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Abstract The convergence of an adaptive model predictive control (MPC) algorithm for discrete-time

linear stochastic systems with unknown parameters is investigated in this paper. The proposed adaptive

MPC is designed by solving a finite horizon constrained linear-quadratic optimal control problem of online

estimated models, which are built on a recursive weighted least-squares (WLS) algorithm together with a

random regularization method. By incorporating an attenuating excitation signal into adaptive MPC, the

proposed adaptive MPC is shown to converge asymptotically to the ergodic MPC performance with known

parameters by using the Markov chain ergodic theory.
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1 Introduction

Model predictive control (MPC) has become one of the most prospective and successful control approaches
in handling control problems for systems with multiple constraints. Survey data show that MPC is
considered, and likely to be, more impactful than other control technologies [1]. The provenance of
MPC is not academic research but industry implementation [2], and many theoretical studies are needed,
particularly on adaptive MPC. At each successive step, the MPC signal is obtained by solving a finite
horizon optimal control problem in which the initial state is the current state of the system [3]. A vast
amount of literature has been devoted to MPC design and analyses, and much progress has been made
over the past several decades [4]. However, most of the existing studies on MPC, such as dynamic matrix
control [5] and generalized predictive control [6], depend on the structure information of the control
systems. When system model uncertainties and/or external disturbances emerge, robust and stochastic
MPC algorithms have been proposed to handle such situations by assuming a known nominal model [7–9].

Of course, adaptive approaches or learning-based approaches may also be used in MPC design when
model uncertainties exist. A major difficulty in the design and analysis of MPC based on online estimated
models has been how to make the closed-loop control systems stable while keeping the constraints satisfied
in the presence of uncertainties. Most of the research in the literature is parameter estimation-based
MPC in which the system model has a parametric structure, and here we only mention a few examples as
follows: recursive estimation algorithms are used to estimate parameters in a special uncertain structure
for unconstrained [10] and constrained [11,12] state space models, iterative set-membership identification
algorithms are presented for constrained linear input-output models [13–15], an adaptive MPC is proposed
for a class of unknown non-affine systems based on estimating parameters in their linearized models [16],
an adaptive MPC is designed assuming a fixed, robustly stabilizing feedback law for all model parameters
in a given prior bounded set for constrained linear uncertain state space models [17,18], an adaptive dual
MPC is proposed to handle the output uncertainties for output tracking problems [19], and an adaptive
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MPC with exponentially converging tracking errors with sufficiently rich reference trajectories is proposed
for linearly parameterized nonlinear stochastic systems [20]. In another type of research line, the controller
design is not based on parameter estimation; for example, a robust data-driven MPC is proposed for
linear time-invariant systems by using an implicit model description based on the behavioral approach
and the measured trajectories [21]. Overall, extensive research on adaptive MPC has been conducted with
guaranteed stability of the closed-loop systems under various assumptions, and the convergence of the
adaptive MPC has rarely been explored, even for the standard linear-quadratic (LQ) control problems.

In this paper, an adaptive MPC with LQ performance is proposed and proved for constrained linear
stochastic systems with unknown system matrices. First, the unknown parameters are estimated using a
weighted least-squares (WLS) algorithm, which possesses the celebrated self-convergence property (i.e.,
convergence regardless of the excitation property of the system signals). Then, the random regularization
procedure introduced in [22, 23] is used to obtain a family of modified WLS estimates that lie in a given
bounded set while keeping the self-convergence property. With this modified WLS estimate at each time
instant, the adaptive MPC is solved by a finite horizon constrained LQ optimization problem for the
estimated model. On the basis of some assumptions, the convergence of the adaptive control is proven.
To the best of the authors’ knowledge, this result is the first to give a complete proof of the convergence
of an adaptive MPC with the standard LQ performance and the first to use the Markov chain ergodic
theory in the convergence study of MPC.

The remainder of this paper is organized as follows. Section 2 presents the problem statement and the
required assumptions for the general formulation. In Section 3, we introduce the WLS algorithm and the
random regularization method that will be used to obtain the estimated model. Section 4 provides the
design procedure of the adaptive MPC and presents the main theoretical results of the paper. The proofs
of the main results are provided in Section 5. Finally, Section 6 concludes the paper.

2 Problem statement

This paper considers a discrete-time linear time-invariant stochastic system with unknown parameter
matrices A∗ ∈ R

n×n, B∗ ∈ R
n×m:

xk+1 = A∗xk +B∗uk + wk+1, (1)

where xk ∈ R
n, uk ∈ R

m and wk ∈ R
n are the output, input and random disturbances at time k ∈ N.

The random variables are defined on a fixed complete probability space (Ω,F , P ), and the filtration
(Fk, k > 0) is defined on this space. In addition, we suppose that the disturbance is bounded.

In this paper, we define ‖x‖H as the weighted norm of the vector x ∈ R
n for a given positive definite

matrix H ∈ R
n×n, i.e., ‖x‖H =

√
xτHx, and define ‖A‖H as the operator norm of a matrix A ∈ R

n×n

induced by the weighted norm, i.e., ‖A‖H = supx∈Rn,‖x‖H=1 ‖Ax‖H . When H is taken as the unit matrix
I, the norm ‖ · ‖I is the Euclidean norm, which is usually defined as ‖ · ‖. We make the following
assumption about the boundedness of the noise, which is widely assumed in the investigation of MPC,
e.g., [3, 17].

Assumption 1. {wk,Fk, k > 1} is a bounded independent stochastic sequence defined on the basic
probability space (Ω,F , P ) with

wk ∈ W , {w
∣

∣‖w‖ < w̄}, ∀k > 0, (2)

and
sup
k>0

‖wk‖ < w̄, (3)

where w̄ is a known positive number. Moreover, the noise sequence {wk, k > 1} is identically distributed
and possesses a density ρw that is continuous and satisfies ρw(x) > 0 for all x ∈ W.

Now, consider the following bounded sets:

X = {x ∈ R
n | ‖x‖ 6 x̄}, (4)

U = {u ∈ R
m | ‖u‖ 6 ū}, (5)

where x̄ and ū are known positive numbers. These two sets are usually used as the constraint sets of the
input and the output. However, because of uncertainty, the input and the output of the system (1) are
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difficult to satisfy the hard constraints, and constraints must be loosened in the adaptive process. Letting
a⊕B = {a+ b| ∀b ∈ B} denote the Minkowski set addition, we define the soft constraint set as follows.

Definition 1 (Soft constraint sets). If there exists an adapted sequence of vectors {δk, Fk, k > 0} with
proper dimension such that

lim
N→∞

1

N

N
∑

k=0

‖δk‖2 = 0,

then, for any given set Z, its corresponding soft constraint sets {Zk, k > 0} are defined as

Zk = Z⊕ δk, k > 0. (6)

In this paper, we study adaptive MPC problems in which the parameter estimates in the transient
phase may not be good enough, and so we allow the MPC and the corresponding states to satisfy
{xk ∈ Xk, uk ∈ Uk, k > 0}, where {Xk, k > 0} and {Uk, k > 0} are the soft constraint sets corresponding
to X and U, respectively. Actually, we will construct an adaptive MPC that satisfies not only the soft
constraints but also the hard constraints X and U after a finite number of steps.

