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Abstract Triangle packing problem has been paid lots of attention to in the literature. In this paper, we

study the kernelization of the triangle packing problem in tournaments. For the parameterized arc-disjoint

triangle packing problem in tournaments, we find a maximal arc-disjoint triangle packing with the number of

vertices bounded by 2.5k. Based on the relation between the maximal arc-disjoint triangle packing and the

vertices outside of the packing, a kernel of size 3.5k for the problem is obtained, improving the previous best

one 6k. For the parameterized vertex-disjoint triangle packing problem in sparse tournaments, several new

properties between the triangles in maximal vertex-disjoint triangle packing and the arcs in the feedback arc

set are presented, which result in a kernel of size 7k for the problem, improving the previous best one of 15k.

We also give a 7k vertex kernel for the parameterized feedback vertex set problem in sparse tournaments.

The kernelization process presented in this paper for the parameterized arc-disjoint triangle packing can be

applied to solve the parameterized arc-disjoint triangle packing problem on other restricted directed graph

classes.
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1 Introduction

Cycle packing problem forms an important class of problems in graph theory and computer science, which
has applications in many fields, such as computational biology, kidney exchange program, etc. [1–3]. The
problem is, given a graphG, to find the maximum number of (vertex or arc/edge) disjoint cycles of G. The
cycle packing problem has been studied extensively from approximation and parameterized algorithms
points of view [4–8]. As a special case of the cycle packing problem, the triangle packing problem has
also been paid lots of attention. For undirected graphs, the edge-disjoint triangle packing problem is
known to be NP-hard [9], even restricted to planar graphs with a maximum degree of five [10]. Kann [11]
proved that in undirected graphs the edge-disjoint triangle packing problem is APX-complete even for
graphs with a maximum degree of four. Chleb́ık and Chleb́ıková [12] proved that it is NP-hard to obtain
an approximation factor better than 0.9929 for the edge-disjoint triangle packing problem.

Given a graph G and a nonnegative integer k, the parameterized triangle packing problem is to find at
least k (vertex or arc/edge) disjoint triangles, or report that no such packing exists. Given an instance
(G, k) of a problem Q, if it can be solved in f(k) · nc time, then we call such problem fixed-parameter
tractable (FPT). Besides the cycle/triangle packing problems, there are other important problems that
have been well-studied, such as vertex cover and so on [13–16]. A problem admits a kernel if there is
an algorithm that transforms (G, k) into a new instance (G′, k′) such that (G, k) is a yes-instance if and
only if (G′, k′) is a yes-instance, where k′ 6 k, and |G′| 6 g(k) for some computable function g. The size
|G′| is also called the size of the kernel. A problem is FPT if and only if it admits a kernel [17]. Since
FPT implies a kernel, one important direction is whether a problem admits a polynomial-size kernel,
and many techniques are proposed for this purpose, see [18]. The existence of a polynomial kernel is
also a crucial step for designing other algorithms. For example, the first step of many subexponential
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parameterized algorithms—the running time is 2o(k) · nO(1), needs a polynomial kernel for bounding the
size of the input by kO(1) [19–25]. Although there may be other methods to compute large-scale graphs,
e.g., parallel algorithms [26], the existence of a polynomial kernel can reduce the large graph to a small
graph and the kernelization algorithm can be easy to implement in practice and can be easy to analyze
in theory.

For the parameterized edge-disjoint triangle packing in undirected graphs, Shaw et al. [27] gave a kernel
of size 4k. Yang [28] presented an improved kernel of size 3.5k. Lin and Xiao [29] presented a kernel of
size (3 + ǫ)k for the parameterized edge-disjoint triangle packing.

A tournament is a directed graph in which there is a single arc between every pair of distinct vertices,
which has been studied extensively in graph theory [30]. The tournaments are also widely used to make
selection models and search models [31–34] in artificial intelligence and machine learning. A feedback arc
set of a given graph is a set of arcs whose deletion results in an acyclic graph. A tournament is sparse
if it admits a feedback arc set that is matching in the tournament. For a set P of triangles, if no two
triangles in P have common arcs, then P is called an arc-disjoint triangle packing; if no two triangles in
P have common vertices, then P is called a vertex-disjoint triangle packing. In this paper, we study the
following problems.

