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Abstract This study investigates the consensus control issue in discrete-time linear multi-agent systems

(MASs) using data-driven control under undirected communication networks. To alleviate the communica-

tion burden, an adaptive event-triggered control strategy involving only local information is proposed and a

model-based stability condition is derived that guarantees the asymptotic consensus of MASs. Furthermore,

a data-based consensus condition for unknown MASs is established by combining a data-based system rep-

resentation with the model-based stability condition, using only pre-collected noisy input-state data instead

of the accurate system information a priori. Specifically, both model-based and data-driven event-triggered

controllers can be utilized without requiring any global information. The validity and correctness of the

controllers and associated theoretical results are demonstrated via numerical simulations.
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1 Introduction

Along with the rapid technological advancement in distributed and networked systems, cooperative con-
trol of multi-agent systems (MASs), specifically consensus control, has received considerable attention in
the past two decades [1–7]. Moreover, it is well known that communication between agents plays a crucial
role in consensus control. Traditional consensus control strategies require communications at all times for
continuous-time MASs or all iterations for discrete-time MASs. However, the energy and communication
constraints caused by the limited power source and communication bandwidth of a single agent cannot
be ignored in cyber-physical systems [8, 9], which consequently shorten the lifespan of the system to a
certain degree and cause several issues, including time-varying delays and packet dropouts [10]. These
concerns have prompted the study of a viable distributed control strategy for MASs that ensures satis-
factory control performance of MASs while conserving limited energy and communication resources. An
event-triggering mechanism (ETM) refers to transmitting some information or updating the controller
only when a certain event is triggered. On the other hand, event-triggered control (ETC) employs a
well-designed ETM to determine whether a data sampling or transmission is due, where the data can
be the state, output information, or control signal. Since the seminal contribution [11], ETC has been
studied a lot in the context of networked systems and MASs. This is mostly because it saves commu-
nication resources and extends the service time of systems in comparison to traditional time-triggered
approaches. In the past decade, exciting progress has been made on event-triggered consensus control of
both continuous-time [12, 13] and discrete-time [14–16] MASs.

Even though the ETC schemes proposed in the aforementioned results [12–16] rely only on the local
information of each agent and its neighbors, they are not fully distributed. This is because there is still
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a need for global information about the communication network, e.g., the eigenvalues of the Laplacian
matrix or the total number of agents. This requirement may not be easily accessed, particularly for
large-scale MASs, which makes it challenging to apply those ETC schemes. To circumvent the need for
global information, many efforts have been devoted to designing adaptive ETMs containing time-varying
coupling weights, such as state consensus of homogeneous MASs in [17], cooperative output regulation
of heterogeneous MASs in [18], and state estimation of large-scale systems subject to deception attacks
in [19]. Note that only ultimate boundedness is achieved in [17] and that Refs. [17–19] addressed the fully
distributed event-triggered consensus problem of continuous-time MASs. Such results are still lacking for
discrete-time MASs, even though an adaptive control strategy has been constructed in [20] to address
the fully distributed consensus control problem of discrete-time MASs. However, communication between
agents is needed at each discrete time in [20], resulting in the inevitable waste of communication resources
and bandwidth. Therefore, it is important to develop a fully distributed event-triggered protocol for
discrete-time linear MASs.

On the other hand, the aforementioned results [12–20] fall within the framework of model-based control,
which assumes explicit knowledge of system models. In engineering systems of interest, it is rare to
obtain an accurate system model. Conversely, measured trajectories of a system can be acquired more
easily. Thus, one may estimate a model via system identification methods, such as [21], and subsequently
perform control tasks. Recently, data-driven methods have garnered much attention due to the potential
benefit of avoiding the high computing resources required for system identification [22]. The objective
of data-driven methods is to design a control law directly from measured data (e.g., input, state, and/or
output data) without resorting to an intermediate procedure, such as identifying the system model [23].
One of the basic concerns connected to distributed control of unknown systems is to establish a data-
based system representation. Various research results on data-driven control of single systems have been
reported to date, such as optimal control [24], aperiodic sampling control [25], robust control [26,27], self-
triggered control [28], optimal switching control [29], and robust iterative learning control [30]. In [31],
data-driven output synchronization of MASs was addressed; however, Ref. [31] assumed that noise can
be directly measured and continuous communications are required at all iterations. Thus, to the best of
our knowledge, fully distributed event-triggered consensus control of discrete-time MASs with unknown
dynamics has not yet been thoroughly investigated.

This study proposes a model-based and data-driven consensus controller for discrete-time event-
triggered MASs under undirected graphs. The difficulty lies in how to construct a data-based stability
condition using only data. To achieve this objective, we first study a distributed adaptive ETC strategy
and establish a model-based stability condition that ensures the asymptotic consensus of MASs. A suffi-
cient condition is provided to guarantee that events are not triggered during each iteration. Generalizing
the data-driven representation in [27] for single systems, a data-based stability condition is reproduced
from the model-based condition for MASs. Using this data-based condition, we design the controller and
the triggering matrix based on noisy input and state data.

To sum up, the main contributions of this study are epitomized as follows:

(1) An adaptive event-triggered strategy is designed to obtain fully distributed control of discrete-time
MASs, which guarantees asymptotic consensus without requiring global information.

(2) Based on a data-based representation for single systems, the model-based controller is realized
using data collected offline and locally, along with a data-based asymptotic consensus guarantee.

(3) Leveraging the data-based condition, we offer a method for computing the distributed feedback
controller and the triggering matrix from noisy input-state data.