Now, we introduce the ergodic performance. Let θτ = (A,B), A ∈ R
n×n and B ∈ R

n×m. A constrained
infinite horizon optimization problem OP(x0; θ) with initial state x0 is defined as follows:

OP(x0; θ) : min
u

J(u)

xk+1 = Axk +Buk + wk+1, wk+1 ∈ W,

xk ∈ X, uk ∈ U, k > 0,

(7)

where u = (u0, u1, . . .) is the sequence of optimizers, W is defined in Assumption 1, X and U are defined
in (4) and (5), and the ergodic cost function is

J(u) = lim sup
T→∞

1

T

T−1
∑

k=0

(xτ
kQxk + uτ

kRuk) , (8)

where Q > 0 and R > 0 are known matrices with proper dimensions. The notation that A > (>) 0 means
that A is a positive (semi) definite matrix. If the above problem OP(x0; θ) is solvable, let J(u

∗; θ) denote
the optimal value and u

∗ denote the optimal control sequence.
Next, we consider the finite horizon constrained optimization problem OPN (x; θ) defined as follows:

OPN (x; θ) : min
u

N−1
0

JN (uN−1
0 ; θ) (9a)

xk+1 = Axk + Buk + wk+1, wk+1 ∈ W, (9b)

uk ∈ U, xk ∈ X, 0 6 k 6 N − 1; (9c)

xN ∈ Xf , x0 = x, (9d)

where u
N−1
0 = (u0, u1, . . . , uN−1) is the finite sequence of optimizers, Xf is a given terminal set, and the

function JN (uN−1
0 ; θ) to be minimized is defined as follows:

JN (uN−1
0 ; θ) =

N−1
∑

k=0

(xτ
kQxk + uτ

kRuk) + Vf (xN ; θ),

where Vf (xN ; θ) is a given terminal cost.
Let u0(x, θ) be the first vector component of uN−1

0 obtained by solving the above optimization problem
OPN (x; θ). That is, if the optimal solution of OPN (x; θ) is (uN−1

0 )∗ = (u∗
0, u

∗
1, . . . , u

∗
N−1), then we take

u0(x, θ) = u∗
0, (10)

which is called the MPC controller. Some usually used forms of the above terminal set and terminal cost
may be found in [7, 17].

Now, for any k > 0, let u0(xk, θ) be the MPC with initial value xk, where xk is the state of (9b) under
the previous MPC u0(xk−1, θ) and the noise wk ∈ W. We can define the MPC performance as follows.
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Definition 2 (Ergodic MPC performance). Consider the constrained control system (1) under the MPC
sequence {u0(xk, θ

∗), k > 1}. The following long-run average system performance is called ergodic MPC
performance:

JMPC
N (u0; θ

∗) , lim sup
T→∞

1

T

T−1
∑

k=0

[xτ
kQxk + uτ

0(xk, θ
∗)Ru0(xk, θ

∗)] .

In the unconstrained case, it is easily proven that JMPC
N (x0, θ

∗) will approach the optimal quadratic
performance J(u) defined by (8) when N → ∞ (e.g., [24]) because in this case, the MPC has an explicit
form u = Kx for some gain matrix K. In the current constrained case, there is no explicit solution in
general, but one may still expect that this property also holds under some proper conditions. In this
paper, we will not need this property because we are only interested in constructing an adaptive MPC
that achieves the above ergodic performance.

To conduct our theoretical investigation, we need to make the following basic assumptions.

Assumption 2. There exists a positive number hθ such that the set Θ , {θ ∈ R
(n+m)×n|‖θ‖ 6 hθ}

contains the true parameter θ∗τ = (A∗, B∗) as an interior point. In addition, the true parameter θ∗

satisfies that (A∗, B∗) is controllable and (A∗, Q1/2) is observable.

In Assumption 2, because constraints are placed on the input and output, the optimization problem
OPN (x; θ) may not be solvable for all θ ∈ R

(n+m)×n. We require that the parameter set Θ is bounded
and define a neighborhood of the origin for simplicity.

Assumption 3. For any controllable θ , (A,B) ∈ Θ and any observable (A,Q1/2), the MPC controller
u0(x, θ) obtained by solving the MPC problem OPN (x; θ) defined by (9) with any x ∈ X exists and
depends on θ and x continuously.

Under Assumptions 2 and 3, we can ensure that the MPC sequence exists for the true system. Fur-
thermore, to prove the convergence of the adaptive MPC, the following assumption is also required.

Assumption 4. There exists a nonnegative continuous function V (x) such that

V (0) = 0; V (x) > 0, ∀‖x‖ > 0,

V (A∗x+B∗u0(x, θ
∗)) 6 ρV (x), ∀x ∈ X, (11)

where ρ < 1 is a positive value. Moreover, there exists a K-function α(·) such that for any x, y ∈ X,

|V (x) − V (y)| 6 α(‖x− y‖), (12)

and that for some nonzero point z ∈ X,

(1 − ρ)V (z) > E[α(‖w‖)], (13)

where w possesses a density ρw defined in Assumption 1.

Remark 1. If the MPC takes the form of u0(x, θ
∗) = K∗x such that A∗ + B∗K∗ is stable, then there

exists an induced matrix norm ‖ · ‖∗ such that ρ = ‖A∗ + B∗K∗‖∗ < 1 [25]. In this case, we can choose
V (x) = α(x) = ‖x‖∗, and as long as (1 − ρ)maxz∈X ‖z‖∗ > maxw∈W ‖w‖∗, Eq. (13) will be satisfied.

The objective of this paper is to design an adaptive MPC for the uncertain system (1) with any initial
value x0 ∈ X such that the ergodic cost function J(u) defined by (8) is identical to that for u0(xk, θ

∗)
when the parameter θ∗ is known with some relaxed constraints closed to {xk ∈ X, uk ∈ U, k > 0}.

3 WLS estimation and random regularization

3.1 WLS estimation

We first introduce the WLS algorithm, which has some nice properties, particularly the self-convergence
of the estimates [22, 26].

Let

ϕk =

[

xk

uk

]

. (14)
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Then, Eq. (1) can be rewritten as a linear regression:

xk+1 = θ∗τϕk + wk+1, (15)

and the recursive WLS algorithm has the following form:

θk+1 = θk + Lk(x
τ
k+1 − ϕτ

kθk),

Lk =
Pkϕk

α−1
k + ϕτ

kPkϕk

,

Pk+1 = Pk −
Pkϕkϕ

τ
kPk

α−1
k + ϕτ

kPkϕk

, (16)

where θτ0 = (A0, B0) and P0 > 0 are arbitrary proper deterministic matrices. {αk} is the weighting
sequence defined by

αk =
1

log1+δ(rk)
, rk = ‖P−1

0 ‖+
k
∑

i=0

‖ϕi‖2, (17)

where δ is an arbitrary positive number.
Since the noise is a martingale difference sequence, some basic properties of the WLS algorithm can

be found in [22] and are stated as Lemma 1 below.

Lemma 1 ([22]). Let Assumption 1 hold and {θk, Pk; k > 0} be given by (16) and (17). Then, the
following properties are satisfied:

(1) ‖P−1/2
k (θ∗ − θk)‖2 = O(1), k → ∞, a.s.,

(2)
∑k

i=1 ‖ϕτ
i (θ

∗ − θi)‖2 = o(rk) +O(1), k → ∞, a.s.,
(3) limk→∞ θk = θ, a.s.,

where θ∗ is the true parameter matrix, and θ is a random matrix that may not be equal to θ∗.

3.2 Random regularization

In this subsection, we use the random regularization method to modify the family of WLS estimates to
ensure that this new family lies in the prior parameter set Θ defined in Assumption 2 and is uniformly
controllable and observable.

First, let β∗
k = P

−1/2
k (θ∗ − θk), where θ∗ is the true parameter. From Lemma 1 (1), we know that

the sequence {β∗
k, k > 0} is bounded a.s. and that θ∗ = θk + P

1/2
k β∗

k. Then, we can consider the
regularization parameter θ̄(k, x) having the following form:

θ̄(k, x) = θk + P
1/2
k x, (18)

and let
θ̄τ (k, x) = (A(k, x), B(k, x)), (19)

where x ∈ M(n+m,n) and M(n+m,n) denotes the family of (n+m)× n real matrices.
Using the similar method as introduced in [22, 23], we proceed to choose x as a bounded vector βk in

(18) at each time step k and let θ̂k denote the corresponding θ̄τ (k, βk), that is

θ̂k = θk + P
1/2
k βk. (20)

This modification has almost the same nice properties as those of the WLS estimate θk.
Since for any fixed x ∈ M(n+m,n), the matrix sequence {A(k, x), B(k, x), k > 0} is bounded where

Q is defined in (8), the estimate θ̄(k, x) defined in (18) that lies in the set Θ defined in Assumption 2 is
equivalent to the uniform positivity of the family {fk(x), k > 0}, where

fk(x) = hθ − ‖θk + P
1/2
k x‖.