• Parameterized Arc-Disjoint Triangle Packing in Tournaments (k-ATP-T): Given a tourna-
ment T and a parameter k, the problem is to decide whether there is an arc-disjoint triangle packing of
size at least k.

• Parameterized Vertex-Disjoint Triangle Packing in Sparse Tournaments (k-TP-ST): Given
a sparse tournament T and a parameter k, the problem is to decide whether there is a vertex-disjoint
triangle packing of size at least k.

• Parameterized Feedback Vertex Set in Sparse Tournaments (k-FVS-ST): Given a sparse tour-
nament T and a parameter k, the problem is to decide whether there is a vertex set S of size at most k
such that ‘the graph’ T − S contains no directed cycle.

Bessy et al. [35] gave a kernel of size 6k for the k-ATP-T problem. Bessy et al. [36] presented a
kernel of size 15k for the k-TP-ST problem. Le et al. [37] proved that the parameterized vertex-disjoint
triangle packing in tournaments has a kernel with O(k1.5) vertices. Whereas, the arc-disjoint triangle
packing problem, the arc-disjoint cycle packing problem, and the feedback arc set problem can be solved
in polynomial time in sparse tournaments [35]. The parameterized feedback vertex set in tournaments
is also an interesting problem. Fomin et al. [37] gave an O(k1.5) vertex kernel for the parameterized
feedback vertex set problem in tournaments.

We point out that the kernel of size 3.5k for the parameterized edge-disjoint triangle packing problem on
undirected graphs in [28] and the kernel of size (3+ǫ)k in [29] cannot be applied to solve the parameterized
arc-disjoint triangle packing problem in tournaments, because some structures cannot be broken by the
reduction rules in [28,29], e.g., (1) a K4 broken by Rule 3 in [28] cannot be extended to the tournaments
and (2) the definition of ‘span’ in [29] cannot be extended to the tournaments.

In this paper, for the k-ATP-T problem, we give a process to find a maximal arc-disjoint triangle
packing, which guarantees that the number of vertices in this maximal arc-disjoint triangle packing is
bounded by 2.5k. Based on the arcs in maximal arc-disjoint triangle packing and the vertices outside
the packing, a bipartite graph can be constructed. By studying the relation between maximum matching
in the bipartite graph and arc-disjoint triangle packing, we get that the number of vertices outside the
maximal arc-disjoint triangle packing is bounded by k. Thus, a 3.5k vertex kernel is obtained for the
k-ATP-T problem, improving the current best result of 6k. For the k-TP-ST problem, we study the
relation between maximal vertex-disjoint triangle packing and the feedback arc set. By bounding the
number of arcs in the feedback arc set through the triangles in maximal vertex-disjoint triangles, a kernel
of size 7k is given for the k-TP-ST problem, which improves the current best result of 15k. We also give
a 7k vertex kernel for k-FVS-ST. We point out that the kernelization process presented in this paper can
be applied to solve the parameterized arc-disjoint triangle packing problem on other restricted directed
graph classes.

2 Preliminaries

Given a digraph D = (V,A), for two vertices u, v ∈ V , let (u, v) denote an arc oriented from u to v. For
a subset V ′ ⊆ V , let D[V ′] be the subgraph induced by V ′. For a subset A′ ⊆ A of arcs, let V (A′) be the
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set of vertices contained in A′, and let D[A′] denote the subgraph constructed by the vertices in V (A′)
and all the arcs in A′. For three vertices u, v, w ∈ V , a triplet (u, v, w) is a triangle if the vertices u, v, and
w construct a directed cycle. For a subset V ′ ⊆ V , let D\V ′ denote the graph obtained by removing the
vertices in V ′ from D. Similarly, for a subset A′ ⊆ A, let D\A′ denote the graph obtained by removing
arcs in A′ from D. Given an undirected graph G, for two vertices x, y ∈ G, an edge between x and y is
denoted by xy. Let N(x) be the set of neighbors of x in G. For an arc-disjoint or vertex-disjoint triangle
packing P , let A(P ) be the set of arcs contained in the triangles of P , and let V (P ) be the set of vertices
in P .

