further
indicates that the ST of FXS is independent of the initial value.

Remark 13. First, numerical examples are provided only to confirm the feasibility and effectiveness
of the obtained theoretical results. Moreover, time-varying coefficients, discontinuous activations, and
reaction-diffusion terms are simultaneously incorporated into NNs in this paper. It is worth highlighting
that system (1) degenerates to SNNs in [12] if the activation functions are continuous. If the time-varying
coefficients are all constants, system (1) becomes SNNs in [36, 37], and SNNs in [38] if the time delay
is further ignored. Besides, system (1) can be transformed to NNs in [13, 30] if the reaction-diffusion
terms are neglected. Thence, the system considered in this paper is more general and includes the
models in [12,13,30,36–38] as special cases. That is, the theoretical results derived in this paper are also
applicable to the numerical examples in [12, 13, 30, 36–38].

Remark 14. Note that the ST calculated in Example 1 is almost 15 s. However, as can be easily seen
from Figure 2, the states of system (42) converge to the origin in less than 10 s. That is, the actual
convergence time is less than the ST estimated in this paper. The same problem also exists in Figures 5
and 6. This reflects two facts. One is that under the designed aperiodically switching control scheme, the
system can converge to the origin within a fixed time, which verifies the feasibility of the method proposed
in this paper. The other is that the estimation of ST in this paper is conservative to some extent. In fact,
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Figure 3 (Color online) Phase plot of system (43). Figure 4 (Color online) State trajectories of system (43).
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Figure 5 (Color online) State trajectories of system (43) with

30 sets of random initial values in [−1, 1] via control.

Figure 6 (Color online) State trajectories of system (43) with

30 sets of random initial values in [−100, 100] via control.

the conservatism produced by estimating the ST mainly comes from the treatment of the derivative of the
non-negative continuous function V (t) in the fixed-time convergence lemma. To facilitate the estimation
of ST, this paper scales the derivative of the non-negative continuous function satisfying inequality (4).
Thence, developing a new method to avoid the conservatism induced by inequality scaling to further
increase the accuracy of the estimation of ST is an essential issue [44, 45], which will be a part of our
future work.

5 Conclusion

In this paper, the FXS of SNNs with discontinuous activations and time-varying coefficients has been
investigated. To handle the time-varying coefficients of SNNs, a novel fixed-time convergence lemma
has been proved, which contains some existing results as special cases. To stabilize SNNs within a fixed
time, a more economical aperiodically switching controller has been designed. By means of the fixed-time
convergence technique via aperiodically switching control, several more universal conditions have been
deduced to ensure the FXS of SNNs. The feasibility of the established method has been illustrated by
numerical simulations.

It is worth noting that the control strategy proposed in this paper is semi-intermittent, which means
that a part of the control input requires to be activated constantly. How to design a strictly intermittent
control scheme to achieve FXS of SNNs remains a challenging and open problem. In future work, we will
focus on developing a method for FXS based on strictly intermittent control. In addition, the criteria for
FXS in this paper are established for SNNs. A natural question is whether the derived theoretical results
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are still applicable to other general systems, which will be deeply considered in our future research work.
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