From [23], its uniform controllability and observability are equivalent to the uniform positivity of the
families {gk(x), k > 0} and {hk(x), k > 0}, where

gk(x) = det

(

n−1
∑

i=0

Ai(k, x)B(k, x)Bτ (k, x)Aiτ (k, x)

)

,
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hk(x) = det

(

n−1
∑

i=0

Aiτ (k, x)QAi(k, x)

)

,

and det(·) denotes the determinant of a matrix.
To design a convergent βk, we define a function as follows:

Fk(x) = min{fk(x), gk(x), hk(x)},

and define the positive-valued set Ak:

Ak = {x ∈ M(n+m,n)|Fk(x) > 0}. (21)

In addition, we introduce the following time instant t(k) for any integer k > 0:

t(k) = min

{

t ∈ N : t 6 k, L
(

k
⋂

i=t

Ai

)

> µ > 0

}

, (22)

where L(·) is the Lebesgue measure and µ is some positive number.

Remark 2. In fact, the above µ can be chosen by the following method. Let {θk, Pk, k > 0} be the
sequence generated by (16). Then, for a given positive number η < hθ, we define a set Bk = {x ∈ M(n+

m,n)|x = ( λ
‖θk‖

−1)P
−1/2
k θk, |λ| 6 hθ−η}⊕{x ∈ M(n+m,n)| xτ ·P−1/2

k θk = 0, ‖x‖ < ‖P 1/2
k ‖−1η}. It is

easy to verify that Bk−Nk ⊆ Ak, where Nk , {x ∈ Ak|gk(x) = 0, hk(x) = 0} is a set of measure zero [22],

and that L(Bk−Nk) = L(Bk) > 2‖P 1/2
k ‖−1(hθ−η)η2n+m−1. Moreover, by the definition of Pk, we know

that {‖P 1/2
k ‖−1, k > 0} is non-decreasing. Hence, if we choose 0 < µ 6 2‖P 1/2

0 ‖−1(hθ − η)η2n+m−1, then

we have L(Ak) > L(Bk) > µ; thus, t(k) is well-defined because k ∈ {t ∈ N : t 6 k, L(⋂k
i=t Ai) > µ > 0}

for any k > 0.

Then, we can define a non-empty set:

Dk =

k
⋂

i=t(k)

Ai.

We now proceed to show that there are two integers t1 > t0 > 0 such that t(k) = t0 for all k > t1,

i.e., Dk =
⋂k

i=t0
Ai, ∀k > t1. In this case, it is obvious that Dk+1 ⊆ Dk for all k > t1. In fact, by the

convergence of the parameter estimate θk as shown in Lemma 1, we can indeed prove that t0 and t1 exist
in the following lemma.

Lemma 2. There exists a positive number µ together with two integers t1 > t0 > 0 such that t(k) = t0
for all k > t1, i.e., Dk =

⋂k
i=t0

Ai, ∀k > t1. In addition, D∞ exists and L(D∞) > µ.

The proof is provided in Appendix A.
Let {ηk, k > 0} be an independent sequence in R

(n+m)×n that is independent of the system noise
{wk, k > 0}, and for each k > 0, ηk is uniformly distributed on Dk. Then, the sequence {βk, k > 0} to
be used in (20) can be defined recursively as follows:

βk =

{

ηk, Fk(ηk) > (1 + γ)Fk(βk−1),

βk−1, Fk(ηk) < (1 + γ)Fk(βk−1),
(23)

where γ is small enough so that 2γ+ γ2 6 1. One can show that the sequence {βk, k > 0} defined above

can ensure that the estimates {θ̂k, k > 0} have the required properties as described in the following
lemma whose proof is given in Appendix B.

Lemma 3. Under Assumptions 1 and 2, the regularized WLS estimate θ̂k defined by (20) with βk

chosen as in (23) has the following properties:

(1) θ̂k ∈ Θ converges to a random matrix θ̂, a.s.,
(2) the family {Âk, B̂k, Q

1/2, k > 0} is uniformly controllable and uniformly observable, a.s.,

(3) ‖P−1/2
k θ̃k‖2 = O(1), k → ∞, a.s.,

(4)
∑k

i=1 ‖ϕτ
i θ̃i‖2 = o(rk) +O(1), k → ∞, a.s.,

where θ̃k = θ∗ − θ̂k and rk is defined in (17).
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4 Optimal adaptive MPC algorithm and main results

In this section, we introduce the design of the adaptive MPC with the estimate θ̂k defined by (20) and
(23) such that the state sequence and the control sequence lie in the soft constraint sets of X and U

defined in (4) and (5).

From Assumption 2 and Lemma 3, if xk ∈ X at the k-th step, we can choose the control uk = u0(xk, θ̂k)
as introduced in Assumption 3. Note that

xk+1 = A∗xk +B∗u0(xk, θ̂k) + wk+1,

where θ̂k is defined in Lemma 3. Because an error may exist between the estimate and the true parameter,
the state xk+1 may not be in X, and thus the control u0(xk+1, θ̂k+1) may not be well-defined. To address
this case, we try to project the state xk+1 onto X using the following method:

x̄k+1 = argmin
x∈X

‖x− xk+1‖2Qk
, (24)

where Qk is a positive matrix to be defined as follows.
First, as is well known, for any controllable and observable triple (A,B,Q1/2), the following Riccati

equation has a positive definite matrix Φ as its solution:

Φ = Q+AτΦA−AτΦB(BτΦB +R)−1BτΦA, (25)

where Q and R are defined in (8), and the matrix A+BK is stable with the following matrix K:

K , −(BτΦB +R)−1BτΦA. (26)

Under this motivation, let {θ̂τk = (Âk, B̂k), k > 0} be the family of the regularized WLS estimates

defined in Lemma 3. Knowing that {Âk, B̂k, Q
1/2, k > 0} is uniformly controllable and uniformly

observable, we can define K̂k following the similar approach to the definition of K in (25) and (26) but
with (A,B) replaced by (Âk, B̂k). Let us recursively define {Qk, k > 0} used in (24) by the following
formula with any given initial condition Q0 > 0:

Qk+1 = (Âk + B̂kK̂k)
τQk(Âk + B̂kK̂k) + I, (27)

where I is the identity matrix with dimension n. Since Âk + B̂kK̂k is stable for any k > 1 and converges
to a stable matrix, we know that {Qk > 0, k > 0} is bounded and has a limit, which is defined as Q̄, i.e.,
Q̄ = limk→∞ Qk [16].

Using the projection (24), we know that x̄k must be in X and that u0(x̄k, θ̂k) is well-defined. In
addition, to counteract the influence of the residue xk − x̄k, we introduce the following adaptive MPC:

ūk = u0(x̄k, θ̂k) + K̂k(xk − x̄k), (28)

where K̂k is defined above.
Clearly, uk is meaningful for any xk ∈ R

n. The next theorem will further show that this defined
control sequence, together with the corresponding state sequence, satisfies the soft constraints defined in
Definition 1.

Theorem 1. Let Assumptions 1–3 hold. Then, the state xk of the system (1) starting at any x0 ∈ X

and the control ūk defined by (28) lie in the sets Xk and Uk, respectively, for all k > 0, where {Xk, k > 0}
and {Uk, k > 0} are the soft constraint sets of X and U, respectively, defined in Definition 1.

The proof is given in Section 5.
In Theorem 1, the performance of the closed-loop control system under adaptive MPC is not easily

analyzed because the parameter estimates may not be strongly consistent. To obtain a strong consistency
for the family of estimates, we add an attenuating excitation to the adaptive MPC (28) by using the
method introduced in [22].