For a given instance (T, k) of the k-ATP-T problem, an arc-disjoint triangle packing of size at least k in
T is called a proper arc-disjoint triangle packing if the instance is yes. Hence, when we consider a proper
arc-disjoint triangle packing, we always assume that the input instance is yes. For a proper arc-disjoint
triangle packing P , if no triangle in T \A(P ) can be added to P to get a larger packing, then P is called
a maximal proper arc-disjoint triangle packing. For an arc (u, v) in a triangle (u, v, w), if (u, v) is shared
with other triangles in T , then (u, v) is called a shared arc. A triangle is called a d-shared triangle if it
has d shared arcs. For a 0-shared or 1-shared triangle (u, v, w), if (u, v, w) shares no arc with 2-shared
or 3-shared triangles, then (u, v, w) is called a type-i triangle. A triangle that is not a type-i triangle is
called a type-ii triangle. For a triangle t, let V (t) be the set of vertices in t, and let S(t) denote the set of
type-ii triangles such that each triangle in S(t) has one arc shared with t. Let Q be arc-disjoint triangle
packing. For a triangle (u, v, w) in Q, if (u, v, w) shares no vertex with other triangles in Q, then (u, v, w)
is called an independent triangle in Q. Let I(Q) denote the set of independent triangles in Q.

For a given instance (T, k) of the k-TP-ST problem, a vertex-disjoint triangle packing of size at least
k in T is called a proper vertex-disjoint triangle packing. A feedback arc set F that is matching in T is
called a matched feedback arc set.

In this paper, we present several operations, called reduction rules, for designing the kernelization
algorithm. We use reduction rules on an instance (G, k) to bound the size of the new instance (G′, k′),
i.e., the size of G′. When we apply a rule, we may delete some vertices, some edges, or even some
components. After applying a rule, we need to prove that the rule is safe, that is, after applying a
reduction rule, the new instance (G′, k′) is yes if and only if the original instance (G, k) is yes.

3 A 3.5k vertex kernel for k-ATP-T

In this section, we present a 3.5k vertex kernel for k-ATP-T. We first find two arc-disjoint triangle packings
M1 and M2, and then bound the size of graphs containing M1 and M2, respectively. Note that the two
graphs maybe intersect. From the size of the two graphs, we bound the size of the reduced graph by 3.5k
vertices. Given an instance (T, k) of the k-ATP-T problem, we give the following rule, which can help us
bound the size of the graph containing M1.

Rule 1. For any vertex u in T , if u is not contained in any triangle, then delete u from T .

We can apply Rule 1 by a simple method. For each vertex v, we check whether v is contained in some
triangle. If v is not contained in any triangle, then we remove it from T . If each vertex in T is contained
in some triangles, then we call (T, k) a reduced instance by applying Rule 1.

Lemma 1. Given a yes-instance (T, k), for any triangle (u, v, w), if (u, v, w) has at most one shared arc
in T , then there exists a proper arc-disjoint triangle packing that contains (u, v, w).

Proof. Assume that P is a maximal proper arc-disjoint triangle packing in T . We prove the lemma by
contradiction; i.e., suppose that there is a 0-shared or 1-shared triangle (u, v, w) not in P . We consider
the following two cases.

(1) Triangle (u, v, w) is 0-shared. In this case, the triangle (u, v, w) must be in P . Otherwise, a larger
arc-disjoint packing P ′ can be obtained by adding (u, v, w) to P , contradicting that P is a maximal
proper arc-disjoint triangle packing.

(2) Triangle (u, v, w) is 1-shared. Without loss of generality, assume that the arc (u, v) in (u, v, w)
is shared with the triangle (u, v, z). Assume that (u, v) is not in A(P ). Then, (u, v, z) must be in P .
Otherwise, a larger arc-disjoint packing P ′ can be obtained by adding (u, v, z) to P , contradicting that
P is a maximal proper arc-disjoint triangle packing. We construct a proper arc-disjoint triangle packing
P ′′ in the following way: add all triangles in P to P ′′, delete (u, v, z) from P , add (u, v, w) to P ′′, and
add all other possible arc-disjoint triangles in P ′′. It is easy to see that P ′′ is also a maximal proper
arc-disjoint triangle packing.
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Figure 1 The illustration of Tr(u, v). In (a), the set of triangles containing vertex 1 is X = {(1, 2, 3), (1, 2, 4), (1, 2, 5)}. The set of