The remainder of this study is outlined in the following. In Section 2, the communication topology is
introduced together with the formulation of the consensus problem. A fully distributed ETC strategy is
presented in Section 3, along with a model-based stability condition. Section 4 describes a data-driven
approach for addressing the consensus problem of unknown event-triggered MASs. Section 5 simulates
the proposed control schemes and validates the theoretical results. Finally, Section 6 concludes the study.

Notation. Let N (R) denote the set of all nonnegative integers (real numbers), and IN = {1, 2, . . . , N}.
Symbols 0N and 1N mean the N×1 column vector of all zeros and ones, respectively. Let N[a,b] := N∩[a, b]
for [a, b] ∈ N. For a symmetric matrix P , P ≻ 0 shows that P is positive definite and λmax(P ) (λmin(P ))
shows the maximum (minimum) eigenvalues of P . Symbols (·)T and ⊗ represent the transpose for
matrices and the Kronecker product, respectively.
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Figure 1 (Color online) Distributed model-based ETC for agent i.

2 Preliminaries and problem formulation

Consider a network with N nodes described by a graph G = (V , E ,A), where V = {v1, . . . , vN} is the
nonempty node set, E ∈ (V × V) is the edge set, and A = [aij ] ∈ R

N×N denotes the weighted adjacency
matrix. The edge (vi, vj) ∈ E indicates that the node vj can receive information from the node vi. The
adjacency matrix A is defined such that aii = 0, aij > 0 if (vj , vi) ∈ E , and aij = 0 otherwise. The

Laplacian matrix L = [lij ] ∈ R
N×N of G is defined as lii =

∑N
j=1 aij , lij = −aij with i 6= j. Let

Ni = {j ∈ V|(i, j) ∈ E} denote the neighbor set of node i.

Consider a discrete-time MAS consisting of N identical agents, indexed by 1, 2, . . . , N , interacting via
a communication network described by the topology G. The dynamics of the ith agent is described by

xi(t+ 1) = Axi(t) +Bui(t), t ∈ N, (1)

where xi(t) ∈ R
n is the agent state, ui(t) ∈ R

p is the control input, and A ∈ R
n×n and B ∈ R

n×p are
system matrices.

In this study, the objective is to design fully distributed event-triggered consensus control schemes for
discrete-time MASs such that the states of all agents achieve consensus; that is, limt→∞ ‖xi(t)−xj(t)‖ =
0, ∀ i, j = 1, 2, . . . , N . For this purpose, we need the following assumptions and lemmas with regard to
the MAS (1) and its communication topology.

Assumption 1 (System model). The matrix pair (A,B) in (1) is stabilizable.

Assumption 2 (Communication topology). The graph G is undirected and connected.

Lemma 1 ([32]). For a connected and undirected graph G, zero is a simple eigenvalue of the Laplacian
matrix L of G with the corresponding right eigenvector being 1N , i.e., L1N = 0. The general algebraic

connectivity of G associated with L is defined by λ2(L) := min1T
N
x=0

xTLx
xTx .

Lemma 2 ([33]). Given any x, y ∈ R
N , Young’s inequality states that for any scalar φ > 0, xTy 6

xTx
2φ + φyTy

2 .

3 Distributed event-triggered consensus control: the model-based case

In this section, a distributed adaptive ETC consensus strategy, composed of an ETC protocol and an
ETM, is proposed to deal with the consensus problem for discrete-time MAS (1). Under this strategy,
a model-based stability condition is established on the premise of an explicit MAS model, which is the
essential preparation for deriving our data-driven control scheme as well. Inspired by [10], such a model-
based ETC configuration for an MAS is shown in Figure 1.
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3.1 Fully distributed ETC strategy

Reflecting the adaptive control law for continuous-time MASs in [17], here we develop an adaptive event-
triggered discrete-time controller for each agent in (1) as follows:

ui(t) = K

N∑

j=1

cij(t)aij (x̄i(t)− x̄j(t)) ,

cij(t+ 1) = cij(t) + σijaij (x̄i(t)− x̄j(t))
T
Φ (x̄i(t)− x̄j(t)) ,

(2)

where aij is the ijth entry of the adjacency matrix A, σij = σji > 0; cij(t) denotes the coupling gain for
the edge (vi, vj), which has the features of adaptively tuning and cij(0) = cji(0) are positive constants.
K ∈ R

p×n and Φ ∈ R
n×n are feedback gain matrices determined later. x̄i(t) is the last broadcast state of

agent i and more specifically it is given by x̄i(t) = xi(t
i
k), ∀t ∈ N[ti

k
,ti

k+1−1] with tik being the kth (k ∈ N)

triggering time of agent i.
To introduce our ETM, let ei(t) := x̄i(t)− xi(t) for t ∈ N[ti

k
,ti

k+1
−1] denote the measurement error. We

assume without loss of generality that the first triggering time ti1 = 0, and subsequent triggering times
{tik}

∞
k=2 for agent i are computed as follows:

tik+1 = inf
t>ti

k

{t | fi(t) > 0}, (3)

where the triggering function is given by

fi(t) =

N∑

j=1

(1 + ϕcij(t)) aije
T
i (t)Φei(t)− θe−µt −

1

8

N∑

j=1

aij (x̄i(t)− x̄j(t))
T
Φ (x̄i(t)− x̄j(t)) , (4)

and ϕ, θ, and µ are positive constants to be determined. Obviously, the triggering mechanism (3) is
checked to determine whether an event is triggered. Once an event is triggered, agent i updates its
controller (2) and broadcasts its state to its neighbors. Meanwhile, ei(t) is reset to zero. It is intuitive
that an agent communicates only when ei(t) is sufficiently large.