Let {ǫk, k > 0} be a sequence of m-dimensional i.i.d random vectors independent of {ωk, ηk, k > 0}
with

E[ǫk] = 0, E[ǫkǫ
τ
k] = Im, ‖ǫk‖ 6 hǫ, (29)
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where hǫ is a known number, and let the attenuating excitation ξk be defined by

ξk =
ǫk
kǫ/2

, ǫ ∈ (0, 1/4n). (30)

Then, the new adaptive MPC is taken as

uk = ūk + ξk, (31)

where uk is defined in (28).
By using a method similar to the one introduced in [27], we can prove that the above control ensures

that the estimate θ̂k converges to the true parameter.

Lemma 4 ([27]). Assume that Assumptions 1–4 hold and that {θ̂k, k > 0} is the family of estimates
given by (20) and (23) using the control (31) in the system (1). Then

lim
k→∞

θ̂k = θ∗,

where θ∗ is the true parameter.

Because the estimate converges to the true parameter, we can prove that the ergodic performance
under the adaptive MPC converges to that of the non-adaptive one.

Theorem 2. Let Assumptions 1–4 hold and the adaptive MPC (31) be applied to the uncertain system
(1) with any initial value x0 ∈ X. Then, the state xk and the control uk lie in the soft constraint sets
X̄k and Ūk, respectively, for all k > 0 and will further lie in the constraints X and U, respectively, for
all k > k0, where k0 is a positive constant. Moreover, the ergodic performance under the adaptive MPC
will converge to that of the non-adaptive one, i.e.,

lim sup
T→∞

1

T

T−1
∑

k=0

(xτ
kQxk + uτ

kRuk) = JMPC
N (u0; θ

∗), (32)

where JMPC
N (u0; θ

∗) is the non-adaptive ergodic performance defined in Definition 2.

The proof will be provided in Subsection 5.2.

Remark 3. Note that the system (1) under the adaptive MPC (31) is nonlinear, so the convergence of
the ergodic performance to the non-adaptive one is not easily proven using the traditional approaches.
Inspired by [28], we show that the state sequence of the closed-loop system is an ergodic random process
under Assumption 4, and thus, the Markov chain ergodic theory can be applied in the convergence study
of adaptive MPC.

Remark 4. We note that the adaptive continuous-time linear-quadratic Gaussian control for the un-
constrained stochastic system has been studied and solved in [23]. Similar results as in Theorems 1 and
2 may be established for continuous-time adaptive MPC of linear time-invariant stochastic systems by
using similar methods.

5 Proofs of the main results

5.1 The proof of Theorem 1

Proof. First, let xk be the state of the system (1) starting at any x0 ∈ X, and let ūk be the adaptive
control defined by (28). It suffices to prove that

lim
N→∞

1

N

N
∑

k=0

‖xk − x̄k‖2 = 0, (33)

where x̄k is defined in (24).

Let {θ̂τk = (Âk, B̂k), k > 0} be the family of estimates given by (20) and (23). For any state xk, by
the definition of ūk, we have

xk+1 = A∗xk +B∗ūk + ωk+1

= Âkx̄k + B̂ku0(x̄k, θ̂k) + ωk+1 + (Âk + B̂kK̂k)(xk − x̄k) + θ̃τkϕk,
(34)
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where θ̃k = θ∗− θ̂k, ϕk is defined in (14), and K̂k is defined following a similar approach to the definition
of K in (25) and (26) but with (A,B) replaced by (Âk, B̂k).

From (2) of Lemma 3 and Assumption 3, we know that Akx̄k+Bku0(x̄k, θ̂k)+ωk+1 ∈ X, and combining
this fact with the definition of x̄k introduced in (24), we know that

‖xk+1 − x̄k+1‖2Qk
6 ‖(Âk + B̂kK̂k)(xk − x̄k) + θ̃τkϕk‖2Qk

= (xk − x̄k)
τ (Âk + B̂kK̂k)

τQk(Âk + B̂kK̂k)(xk − x̄k) + ‖θ̃τkϕk‖2Qk
+ 2ζk

= ‖xk − x̄k‖2Qk+1
− ‖xk − x̄k‖2 + ‖θ̃τkϕk‖2Qk

+ 2ζk, (35)

where ζk = (xk − x̄k)
τ (Âk + B̂kK̂k)

τQkθ̃
τ
kϕk, and Qk is defined by (27).

Summing both sides of (35), we have

r̄N ,

N
∑

k=0

‖xk − x̄k‖2 = ‖x0 − x̄0‖2Q1
− ‖xN+1 − x̄N+1‖2QN

+

N
∑

k=0

‖θ̃τkϕk‖2Qk
+ 2

N
∑

k=0

ζk

+

N
∑

k=1

(xk − x̄k)
τ (Qk+1 −Qk−1) (xk − x̄k). (36)

Using the Cauchy-Schwarz inequality, we have

N
∑

k=0

ζk 6

(

N
∑

k=0

‖(Âk + B̂kK̂k)Qk(xk − x̄k)‖2
)1/2( N

∑

k=0

‖θ̃τkϕk‖2
)1/2

. (37)

Because {Âk, B̂k, K̂k, Qk, k > 0} is bounded and convergent, we can introduce the following finite-
valued notations:

k̂m = max
06k6∞

‖K̂k‖2, âm = max
06k6∞

‖Âk + B̂kK̂k‖2,

âqm = max
06k6∞

‖(Âk + B̂kK̂k)Qk‖2. (38)

Then, we have
N
∑

k=0

ζk 6 (âqmr̄N )
1/2

(

N
∑

k=0

‖θ̃τkϕk‖2
)1/2

. (39)

In addition, let λmax(Qk) be the maximum eigenvalue of the matrix Qk ∈ R
n×n, and let λ̄max ,

max06k6∞ λmax(Qk) < ∞. Then, we have

‖θ̃τkϕk‖2Qk
6 λ̄max · ‖θ̃τkϕk‖2, ∀k > 0.

By (4) of Lemma 3, we have
N
∑

k=0

‖θ̃τkϕk‖2Qk
= o(rN ), N → ∞, (40)

where rN is defined by (17).
From the convergence of {Qk, k > 0}, we have limk→∞ ‖Qk+1 −Qk−1‖ = 0. It is easy to see that

N
∑

k=1

(xk − x̄k)
τ (Qk+1 −Qk−1)(xk − x̄k) = o(r̄N ), N → ∞. (41)

Hence, using (36), (39)–(41), we have

r̄N = O(1) + o(rN ) + o(r
1/2
N r̄

1/2
N ) + o(r̄N ), N → ∞, (42)

from which it is not difficult to see that

r̄N = O(1) + o(rN ), N → ∞. (43)



Chen H, et al. Sci China Inf Sci May 2023 Vol. 66 152201:10

Moreover, from the definition of rN , we have

rN = ‖P−1
0 ‖+

N
∑

i=0

‖ϕi‖2 = ‖P−1
0 ‖+

N
∑

i=0

(‖xi‖2 + ‖ūi‖2)

6 ‖P−1
0 ‖+ 2

N
∑

i=0

[

(1 + ‖K̂i‖2)‖xi − x̄i‖2 + ‖x̄i‖2 + ‖u0(x̄i, θ̂i)‖2
]

6 ‖P−1
0 ‖+ 2

N
∑

i=0

[

(1 + k̂m)‖xi − x̄k‖2 + ‖x̄i‖2 + ‖u0(x̄i, θ̂i)‖2
]

. (44)

From (24) and Assumption 3, we have ‖x̄i‖ 6 x̄ and ‖u0(x̄i, θ̂i)‖ 6 ū for all i > 0. Then we can obtain

rN = O(r̄N ) +O(N), N → ∞. (45)

Combining (45) and (43), we have rN = O(N) when N → ∞. Furthermore, we can obtain r̄N =
∑N

k=0 ‖xk − x̄k‖2 = o(N) when N → ∞. Hence, Eq. (33) is proven.
Now, letting

δ1,k = (Âk + B̂kK̂k)(xk − x̄k) + θ̃τkϕk,

δ2,k = K̂k(xk − x̄k), (46)

from (34) and the definition of ūk, we have

xk+1 = Âkx̄k + B̂ku0(x̄k, θ̂k) + ωk+1 + δ1,k ∈ X⊕ δ1,k,

and
ūk = u0(x̄k, θ̂k) + δ2,k ∈ U⊕ δ2,k.

Let Xk = X ⊕ δ1,k and Uk = U ⊕ δ2,k. To verify that {Xk, k > 0} and {Uk, k > 0} are the soft
constraint sets of X and U, respectively, we only need to prove that

lim
N→∞

1

N

N
∑

k=0

‖δ1,k‖2 = 0, lim
N→∞

1

N

N
∑

k=0

‖δ2,k‖2 = 0. (47)

From (38), we have ‖δ1,k‖2 6 2(âm‖xk − x̄k‖2 + ‖θ̃τkϕk‖2). Then the first equation in (47) is easily

verified by using (33). Similarly, we can prove that ‖δ2,k‖2 6 k̂m‖xk − x̄k‖2, and the second equation is
also proven.

5.2 The proof of Theorem 2

Proof. Without ambiguity, we also use {θ̂τk = (Âk, B̂k), k > 0} to denote the family of estimates given
by (20) and (23) with the data generated from the system (1) under the control (31). In addition, the
definitions of K̂k and Qk are similar to those introduced in Theorem 1.

Since the attenuating excitation ξk defined in (30) converges to 0, Theorem 1 also holds under the
control (31). In fact, we only need to replace δ1,k+1 and δ2,k defined in (46) by

δ̄1,k+1 = (Âk + B̂kK̂k)(xk − x̄k) + θ̃τkϕk + B̂kξk,

δ̄2,k = K̂k(xk − x̄k) + ξk, (48)

where K̂k is the solution of (25) and (26) with the estimate θ̂k, and ξk is defined in (30). The corresponding
soft constraint sets are X̄k = X⊕ δ̄1,k+1 and Ūk = U⊕ δ̄2,k.

We will prove the other parts of this theorem as follows.
Step 1: We will prove that lim supk→∞ ‖xk − x̄k‖ = 0.
Since {Âk, B̂k, k > 0} converges to the true parameter (A∗, B∗) by Lemma 4, we know that {K̂k, Qk, k

> 0} is convergent, and we can define

K∗ = lim
k→∞

K̂k, Q̄ = lim
k→∞

Qk.
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Hence, by (27), it is easy to see that

Q̄ = (A∗ +B∗K∗)τ Q̄(A∗ +B∗K∗) + I,

and Q̄ > I. Then, by using the definition of the weighted norm, it is not difficult to prove that ‖A∗ +
B∗K∗‖Q̄ = λ1 < 1, where λ1 = (1 −min{x∈Rn,xτQ̄x=1} ‖x‖)1/2. Since θ̄k, Qk, and ξk are convergent, for
any given ε > 0, there exists a number k1 > 0 such that

‖Qk − Q̄‖ 6 λmin(Q̄)ε, ‖θ̃k‖ 6 ε, ‖ξk‖ 6 ε, ‖Âk + B̂kK̂k‖Q̄ 6 λ1 + ε, ∀k > k1. (49)

Now, by the definition of ϕk in (14), we have

‖ϕk‖ 6 ‖x̄k‖+ ‖xk − x̄k‖+ ‖u0(x̄k, θ̂k)‖ + ‖K̂k‖‖xk − x̄k‖+ ‖ξk‖
6 x̄+ λ

−1/2
min (Q̄)‖xk − x̄k‖Q̄ + ū+ k̂1mλ

−1/2
min (Q̄)‖xk − x̄k‖Q̄ + ε

= φ1‖xk − x̄k‖Q̄ + φ2, (50)

where φ1 = (1+ k̂1m)λ
−1/2
min (Q̄), φ2 = x̄+ū+ε, x̄ and ū are defined in (4) and (5), k̂1m = max06k6∞ ‖K̂k‖,

and λmin(Q̄) is the minimum eigenvalue of Q̄.
Now, we calculate the upper bound of ‖xk − x̄k‖2Q̄. Similar to (35), we have

‖xk+1 − x̄k+1‖2Qk
6 ‖(Âk + B̂kK̂k)(xk − x̄k) + θ̃τkϕk + B̂kξk‖2Qk

,

and when k > k1, for any x ∈ R
n, we have

‖x‖2Qk
= ‖x‖2Q̄ + xτ (Qk − Q̄)x 6 ‖x‖2Q̄ + λ−1

min(Q̄)‖Q̄−Qk‖‖x‖2Q̄ 6 (1 + ε)‖x‖2Q̄. (51)

Then, for k > k1, we have

‖xk+1 − x̄k+1‖2Q̄ = ‖xk+1 − x̄k+1‖2Qk
+ (xk+1 − x̄k+1)

τ (Q̄−Qk)(xk+1 − x̄k+1)

6 ‖xk+1 − x̄k+1‖2Qk
+ λ−1

min(Q̄)‖Q̄−Qk‖‖xk+1 − x̄k+1‖2Q̄
6 ‖(Âk + B̂kK̂k)(xk − x̄k) + θ̃τkϕk + B̂kξk‖2Qk

+ ε‖xk+1 − x̄k+1‖2Q̄
6 (1 + ε)‖(Âk + B̂kK̂k)(xk − x̄k) + θ̃τkϕk + B̂kξk‖2Q̄ + ε‖xk+1 − x̄k+1‖2Q̄,

6 (1 + ε)
[

‖(Âk + B̂kK̂k)(xk − x̄k)‖2Q̄ + ‖θ̃τkϕk‖2Q̄ + ‖B̂kξk‖2Q̄ + 2ζ̄k

]

+ ε‖xk+1 − x̄k+1‖2Q̄, (52)

where ζ̄k = (θ̃τkϕk)
τ Q̄(Âk + B̂kK̂k)(xk − x̄k) + (B̂kξk)

τ Q̄(Âk + B̂kK̂k)(xk − x̄k) + (θ̃τkϕk)
τ Q̄B̂kξk.

Moving the last term to the left, it is not difficult to see that

‖xk+1 − x̄k+1‖2Q̄ 6
1 + ε

1− ε

(

‖Âk + B̂kK̂k‖2Q̄‖xk − x̄k‖2Q̄ + ‖Q̄‖‖θ̃τk‖2‖ϕk‖2 + ‖Q̄‖‖B̂k‖2‖ξk‖2

+ 2λ−1
min(Q̄)‖Q̄‖‖θ̃τk‖‖ϕk‖‖Âk + B̂kK̂k‖‖xk − x̄k‖Q̄

+ 2λ−1
min(Q̄)‖Q̄‖‖B̂k‖‖ξk‖‖Âk + B̂kK̂k‖‖xk − x̄k‖Q̄ + 2‖Q̄‖‖θ̃τk‖‖ϕk‖‖B̂k‖‖ξk‖

)

. (53)

From (49) and (50), we have

‖Q̄‖‖θ̃τk‖2‖ϕk‖2 6 ε2‖Q̄‖
[

φ2
1‖xk − x̄k‖2Q̄ + 2φ1φ2‖xk − x̄k‖Q̄ + φ2

2

]

,

‖Q̄‖‖B̂k‖2‖ξk‖2 6 ‖Q̄‖b̂2mε2,

λ−1
min(Q̄)‖Q̄‖‖θ̃τk‖‖ϕk‖‖Âk + B̂kK̂k‖‖xk − x̄k‖Q̄
6 λ−1

min(Q̄)âmε‖Q̄‖(φ1‖xk − x̄k‖2Q̄ + φ2‖xk − x̄k‖Q̄),
‖Q̄‖‖θ̃τk‖‖ϕk‖‖B̂k‖‖ξk‖ 6 ε2b̂m‖Q̄‖(φ1‖xk − x̄k‖Q̄ + φ2), (54)

where âm is defined in (38) and b̂m = max06k6∞ ‖B̂k‖.
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Then, using (53), we have

‖xk+1 − x̄k+1‖2Q̄ 6 aε‖xk − x̄k‖2Q̄ +O(ε‖xk − x̄k‖Q̄) +O(ε2)

6 [aε +O(ε)] ‖xk − x̄k‖2Q̄ +O(ε), ∀k > k1, (55)

where aε = 1+ε
1−ε

[

(λ1 + ε)2 + φ2
1‖Q̄‖ε2 + 2λ−1

min(Q̄)âmφ1‖Q̄‖ε
]

. As long as ε is small enough, it is not
difficult to see that

lim sup
k→∞

‖xk+1 − x̄k+1‖2Q̄ = O(ε),

and since ε can be arbitrarily small, we have

lim sup
k→∞

‖xk − x̄k‖2Q̄ = 0.