Remark 1. Note that the distributed adaptive ETC strategy, relying on local information of each agent
and from its neighbors, is designed and implemented in a fully distributed fashion. In other words, the
adaptively tuning gain cij(t) in (2) and (3) based on sampled information circumvents the need for global
information λ2(L), which is often required in existing studies, e.g., [12–16].

Remark 2. Note that the term e−µt in (4) is a discrete-time function for t ∈ N[ti
k
,ti

k+1−1]. Besides, the

positivity or negativity of µ affects the convergence of MASs. If µ < 0, θe−µt is exponentially increasing,
which makes it difficult for the triggering error in (4) to exceed the threshold. That is, fi(t) > 0 may not
be satisfied, resulting in no event being triggered. Thus, the consensus of MASs is difficult to be achieved
due to the lack of communication between agents. If µ = 0, constant θ is included in (4) such that only
bounded consensus rather than asymptotic consensus can be reached, which resembles the result in [34].
Only when µ > 0, θe−µt exponentially decreases to zero. It contributes to limiting the increase of ei(t)
effectively by the threshold, thereby ensuring fast convergence of ei(t) to zero.

Then, we define δi(t) := xi(t)−
∑N

j=1 xj(t)/N as a disagreement vector for each agent. In light of (1)
and (2), the dynamics of δi(t) satisfies

δi(t+ 1) = Aδi(t) +BK
N∑

j=1

cij(t)aij(x̄i(t)− x̄j(t)). (5)

Let δ(t) = [δT1 (t), δ
T
2 (t), . . . , δ

T
N (t)]T and x(t) = [xT

1 (t), x
T
2 (t), . . . , x

T
N (t)]T. It can be obtained that

δ(t) = (M ⊗ In)x(t) with M = IN − (1/N)1N1T
N . First, considering that if x1(t) = x2(t) = · · · = xN (t),

one has xi(t) = 1
N

∑N
j=1 xj(t) for i = 1, 2, . . . , N , which implies δi(t) = 0. Additionally, if δi(t) = 0

holds for i = 1, 2, . . . , N , i.e., δ(t) = 0, we have that (LM ⊗ In)x(t) = 0 through multiplying L by both
sides of (M ⊗ In)x(t) = 0. It follows from Lemma 1 that ML = LM = L. Thus, it can be deduced
that (L ⊗ In)x(t) = 0, which implies x1(t) = x2(t) = · · · = xN (t) [35]. Consequently, we conclude that
x1(t) = x2(t) = · · · = xN (t) if and only if δi(t) = 0 for all i = 1, 2, . . . , N . In other words, if each agent’s
disagreement vectors converge to zero asymptotically, the MAS achieves the state asymptotic consensus.
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3.2 Model-based consensus analysis

In this part, we develop a model-based stability condition that guarantees state asymptotic consensus of
the MAS (1) under the adaptive ETC strategy. In the sequel, the explicit dependence of symbols on t
will be omitted if there is no confusion.

Before proceeding, a fact is provided, which will play a vital role in the subsequent consensus analysis.

Lemma 3 ([36]). Under Assumption 1, the following discrete-time Riccati-like equation admits a unique
positive-definite solution P ≻ 0:

ATPA− P −ATPB(BTPB)−1BPA+Q = 0 (6)

for some prescribed matrix Q ≻ 0.

Theorem 1. Consider the MAS (1) and the ETC protocol (2)–(4) under the graph G. Suppose Assump-

tions 1 and 2 hold. Let the feedback gain matrices K and Φ be given by K := −
(
BTPB

)−1
BTPA and

Φ := ATPB
(
BTPB

)−1
BTPA, respectively. For any positive constants σij , ϕ, θ, and µ, the consensus

of the MAS has reached asymptotically for any initial states, and all cij(t) converge to some positive
constants.
Proof. See Appendix A.

Proposition 1. For the discrete-time MAS (1) under the ETC protocol (2)–(4), the event is not
triggered at each sampling moment if the following function

t−1∑

s=ti
k

‖At−s−1‖
(
ζi + c̄ηi

)
=

√

θe−µt

lii‖Φ‖(1 + ϕc̄)
(7)

has a solution t∗ satisfying t∗−tik > 1 for all triggering instants tik ∈ N, i = 1, 2, . . . , N , where c̄, ζi, and ηi
denote the upper bounds of cij(t), ‖IN −A‖‖xi(t

i
k)‖, and

∑N
j=1 aij‖BK‖‖xi(t

i
k)− xj(t

j
kj
)‖, respectively.

Proof. See Appendix B.

Remark 3 (Comparison with [17]). Difference between our model-based control strategy in (2)–(3) and
that of [17] lies in two aspects. First, considering that in digital systems, data can only be transmitted
at discrete time instants, our control strategy is designed for discrete-time MASs, which calls for a
novel Lyapunov function and stability analysis. Moreover, the asymptotic consensus of MASs, instead of
ultimate boundedness in [17], is achieved under the proposed control scheme. Finally, the model-based
stability condition established for the proposed control strategy lays a theoretical foundation for our
subsequent data-driven stability analysis and controller design in Section 4.

4 Distributed event-triggered consensus control: the data-driven case

This section advocates a data-driven approach to solving the consensus problem of unknown MASs (1)
under the fully distributed ETC strategy (2)–(4). To this aim, we begin by reproducing a data-based
stability condition from the model-based stability condition in Theorem 1, by developing a data-based
representation for the MAS (1). Then, we design feedback gain matrices K and Φ leveraging the data-
based stability condition. By this means, the novel data-driven consensus control scheme capitalizes
purely on data rather than system matrix pair (A, B). See Figure 2 for a pictorial depiction of the
distributed data-driven ETC configuration for an MAS.