Then, using the equivalency of norms, we can obtain

lim sup
k→∞

‖xk − x̄k‖ = 0, a.s.

Step 2: We will prove that there is a finite time k0 such that uk = u0(xk, θ̂k) + ξk, ∀ k > k0 + 1, a.s.
First, combining Assumption 3 with the fact that ‖θ̃τk‖, ‖xk − x̄k‖ and ξk converge to 0, for any given

positive number ǫ1 < w̄ − supk>0 ‖wk‖, there is a time k0 such that for all k > k0,

‖(A∗ +B∗K̂k)(xk − x̄k)‖ 6
1

3
ǫ1, ‖B∗(u0(x̄k, θk)− u0(x̄k, θ

∗))‖ 6
1

3
ǫ1, ‖B∗ξk‖ 6

1

3
ǫ1.

Letting δ̃k = wk+1 + (A∗ +B∗K̂k)(xk − x̄k) +B∗(u0(x̄k, θ̂k)− u0(x̄k, θ
∗)) +B∗ξk, it is easy to see that

δ̃k ∈ W for all k > k0. From the definition of u0(x, θ
∗) in Assumption 3, we know that for all x ∈ X,

A∗x+B∗u0(x, θ
∗) + w ∈ X, ∀w ∈ W. (56)

Note that by (31), uk = u0(x̄k, θ̂k) + K̂k(xk − x̄k) + ξk, and it is not difficult to see that for all k > k0,

‖xk+1‖ = ‖A∗xk +B∗uk + wk+1‖ = ‖A∗x̄k +B∗u0(x̄k, θ
∗) + δ̃k‖ 6 x̄.

Thus, xk+1 ∈ X for all k > k0, and therefore xk+1 = x̄k+1 and uk+1 = u0(xk+1, θ̂k+1) + ξk+1, ∀k > k0,
a.s.

Step 3: By Assumption 3 from (9b) and (9c), we consider the state sequence {x̂k ∈ X, k > 0} generated
by the MPC controller u0(·, θ∗) with the true parameter θ∗, i.e.,

x̂k+1 = A∗x̂k +B∗u0(x̂k, θ
∗) + wk+1, x̂0 ∈ X, (57)

where wk+1 is the same noise as in the system (1). We will prove that the sequence {x̂k ∈ X, k > 0} is
ergodic; i.e., there exists an invariant probability measure π̄(·) such that for any n > 1,

lim
n→∞

‖P̄n
0 − π̄‖ = 0, (58)

where ‖P̄‖ , supx∈X |
∫

X
P̄(x, y)dy|, P̄n

k (x, y) , P (x̂k+n = y|x̂k = x) is the n-step transition probability
at time k, and π̄(·) satisfies x̂k having the distribution π̄ for all k > 1 when x̂0 has the distribution π̄ [29].

Letting M , {x ∈ X|V (x) 6 maxw∈W α(‖w‖)}, by using (11) and choosing wk ≡ 0, it is not difficult
to prove that any invariant set in X contains M and that 0 ∈ M is attracting for all x ∈ X. Then, by
Proposition 7.2.5 (pp. 160) introduced in [29], there exists a minimal set Xρ such that M ⊆ Xρ ⊆ X (the
definitions of attracting, invariant set, and minimal set can be found in [29]). Obviously, M is connected,
and from the attracting of M and Assumption 1, we know that Xρ is connected. From Theorem 7.2.4
(pp. 159) and Proposition 7.3.4 (pp. 163) introduced in [29], we can prove that {x̂k ∈ X, k > 0} is
ϕ-irreducible and aperiodic. Then, combining (13) provided in Assumption 4 with Theorem 8.4.3 (pp.
191) introduced in [29], it is not difficult to prove that the sequence is ergodic.

Step 4: We now prove that

lim sup
T→∞

1

T

T−1
∑

k=0

(xτ
kQxk + uτ

kRuk) = JMPC
N (u0; θ

∗).
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From Step 2, uk = u0(xk, θ̂k) + ξk for all k > k0 +1; thus, the true state xk generated by the adaptive
MPC satisfies

xk+1 = A∗xk +B∗(u0(xk, θ̂k) + ξk) + wk+1, k > k0 + 1, (59)

and xk ∈ X for all k > k0 + 1. Note that by the proof of Lemma 3, there exists a time k2 > k0 such that
βk = βk2 for all k > k2, where βk is defined in (23). Now, let Φk = (ϕk, θ̂k, Pk) and w̄k+1 = wk+1 +B∗ξk,

where ϕτ
k = (xτ

k, u
τ
0(xk, θ̂k)) ∈ Z , X × U, θ̂k ∈ Θ, and Pk ∈ M

+ , {P ∈ R
(n+m)2 |P > 0} defined in

(14), (20), and (16), respectively. Similar to [28], it is not difficult to know that the stochastic process
{Φk, k > k2} evolving on D , Z×Θ×M

+ is a Feller-Markov chain; i.e., there exists a continuous function
G : D×R

n → D such that Φk+1 = G(Φk, w̄k+1). Considering Φ̂k = ((x̂τ
k, u

τ
0(x̂k, θ

∗))τ , θ∗, 0), it is easy to

know that Φ̂k+1 = G(Φ̂k, wk+1). Furthermore, {Φ̂k, k > k0} has an invariant probability measure π(·)
on (D1,F1) from Step 3, where D1 = Z× {θ∗} × {0} and F1 is a σ-algebra on this space.

Now, let P(k,k+n)(x, y) , P (Φk+n = y|Φk = x) and P̂(k,k+n)(x, y) , P (Φ̂k+n = y|Φ̂k = x) be the n-
step transition probability of {Φk, k > k2} and {Φ̂k, k > k2}, respectively, at time k. Since ξk converges
to 0, the function ρk, which is the density of w̄k+1, uniformly converges to ρw defined in Definition 1.
Because limk→∞ θ̂k = θ∗ and limk→∞ ξk = 0, we know that for any given x ∈ D1 and any set S ∈ F1,

lim sup
k→∞

∣

∣

∣
P(k,k+1)(x, S)− P̂(k,k+1)(x, S)

∣

∣

∣

= lim sup
k→∞

∣

∣

∣

∣

∫

W

P (G(x, z) ∈ S)ρk(z)dz −
∫

W

P (G(x, z) ∈ S) ρw(z)dz

∣

∣

∣

∣

6

∫

W

P (G(x, z) ∈ S) lim sup
k→∞

|ρk(z)− ρw(z)|dz = 0. (60)

Moreover, we have

lim sup
k→∞

∣

∣

∣
P(k,k+2)(x, S)− P̂(k,k+2)(x, S)

∣

∣

∣

= lim sup
k→∞

∣

∣

∣

∣

∫

D1

P(k,k+1)(x, z)P(k+1,k+2)(z, S)dz −
∫

D1

P̂(k,k+1)(x, z)P̂(k+1,k+2)(z, S)dz

∣

∣

∣

∣

6

∫

D1

P(k,k+1)(x, z) lim sup
k→∞

∣

∣

∣
P(k+1,k+2)(z, S)− P̂(k+1,k+2)(z, S)

∣

∣

∣
dz

+

∫

D1

lim sup
k→∞

∣

∣

∣
P(k,k+1)(x, z)− P̂(k,k+1)(x, z)

∣

∣

∣
P̂(k+1,k+2)(z, S)dz

= 0. (61)

Similarly, for any v > 1, we can prove that

lim
k→∞

∣

∣

∣
P(k,k+v)(x, S)− P̂(k,k+v)(x, S)

∣

∣

∣
= 0, ∀x ∈ D1, ∀S ∈ F1. (62)

In addition, using the property of the invariant probability measure π(·), for any distribution function
λ(x) on (D1,F1), we know that

lim
n→∞

∣

∣

∣

∣

∫

x∈D1

λ(x)P̂(k,k+n)(x, S)dx − π(S)

∣

∣

∣

∣

= 0, ∀k > k2. (63)

From (62) and (63), for any ǫ > 0, there exists N1 > k2 such that for all N2 > 2N1,

∣

∣

∣
P(k2+N1,k2+N2)(x, S)− P̂(k2+N1,k2+N2)(x, S)

∣

∣

∣
6

ǫ

2
,

and
∣

∣

∣

∣

∫

D1

P(k2,k2+N1)(x, z)P̂(k2+N1,k2+N2)(x, S)dx− π(S)

∣

∣

∣

∣

6
ǫ

2
.

Then, we have
∣

∣

∣
P(k2,k2+N2)(x, S) − π(S)

∣

∣

∣
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6

∣

∣

∣

∣

∫

D1

P(k2,k2+N1)(x, z)
[

P(k2+N1,k2+N2)(z, S)− P̂(k2+N1,k2+N2)(z, S)
]

dz

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

D1

P(k2,k2+N1)(x, z)P̂(k2+N1,k2+N2)(z, S)dz − π(S)

∣

∣

∣

∣

6

∫

D1

P(k2,k2+N1)(x, z)
∣

∣

∣
P(k2+N1,k2+N2)(z, S)− P̂(k2+N1,k2+N2)(z, S)

∣

∣

∣
dz +

ǫ

2

6
ǫ

2

∫

D1

P(k2,k2+N1)(x, z)dz +
ǫ

2
6 ǫ. (64)

Hence, we can prove that

lim
n→∞

∣

∣

∣
P(k2,k2+n)(x, S)− π(S)

∣

∣

∣
= 0.

Thus {Φk, k > k2} is ergodic (Harris recurrent and aperiodic), and π(·) is its invariant probability
measure on the invariant space D1.

Let E1 = [1n×n,0n×m] ∈ R
n×(n+m) and Eτ

2 = [1,01×(2n+m)], where 1n×n ∈ R
n×n has all elements

with 1. From the definition of Φ̂k, we have x̂k = E1Φ̂kE2, and similarly, xk = E1ΦkE2. Now, let L(x) ,
xτQx+ uτ0(x, θ∗)Ru0(x, θ

∗). Using the strong law of large numbers introduced in [29] (Theorem 17.1.7,
pp. 416), we have

JMPC
N (u0; θ

∗) = lim
n→∞

1

n− k2

n
∑

k=k2+1

L(x̂k) =

∫

D1

L(E1ΦE2)π(Φ)dΦ = lim
n→∞

1

n− k2

n
∑

k=k2+1

L(xk). (65)

From Assumption 3, the controller u0(xk, θk) continuously depends on xk and θk. Hence, because θk
converges to θ∗ and ξk converges to 0, we have

lim sup
n→∞

1

n− k2

n
∑

k=k2+1

(xτ
kQxk + uτ

kRuk) = lim sup
n→∞

1

n− k2

n
∑

k=k2+1

L(xk) = JMPC
N (u0; θ

∗), a.s. (66)

Because k2 is finite, we have

lim sup
T→∞

1

T

T−1
∑

k=0

(xτ
kQxk + uτ

kRuk) = JMPC
N (u0; θ

∗), a.s.

6 Conclusion

In this paper, we proposed an adaptive MPC for discrete-time-constrained linear stochastic systems with
unknown parameters. This technique relies on the design of the finite horizon constrained linear-quadratic
optimization problem associated with the estimate at each step. Under some reasonable assumptions, we
give a WLS estimation-based MPC algorithm in the general formulation and prove the convergence of this
adaptive MPC by using the Markov chain ergodic theory together with powerful methods in stochastic
adaptive control. It is worth mentioning that the similar method may be used to design adaptive MPC
in the continuous-time case.

However, one of the desirable goals of adaptive MPC is to cope with possibly time-varying unknown
parameters in uncertain dynamic systems, which belongs to further investigation. Moreover, combining
machine learning with adaptive MPC is also an attractive research direction, since machine learning may
help us to find some stabilizing MPC, which can then be used in the design of the adaptive MPC to
further improve the adaptivity and performance of the closed-loop control systems.
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Appendix A The proof of Lemma 2

Proof. From (3) of Lemma 1, there exists a random matrix θ such that limk→∞ θk = θ̄. In addition, from the definition of Pk, it is

easy to know that {Pk, k > 0} is a non-increasing positive definite matrix sequence, so there exists P∞ such that limk→∞ Pk = P∞.

We now prove the lemma by separately considering three cases.

Case 1: P∞ = 0. From Lemma 1 (1), we know that θ̄ = θ∗. Now, considering the set B0(µ
1/(2n+m)) , {x ∈ M(n +

m,n)|‖x‖ 6 µ1/(2n+m)}, we know that L(B0(µ
1/(2n+m))) > µ. Since θ∗ ∈ Θo, there exists a positive number ε1 such that

ε1 + ε1µ
1/(2n+m) < hθ − ‖θ∗‖. Then, for the given ε1, there exists a time t1 such that for all k > t1,

‖θk − θ∗‖ 6 ε1, ‖P
1/2
k ‖ 6 ε1. (A1)

Hence, for any x ∈ B0(µ
1/(2n+m)) and k > t1, we have

‖θk + P
1/2
k x‖ 6 ‖θ∗‖ + ‖θk − θ∗‖ + ‖P

1/2
k ‖‖x‖ 6 ‖θ∗‖ + ε1 + ε1µ

1/(2n+m) < hθ. (A2)

Thus, fk(x) > 0, ∀k > t1. Now, letting Nk , {x ∈ Ak|gk(x) = 0, hk(x) = 0}, we know that L(Nk) = 0 [22]. Then, it is easy to

know that

B0

(

µ
1/(2n+m)

)

− Nk ⊆ Ak, ∀k > t1.

Hence, we have

B0

(

µ1/(2n+m)
)

−
∞
⋃

i=t1

Ni ⊆
k
⋂

i=t1

Ai, ∀ k > t1.

Thus, L(
⋂k

i=t1
Ai) > µ, ∀ k > t1; hence, there exists a time t0 6 t1 such that Dk =

⋂k
i=t0

Ai and L(Dk) > µ, ∀k > t1.