4.1 Data-based system representation

In this subsection, let us briefly review the data-based system representation in [27]. Before proceeding,
we make the following assumption about the system.

Assumption 3 (Unknown system model). The system matrix pair (A,B) in (1) is unknown. Instead,
some input-state data of each agent are locally available.

Suppose that state data {xi(T )}
ρ
T=0 and control input data {ui(T )}

ρ−1
T=0 are measured over the time

interval T ∈ {0, 1, . . . , ρ} from the following disturbed system:

xi(T + 1) = Axi(T ) +Bui(T ) + Ewi(T ), (8)
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Figure 2 (Color online) Distributed data-driven ETC for agent i.

where wi(T ) ∈ R
n stands for the unknown disturbances or unmodeled dynamics and E ∈ R

n×n is a
known matrix modeling the effect of perturbations on the MAS. It is notable that the collected data are
corrupted by the unknown perturbation sequence {wi(T )}

ρ−1
T=0. For subsequent analysis, data collected

for agent i are stacked up as follows to form matrices:

Xi+ := [x(1) x(2) · · · x(ρ)] , Ui := [u(1) u(2) · · · u(ρ− 1)] ,

Xi := [x(1) x(2) · · · x(ρ− 1)] , Wi := [w(1) w(2) · · · w(ρ − 1)] .

Further, the collected data and the true system matrix pair (A,B) of the ith agent are related through

Xi+ = AXi +BUi + EWi. (9)

It is worth emphasizing that the system matrix pair (A,B) as well as the noise term Wi is unknown,
while Xi+, Xi, and Ui are measured. To facilitate our analysis, the following assumption is used to model
the additive noise, which has also appeared in several existing studies, e.g., [24, 25, 27, 28].

Assumption 4 (Additive noise). The noise matrix Wi satisfies

[

WT
i

I

]T [

Qd Sd

∗ Rd

][

WT
i

I

]

� 0, (10)

where Qd = QT
d ≺ 0, Rd = RT

d , and Sd are of suitable dimensions.

In general, the system with matrices (A,B) in (8) may not be the only system that can interpret
the data (Xi+, Xi, Ui,Wi) in (9). Put differently, there could be many system matrices (A,B) that can
generate the data (Xi+, Xi, Ui,Wi). Therefore, we define the set of system matrices (A,B) that can
explain the data (Xi+, Xi, Ui,Wi) as follows:

Σi := {[A B] | Xi+ = AXi +BUi + EWi} . (11)

Inspired by [27], the set Σi of all systems interpreting the data can be equivalently represented in the
form of a quadratic matrix inequality by substituting (10) into (11), as asserted by the following lemma.

Lemma 4 (Data-based system representation). The set Σi is identical to

Σi =

{

[A B] ∈ R
n×(n+p)

∣
∣
∣

[

[A B]T

I

]T

Θi

[

[A B]T

I

]

� 0

}

, (12)

where

Θi :=







−Xi 0

−Ui 0

Xi+ E







[

Qd Sd

∗ Rd

]







−Xi 0

−Ui 0

Xi+ E







T

.
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Indeed, the data-based system representation in Lemma 4 provides a way to design stabilizing con-
trollers using a finite number of measured data Xi+, Xi, and Ui without explicit use of parametric
models of the system. It is key to tackling the consensus problem for the unknown MAS (1). Different
from [25, 27, 28] dealing with a single system, Lemma 4 can be used to characterize all agents in the
network based solely on local data of each agent. This further motivates a fully distributed data-driven
consensus controller design for MASs along with a data-based ETM, which occupies Subsection 4.2.

4.2 Data-driven consensus analysis

In this subsection, a distributed data-based ETC strategy is designed for unknown MAS (1) using pre-
collected noisy data. It can be seen from Section 2 that the distributed controller and ETM are designed
under the premise of the explicit system model. However, when the system matrices are unknown, there
are two challenges. (c1) How to design a consensus controller as well as ETM using the pre-collected noisy
data and the proposed data-based system representation in Lemma 4? (c2) How to develop theoretical
consensus guarantees for the resulting data-based event-triggered MAS? To address these challenges, we
put forward a data-based stability condition by incorporating the data-based representation with the
model-based stability condition. Subsequently, a data-driven method for computing the feedback gain
matrices K and Φ is given. The implementation of our ETM is presented in Subsection 3.1. Now, our
proposed distributed data-driven ETC is summarized in Algorithm 1 with consensus analysis provided
below.

Algorithm 1 Distributed data-driven event-triggered consensus control

1: Input: initial state xi(0) ∈ R
n; adaptive weights cij(0) = cji(0) > 0, parameters of the triggering function σij > 0, ϕ > 0, θ >

0, and µ > 0; matrices of the noise model (10) Qd = QT
d < 0, Sd = ST

d , and Rd; input-state data {xi(T )}ρ
T=0 and {ui(T )}ρ−1

T=0

with ρ > 1, for i, j ∈ IN ;

2: Construct data-based matrices Θi for all i ∈ IN using (12);

3: Compute feedback gain matrices K and Φ via Theorem 2;

4: for i = 1, 2, . . . , N do

5: if fi(t) > 0 then

6: Reset ei(t) = 0, update x̄i(t) with xi(t), and broadcast xi(t) to agent j ∈ Ni;

7: else

8: Update fi(t) in term of (4);

9: end if

10: if xj(t) is received from agent j then

11: Update the control protocol (2);

12: end if

13: Compute the control protocol (2);

14: Update the dynamics of the ith agent (1);

15: end for

Theorem 2. Consider the MAS (1) and the ETC strategy (2)–(4) under the graph G. Suppose As-
sumptions 1–4 hold. Choose any positive constants σij , ϕ, θ, and µ. For all [A B] ∈ Σi, if there exist
matrices Y = Y T ≻ 0, H = HT ≻ 0, Z = ZT, and L, and a scalar β > 0 satisfying (13), the feedback
gain matrices are computed as K := LY −1 and Φ := H−1 − Y −1. Then, the consensus of the MAS (1)
is reached asymptotically for any initial states and all cij(t) converge to some positive constants.