Case 2: P∞ 6= 0, det(P∞) = 0. From (1) of Lemma 1, there exists a bounded sequence {β∗
k} such that

θ∗ = θk + P
1/2
k β∗

k .
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Hence, there exists a convergent subsequence {β∗

kt
, t > 0} whose limit is β∗. Since θ∗ ∈ Θo and P∞ 6= 0, there exists a positive

number ε2 ∈ (0, 1) small enough such that

ε2

[

1 + µ
1/(2n+m)

+ ε2‖β
∗
‖ + ε2(µε2)

1
2n+m

]

+ ‖P
1/2
∞ ‖(µε2)

1/(2n+m)
< hθ − ‖θ

∗
‖,

and for the given ε2, there exists a time t2 such that for all k > t2,

‖θk − θ̄‖ 6 ε2, ‖P
1/2
k − P 1/2

∞
‖ 6 ε22. (A3)

Now, consider a set S = β∗ + S1 ⊕ S2, where

S1 =
{

y ∈ M(n + m,n)
∣

∣

∣P
1/2
∞ y 6= 0, ‖y‖ 6 (µε2)

1/(2n+m)
}

,

S2 =

{

z ∈ M(n + m,n)
∣

∣

∣
P 1/2

∞
z = 0, ‖z‖ 6

µ1/(2n+m)

ε2

}

,
(A4)

and it is not difficult to see that L(S) > µ. For any x ∈ S, there exist y ∈ S1 and z ∈ S2 such that x = β∗ + y + z and

‖x‖ 6 ‖β∗‖ + (µε2)
1/(2n+m) + µ1/(2n+m)

ε2
. Then, for any k > t2, we have

‖θk + P
1/2
k x‖ 6 ‖θ̄ + P 1/2

∞
β∗‖ + ‖θk − θ̄‖ + ‖P

1/2
k x − P 1/2

∞
β∗‖

6 ‖θ∗‖ + ε2 + ‖P
1/2
t − P 1/2

∞
‖‖x‖ + ‖P 1/2

∞
(x − β∗)‖ 6 ‖θ∗‖ + ε2 + ‖P

1/2
t − P 1/2

∞
‖‖x‖ + ‖P 1/2

∞
‖‖y‖

6 ‖θ∗‖ + ε2

[

1 + µ1/(2n+m) + ε2‖β
∗‖ + ε2(µε2)

1
2n+m

]

+ ‖P 1/2
∞

‖(µε2)
1/(2n+m) < hθ.

(A5)

Hence, similar to the analysis in Case 1, we have

S −
∞
⋃

i=t2

Ni ⊆
k
⋂

i=t2

Ai, ∀ k > t2.

Thus, L(
⋂k

i=t2
Ai) > µ, ∀ k > t2; hence, there exists a time t0 6 t2 such that t(k) = t0, i.e., Dk =

⋂k
i=t0

Ai and L(Dk) >
µ, ∀k > t2.

Case 3: P∞ > 0. From (1) of Lemma 1, we know that θ̄1 exists such that ‖θ̄1‖ < hθ − η1 and ‖P
−1/2
k (θk − θ̄1)‖ = O(1), where

η1 is a given number such that ‖P 1/2
∞

‖µ1/(2n+m) < η1 < hθ .

Similarly, there is a bounded convergent sequence {β1
k} such that

θ̄1 = θk + P
1/2
k β

1
k,

and let β1 = limk→∞ β1
k.

Now, consider the set Bβ1 (µ
1/(2n+m)) , {x ∈ M(n + m,n)|‖x − β1‖ 6 µ1/(2n+m)} and take a small enough number ε3 such

that ε3(ε3 +µ1/(2n+m) + ‖P 1/2
∞ ‖) < η1 −‖P 1/2

∞ ‖µ1/(2n+m). Then, for the given ε3, there exists a time t3 such that for all k > t3,

‖β1
k − β1‖ 6 ε3, ‖P

1/2
k − P 1/2

∞ ‖ 6 ε3. (A6)

For any x ∈ Bβ1 (µ
1/(2n+m)) and k > t3, we have

‖θk + P
1/2
k x‖ 6 ‖θ̄1‖ + ‖P

1/2
k ‖(‖x − β1‖ + ‖β1

k − β1‖)

6 hθ − η1 + (ε3 + ‖P 1/2
∞

‖)(ε3 + µ1/(2n+m)) < hθ.
(A7)

Hence, similar to the analysis in Case 1, we have

Bβ1

(

µ1/(2n+m)
)

−
∞
⋃

i=t3

Ni ⊆
k
⋂

i=t3

Ai, ∀ k > t3.

Thus, L(
⋂k

i=t1
Ai) > µ, ∀ k > t3; hence, there exists a time t0 6 t3 such that t(k) = t0, i.e., Dk =

⋂k
i=t0

Ai and L(Dk) >
µ, ∀k > t3.

Finally, note that Dk =
⋂k

i=t0
Ai for all k > t1 and that Dk ⊇ Dk+1 and L(Dk) > µ; hence, D∞ exists and L(D∞) > µ.

Appendix B The proof of Lemma 3

First, by the definition of ηk, it easy to know that Fk(ηk) > 0; hence,

Fk(βk) >
Fk(ηk)

1 + γ
> 0. (B1)

Thus, θ̂k ∈ Θ for all 0 6 k < ∞.



Chen H, et al. Sci China Inf Sci May 2023 Vol. 66 152201:17

Next, we prove that there exists a positive random variable δ∞ > 0 such that

lim sup
k→∞

Fk(ηk) > δ∞, a.s. (B2)

Note that for any adaptive input {uk}, the random process Fk(·) is measurable with respect to the σ-algebra σ{ωi, ηi−1, i 6
k} , Gk−1. Let I(·) denote the indicator function of a set and µk(·) denote the probability density measure of uniform distribution

on Dk. Without loss of generality, we only consider the case of k > t1. It is easy to find that Dk+1 ⊆ Dk.

Let

δk , max
x∈Dk

Fk(x),

Ek ,
{

x ∈ Dk : Fk(x) >
δk

2

}

.

Because θk, P
1/2
k , and δk are Gk−1-measurable, and ηk is independent of Gk−1, we have

P

(

Fk(ηk) >
δk

2
|Gk−1

)

=

∫

x∈Dk

I

(

Fk(x) >
δk

2

)

µkdx

= µk(Ek) > µt1 (Ek).

(B3)

We now proceed to show that µt1 (Ek) 6→ 0 a.s. as k → ∞. Let F (x) , limk→∞ Fk(x). From the proof of Lemma 2, we have that

µ 6 L(D∞) < ∞, which implies that maxx∈D∞ F (x) > 0. Furthermore, it is easy to see that Fk(x) converges to F (x) uniformly

on a bounded set. Consequently, δk → δ∞ with δ∞ = maxx∈D∞ F (x) > 0, a.s.

Since F (x) is a continuous function, we have L(E∞) > 0 a.s., where E∞ is defined by

E∞ = {x ∈ D∞ : F (x) > λδ∞},
1

2
< λ < 1.

Hence, it is easy to see from the convergence of {Fk(x), δk} to {F (x), δ∞} that for a sufficiently large k, L(Ek) > L(E∞), which

implies that µt1 (Ek) 6→ 0 a.s. since µt1 (Ek) =
L(Ek)

L(Dt1
)
.

Hence, by (B3), we have that
∞
∑

k=1

P

(

Fk(ηk) >
δk

2
|Gk−1

)

= ∞, a.s.

Consequently, by the Borel-Cantelli-̀Lévy Lemma, we have

∞
∑

k=1

P

(

Fk(ηk) >
δk

2

)

= ∞, a.s.,

which implies that

lim sup
k→∞

Fk(ηk) >
1

2
lim

k→∞
δk =

δ∞

2
> 0, a.s.

Hence, Eq. (B2) is proven.

Using the method introduced in [22], we can prove that there are positive variables δ1 and km such that

F (βk) > δ1, a.s., ∀k > km, (B4)

and that the limit limk→∞ F (βk) = F exists and F > 0 a.s.

To summarize, the proof of (2) of Lemma 3 is completed.

The proof for the other part of Lemma 3 is similar to the proof in [22].


	Introduction
	Problem statement
	WLS estimation and random regularization
	WLS estimation
	Random regularization

	Optimal adaptive MPC algorithm and main results
	Proofs of the main results
	The proof of Theorem 1
	The proof of Theorem 2

	Conclusion
	The proof of Lemma 2
	The proof of Lemma 3