M − βΘi � 0, N − βΘi � 0,

[

Z I

I Y

]

� 0, (13)

where

M :=







−Y −LT 0

−L −LZLT 0

0 0 Y






, N :=







−H 0 0

0 0 0

0 0 Y






.

Proof. According to the Lyapunov function (A2), it can be intuitively deduced that by choosing the
state feedback matrices as K = −(BTPB)−1BPA and Φ = ATPB(BTPB)−1BPA with P ≻ 0 being
the solution of (6), the MAS (1) reaches consensus. Then, by completing the square of (6), one obtains
ATPA− P +Q−ATPB(BTPB)−1BPA = (A+BK)TP (A+BK)− P +Q = 0, which implies

P − (A+BK)TP (A+BK) = Q ≻ 0. (14)
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Further, we turn our attention to reconstructing the condition (14) in the form of a quadratic matrix
inequality. By a Schur complement argument, the inequality (14) is equivalent to







AT

BT

I







T 





−P−1 −P−1KT 0

−KP−1 −KP−1KT 0

0 0 P−1













AT

BT

I






≻ 0. (15)

Let Y := P−1, L := KY , and Z := P . We rewrite (15) by a standard change of variables as follows:

[

[A B]T

I

]T







−Y −LT 0

−L −LZLT 0

0 0 Y







︸ ︷︷ ︸

:=M

[

[A B]T

I

]

≻ 0. (16)

Recall the data-based system representation in (12). Leveraging matrix S-lemma in [27], it can be
obtained that there exists a scalar β > 0 such that

M − βΘi � 0,

[

Z I

I Y

]

� 0. (17)

As such, we are in a position to obtain the feedback gain K = LY −1 by solving the linear matrix
inequality (17). In the same way, we can also calculate the gain matrix Φ in controller (2) and triggering
function (4) only from data. In line with Φ satisfying P +Φ−ATPA = Q ≻ 0, we can rewrite it by using
a Schur complement argument:

[

H AT

A P−1

]

≻ 0, (18)

where H := (Z +Φ)−1. Now, Eq. (18) holds if and only if H ≻ 0 and Y −AHAT ≻ 0 are satisfied. Note
that the former inequality is satisfied undoubtedly and independent of matrices (A,B). We represent the
latter inequality as

[

[A B]T

I

]T







−H 0 0

0 0 0

0 0 Y







︸ ︷︷ ︸

:=N

[

[A B]T

I

]

≻ 0.

Considering the data-based representation (12) and matrix S-lemma again, we arrive at N − βΘi � 0.
To sum up, if there exists a constant β > 0 such that the above inequality and Eq. (17) hold for any

matrix pair [A B] ∈ Σi, then distributed stabilizing controller gain matrices K and Φ can be obtained
based on measurement data from the perturbed system (8). Moreover, the forward difference △V (t) in
(A8) is guaranteed to be negative. Therefore, reminiscent of the proof of Theorem 1, it can be drawn
that the MAS (1) achieves state consensus asymptotically even with unknown A and B, thus completing
the proof.

Remark 4. It is intuitive that only input-state data are needed in Theorem 2. Both the adaptive
control protocol (2) and the event-triggering law (3) are represented purely using data instead of the
system matrices (A,B). Besides, they can be derived and implemented in a fully distributed manner,
relying on no global information, e.g., the network topology or scale.

Remark 5. Some comments on Theorem 2 relative to existing results are worth making.
(1) Except for [31], existing studies on data-driven control have been devoted to the stability problem

of a single system [23–30]. Theorem 2 addresses the distributed data-driven consensus control problem
of MASs under adaptive event-triggering communications. This is made possible by developing a model-
based consensus controller and an ETM (refer to Theorem 1), which permits an agent-wise data-based
representation in Lemma 4.

(2) As far as consensus control of MASs is concerned, the difference between our data-driven control
scheme and that of [31] lies in two aspects. First, an ETM is contained in our data-driven scheme, which
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can save communication resources by reducing the frequencies of updates and transmissions. Further, the
noise is assumed unknown in this study, while Ref. [31] considered known noise and thus less practical
situations.

(3) Theorem 2 features scalability on top of the data-based implementation. Actually, the proposed
data-driven approach is applicable to more complex cases of communication time-delays, parameter
uncertainties, or arbitrary switching graphs with a positive dwell time. It is straightforward to prove
this assertion by integrating a model-based stability condition [37, 38] with the same data-based system
representation as (12) in Lemma 4.

Remark 6. The proposed data-driven approach offers a simpler path toward solving the event-triggered
consensus control problem of unknown dynamical MASs. Specifically speaking, we design control laws
and triggering matrices directly from a finite set of noisy data. Among existing investigations, the only
alternative is to first perform system identification followed by model-based control. However, it is
generally difficult to provide a stability guarantee for closed-loop systems under such an identification-
based control scheme, especially when the system dimension is large (e.g., n > 4) [39], and/or the data
are disturbed and limited. Indeed, the proposed approach guarantees the stability and performance of
the unknown system despite the inherent uncertainty caused by disturbance. Comparative tests of the
proposed data-driven method and the identification-based one can be found in Section 5.

5 Numerical examples

In this section, we demonstrate the model-based and data-driven theoretical results by examples and
numerical simulations, respectively.

Consider a two-mass-spring system consisting of two masses sliding freely on a frictionless surface [40]
(see Figure 3), where m1 and m2 are two masses, and k1 and k2 are the stiffness of two springs. The
force u(t) ∈ R applied to m1 controls the whole system. Let x(t) = [y1(t), ẏ1(t), y2(t), ẏ2(t)]

T, where
y1(t) and ẏ1(t) denote the displacement and velocity of mass m1, respectively; y2(t) and ẏ2(t) denote the
displacement and velocity of mass m2, respectively. The two-mass-spring system is modeled by

ẋ(t) =









0 1 0 0

−k1+k2

m1
0 k2

m1
0

0 0 0 1
k2

m2
0 − k2

m2
0









x(t) +









0
1
m1

0

0









u(t), (19)

where m1 = m2 = 0.75 kg and k1 = k2 = 2 N/m. Consider an MAS consisting of six two-mass-spring
systems described above, treating as agent i, i = 1, 2, . . . , 6. Note that the continuous-time linear MAS
(19) in a periodic sampled-data setting can be transformed into a discrete-time system equivalently.
Setting the sampling interval as h = 0.1, Eq. (19) can be represented as a discrete-time MAS (1) with

A =









0.9735 0.0991 0.0132 0.0004

−0.5274 0.9735 0.2631 0.0132

0.0132 0.0004 0.9867 0.0996

0.2631 0.0132 −0.2643 0.9867









, B =









0.0066

0.1321

0

0.0006









.

The communication graph among these six agents is depicted in Figure 4. It is easy to check that
Assumptions 1–2 hold. Consequently, the control objective translates into making the displacements
y1i(t) and y2i(t), i = 1, 2, . . . , 6 reach asymptotic consensus, respectively.
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Figure 3 Two-mass-spring system. Figure 4 Communication topology G between agents.

5.1 Model-based setting

In this subsection, we consider the system matrices A and B are known. By Theorem 1, the feedback
gain matrices in the model-based ETC protocol (2)–(3) are obtained as

K =
[
− 3.1108 − 2.1122 1.6866 − 0.6273

]
, Φ =









32.6720 −10.5955 −13.4874 5.7447

−10.5955 3.4361 4.3739 −1.8630

−13.4874 4.3739 5.5678 −2.3715

5.7447 −1.8630 −2.3715 1.0101









.

Then, the parameters are selected as ϕ = 1, µ = 0.5, θ = 2, and σij = 0.2, where ∀ (i, j) ∈ E . Besides,
the initial states for the agents xi(0) and adaptive gains cij(0) are selected randomly from the interval
(0, 1) and (0, 2) for all i, j = 1, 2, . . . , 6, respectively.

The simulation results are depicted in Figure 5. The trajectories of the displacements for two masses,
i.e., y1i(t) and y2i(t), i = 1, 2, . . . , 6, are shown in Figure 5(a). Obviously, the consensus of y1i(t) and
y2i(t) is achieved asymptotically. Figure 5(b) depicts the evolution of the adaptive coupling gains cij(t)
in (2). It can be seen that all cij(t) finally converge to some positive constants.

5.2 Data-driven setting

We evaluate the proposed data-driven consensus controller, where the matrices A and B are assumed
unknown now. Setting ρ = 80, the measurements {xi(T )}

ρ
T=0 and {ui(T )}

ρ−1
T=0 for each agent can be

collected according to (8), where the data-generating inputs are randomly chosen on the interval ui(T ) ∈
[−1, 1] with the matrix E = 0.01I. Next, the noise samples wi(T ) are bounded in the form of wi(T ) ∈
[−w̄, w̄]2 for all t ∈ N. As interpreted in Assumption 4, we can capture this prior knowledge using the
noise model (10) with Qd = −I, Sd = 0, and Rd = w̄2ρI (w̄ = 0.001). By solving the data-based linear
matrix inequalities in Theorem 2, the feedback gain matrices in (2) and (4) are designed as

K =
[
0.3580 − 7.1880 − 1.1496 − 1.8863

]
, Φ =









36.1132 −28.2432 3.2236 −2.6877

−28.2432 30.5832 −0.4806 1.1350

3.2236 −0.4806 18.7429 −0.0012

−2.6877 1.1350 −0.0012 16.9758









.

The simulation results are presented in Figure 6 for Algorithm 1. It is obvious that the consensus
of the MAS is achieved under the matrices K and Φ found purely from the measured data, validating
the correctness of the data-driven design. In addition, the adaptive coupling gains cij(t) all converge to
positive steady-state values. By comparing the plots in Figure 5 with those in Figure 6, it can be seen
that when choosing the same parameters and initial values, the trajectories from the model-based and
data-driven systems evolve similarly, which demonstrates the effectiveness of our data-driven controller.

5.3 Compared with the system-identification-based method

In this subsection, comparative studies between the proposed data-driven method and the system-
identification-based one are performed with the same lack of accurate system models. Leveraging the
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Figure 5 (Color online) Trajectories under the model-based controller. (a) States of the MAS; (b) coupling weights cij(t).
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Figure 6 (Color online) Trajectories under the data-driven controller. (a) States of the MAS; (b) coupling weights cij(t).

pre-collected input data {xi(T )}
ρ
T=0 and state data {ui(T )}

ρ−1
T=0 (ρ = 80) in Subsection 5.2, we esti-

mate the discrete-time state-space model through numerical algorithms for subspace state-space system
identification (N4SID) [41]. Then, the system matrices with As and Bs are given by

As =









0.5239 −1.5698 −1.3276 0.6924

1.5939 0.0182 1.0938 −0.1405

1.5504 −0.9113 0.5236 −0.7535

−1.8750 0.3793 1.8127 −0.0179









, Bs =









0.4439

−0.0254

−0.3287

0.0471









.

Further, the controller gain and triggering matrices are computed by our model-based consensus method
(refer to Theorem 1) as follows:

K =
[
− 1.4948 − 0.5074 0.4491 0.0172

]
, Φ =









0.5111 1.5487 1.3576 −1.0427

1.5487 4.6927 4.1137 −3.1595

1.3576 4.1137 3.6061 −2.7696

−1.0427 −3.1595 −2.7696 2.1272









.

Based on Figures 6 and 7, the comparison between the proposed data-driven approach and the system-
identification-based alternative is addressed, focusing on the convergence speed and communication effi-
ciency. First, the steady-state instant determined by our data-driven approach (t = 15 s) is approximately
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half of that determined by the system-identification-based one (t = 30 s). It indicates that our data-
driven approach exhibits a faster convergence speed. Second, to make a quantitative comparison of
communication efficiency, we count the numbers of triggering events over the whole MAS within 30 s for
all approaches, and report them in Figure 8. A maximum of 116 (Agent 3 in the system identification
case) out of 300 samples are required, which showcases the effectiveness of the proposed ETM. Addi-
tionally, compared with the proposed data-driven approach, the system-identification-based approach
requires more frequent communication between agents to achieve consensus. This is mainly because as
the system dimension grows larger, the system-identification-based approach tends to overfit the noise in
the data [39], especially when the amount of available data is limited, and results in poor performance. In
words, when facing a large system dimension as well as limited and noisy data, the proposed data-driven
method is superior to the system-identification-based one in terms of stability and system performance.
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6 Conclusion

In this study, the consensus problem for discrete-time linear MASs under undirected graphs is addressed.
Initially, a model-based adaptive control law and an asynchronous ETM were proposed, both of which
were fully distributed and independent of global information. To address the consensus of unknown
MASs, a data-driven approach for computing the controller gain and triggering matrices directly from
data was developed. It was demonstrated that the proposed model-based and data-driven consensus
controllers achieve asymptotic stability under standard conditions through intermittent communications.
The efficiency and merits of the controllers were corroborated by numerical examples. Generalizing the
results to heterogeneous MASs and self-triggered MASs constitutes interesting directions for future study.
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Appendix A Proof of Theorem 1

Proof. Consider the following candidate Lyapunov function:

V (t) =

N
∑

i=1

δTi Pδi +

N
∑

i=1

N
∑

j=1,j 6=i

αcij

4σij

, (A1)

where α is a positive constant to be defined later and P ≻ 0 is the unique solution of (6). Evidently, V (t) is positive definite. The

forward difference △V (t) := V (t + 1) − V (t) along the trajectory of (5) yields that

△V (t) =

N
∑

i=1

δ
T
i (A

T
PA − P )δi + 2

N
∑

i=1

δ
T
i A

T
PBK

N
∑

j=1

cijaij(x̄i − x̄j) +





N
∑

i=1

N
∑

j=1

cijaij(x̄i − x̄j)





T

K
T
B

T
(A2)

× PBK
N
∑

i=1

N
∑

j=1

cijaij(x̄i − x̄j) +
N
∑

i=1

N
∑

j=1,j 6=i

1

4
αaij(x̄i − x̄j)

TΦ(x̄i − x̄j).

In what follows, each term in (17) will be analyzed.

Owing to cij(t) = cji(t) and aij = aji, the second term of (A2) can be handled as

2

N
∑

i=1

δTi ATPBK

N
∑

j=1

cijaij(x̄i − x̄j) = −
N
∑

i=1

N
∑

j=1

cijaij(x̄i − x̄j)
TΦ(x̄i − x̄j) +

N
∑

i=1

N
∑

j=1

cijaij(ei − ej)
TΦ(x̄i − x̄j) (A3)

by employing the facts (x̄i − x̄j) = (δi − δj) + (ei − ej) and Φ = ATPB(BTPB)−1BTPA.

By leveraging Lemma 2, one derives

N
∑

i=1

N
∑

j=1

cijaij(ei − ej)
TΦ(x̄i − x̄j) 6

1

4

N
∑

i=1

N
∑

j=1

cijaij(ei − ej)
TΦ(ei − ej) +

N
∑

i=1

N
∑

j=1

cijaij(x̄i − x̄j)
TΦ(x̄i − x̄j)

6

N
∑

i=1

N
∑

j=1

cijaije
T
i Φei+

N
∑

i=1

N
∑

j=1

cijaij(x̄i − x̄j)
TΦ(x̄i − x̄j), (A4)

which follows from
∑N

i=1

∑N
j=1 cijaij(ei − ej)

TΦ(ei − ej) 6 4
∑N

i=1

∑N
j=1 cijaije

T
i Φei.

Again using the symmetry of cij(t) and aij , it can be deduced that
∑N

i=1

∑N
j=1 cijaij(x̄i − x̄j) = 0. Thus, the third term in

(A2) is equal to zero.

By substituting (A3) and (A4) into (A2), △V (t) is bounded by

△V (t) 6

N
∑

i=1

δTi (ATPA − P )δi +

N
∑

i=1

N
∑

j=1

cijaije
T
i Φei +

N
∑

i=1

N
∑

j=1,j 6=i

1

4
αaij(x̄i − x̄j)

TΦ(x̄i − x̄j). (A5)

It can be confirmed that

N
∑

i=1

N
∑

j=1

aij(x̄i − x̄j)
TΦ(x̄i − x̄j)

=
N
∑

i=1

N
∑

j=1

aij(δi − δj)
TΦ(δi − δj) + 2

N
∑

i=1

N
∑

j=1

aij(δi − δj)
TΦ(ei − ej) +

N
∑

i=1

N
∑

j=1

aij(ei − ej)
TΦ(ei − ej). (A6)
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Similarly, it follows from Lemma 2 again that

N
∑

i=1

N
∑

j=1

aij(δi − δj)
TΦ(ei − ej) 6

1

2

N
∑

i=1

N
∑

j=1

aij(δi − δj)
TΦ(δi − δj) +

1

2

N
∑

i=1

N
∑

j=1

aij(ei − ej)
TΦ(ei − ej). (A7)

Then, substituting (A6) and (A7) into (A5) yields △V (t) 6 δT[IN ⊗ (ATPA − P ) − 1
4α(L ⊗ Φ)]δ +

∑N
i=1

∑N
j=1(cijaij +

α)eTi Φei −
1
8

∑N
i=1

∑N
j=1 αaij(x̄i − x̄j)

TΦ(x̄i − x̄j). Capitalizing on Lemma 1, it leads to δT(L⊗Φ)δ > λ2(L)δT(IN ⊗Φ)δ. Then,

by recalling the triggering function (4) and selecting a large enough α > max{1/ϕ, 4/λ2(L)}, it follows from Lemma 3 that

△V (t) 6 −
N
∑

i=1

δTi Qδi + α

N
∑

i=1





N
∑

j=1

(

1

ϕα
ϕcij + 1

)

aije
T
i Φei −

1

8

N
∑

j=1

aij(x̄i − x̄j)
TΦ(x̄i − x̄j)





6 − λmin(Q)
N
∑

i=1

δTi δi + αNθe−µt < 0, (A8)

where ATPA − P − ATPB(BTPB)−1BPA = ATPA − P − Φ = −Q ≺ 0.

Hence, it can be verified that V (t) is monotonically decreasing over each time interval t ∈ N
[ti
k
,ti

k+1
−1]

, ∀ k ∈ N, i ∈ IN .

According to (A1), it holds that V (t) > 0 for all t > 0. Thus, V (t) is bounded for all times t ∈ N. It follows from the definition of

V (t) that the boundedness of V (t) implies the boundedness of cij(t). According to the adaptive law in (2), cij(t) is monotonically

increasing. Thus, every cij(t) converges to some positive constant. Above all, the consensus error of each agent δi(t) → 0 as

t → ∞, which shows that the MAS (1) achieves asymptotic consensus. The proof is completed.

Appendix B Proof of Proposition 1

Proof. Consider the definition of the measurement error ei(t) of agent i for t ∈ N
[ti
k
,ti

k+1
−1]

. It follows from (1) and (2) that

ei(t + 1) = Aei(t) + (IN − A)x̄i(t) − BK

N
∑

j=1

cij(t)aij

(

xi(t
i
k) − xj(t

j

kj
)
)

. (B1)

The solution of (B1) is given by

ei(t) =

t−1
∑

s=ti
k

A
t−s−1



(IN − A)xi(t
i
k) − BK

N
∑

j=1

cij(s)aij

(

xi(t
i
k) − xj(t

j

kj
)
)



 ,

where we have used the fact that ei(t
i
k) = 0. As shown in Theorem 1, cij(t) and δi(t) are bounded. Besides, the boundedness

of δi(t) implies x(t) is finite for any finite t. Without loss of generality, assume that cij 6 c̄ for some positive constant c̄. Then,

it can be derived that ‖ei(t)‖ 6
∑t−1

s=ti
k

‖At−s−1‖
(

ζi + c̄ηi

)

, where ζi and ηi denote the upper bound of ‖IN − A‖‖xi(t
i
k)‖ and

∑N
j=1 aij‖BK‖‖xi(t

i
k) − xj(t

j

kj
)‖, respectively, for t ∈ N

[ti
k
,ti

k+1
−1]

.

By recalling the ETM (3)–(4), it can be seen that one sufficient condition to guarantee fi(t) 6 0 is ‖ei(t)‖
2 6 θe−µt

lii‖Φ‖(1+ϕc̄)
.

Therefore, the events will not be triggered until

t−1
∑

s=ti
k

‖A
t−s−1

‖
(

ζi + c̄ηi

)

=

√

θe−µt

lii‖Φ‖(1 + ϕc̄)
. (B2)

Let t∗ denote the solution of (B2). Thus, a lower bound τ i
k of tik+1 − tik can be obtained by tik+1 − tik > τ i

k = t∗ − tik. If τ i
k

is greater than 1, the lower bound of the inter-event interval between each agent’s two consecutive triggered events is greater than

one sampling period. According to [16, Theorem 1], there must exist a sampling interval h > 0 such that τ i
k > 1. Therefore, the

event would not be triggered at each sampling if Eq. (B2) has a solution t∗ − tik > 1 for all triggering instants tik, i = 1, 2, . . . , N .

The proof is completed.
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