triangles containing vertex 2 is also X. Hence, Tr(1, 2) = {(1, 2, 3), (1, 2, 4), (1, 2, 5)}. However, in (b), the set of triangles containing

vertex 1 is X1 = {(1, 2, 4), (1, 2, 5), (1, 3, 4)}, and the set of triangles containing vertex 2 is X2 = {(1, 2, 4), (1, 2, 5), (2, 3, 4)}. Since

X1 6= X2, Tr(1, 2) = ∅. One can also see that in (a), Tr(2, 3) = ∅. In (a), since Tr(1, 2) 6= ∅, by applying Rule 2, the vertices 1 and

2 can be removed from (a) and the parameter k is decreased by one.

Recall that when we consider a proper arc-disjoint triangle packing, we assume that the input instance
is yes. In the following, we omit this assumption.

Corollary 1. For any set Q of arc-disjoint triangles in T , if each triangle in Q has at most one shared
arc in T , then there exists a proper arc-disjoint triangle packing that contains all the triangles in Q.

Proof. We prove this corollary by contradiction. Suppose that P is a proper arc-disjoint triangle
packing such that t ∈ Q is not in P . If t is 0-shared, we can add t to P since no triangle in P shares
arc with t. If t is 1-shared and cannot be added to P , then t shares an arc with some triangle t′ ∈ P .
Since Q is arc-disjoint and t ∈ Q, we have that t′ /∈ Q. Let P = P\t′ ∪ {t}. Since we can always add one
triangle in Q to P while removing one triangle from P not in Q one by one, we have a proper arc-disjoint
triangle packing containing all the triangles in Q.

To design further reduction rules, we describe a structure. For an arc (u, v), if the set X of triangles
containing u is exactly the set of triangles containing v, then each triangle in X is 1-shared, and let
Tr(u, v) = X . If the set of triangles containing u is not the set of triangles containing v, then Tr(u, v) = ∅.
See Figure 1 for an illustration.

Lemma 2. For any two different vertices u and v in T , if Tr(u, v) is not empty, then for any triangle t
in Tr(u, v), there exists a proper arc-disjoint triangle packing that contains t.

Proof. Since each triangle t in Tr(u, v) has one shared arc, by Lemma 1, there exists a proper arc-disjoint
triangle packing that contains t.

By Lemma 2, we get the following reduction rule. The reader can take a look at Figure 1 as an example.

Rule 2. For any two different vertices u and v in T , if Tr(u, v) is not empty, then delete u and v from
T , and decrease k by one.

Let (T, k) be the reduced instance of the k-ATP-T problem by applying Rules 1 and 2. We now give an
algorithm to find two arc-disjoint triangle packings M1 and M2, as given in Algorithm 1. If the output of
the algorithm is “yes”, then in polynomial time, we have a kernel with empty size: the input instance is
yes if and only if the instance (∅, 0) is yes. If the output is not “yes”, the algorithm finds an arc-disjoint
triangle packing M1, in which each triangle is a type-i triangle. Based on M1, a subgraph T2 of T can be
constructed such that each triangle in T2 is a type-ii triangle. Then, an arc-disjoint triangle packing M2

from T2 can be found such that each triangle in M2 shares at least one vertex with other triangles in M2.

Theorem 1. Given an input instance (T, k) of the k-ATP-T problem, by calling algorithm MADP(T, k),
if the output is not “yes”, two sets M1,M2 can be returned in O(k2n5) time (n is the number of vertices
in T ) such that the following:

(1) Triangle packing M1 is arc-disjoint;
(2) Triangle packing M2 is arc-disjoint, in which each triangle shares at least one vertex with other

triangles in M2.

Proof. Since each type-i triangle added to M1 in step 5 shares no arc with other triangles in M1, after
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Algorithm 1 Maximal arc-disjoint packings (MADP)

Input: A tournament T , and a nonnegative parameter k.

Output: Return two arc-disjoint triangle packings M1,M2, and a subgraph T2, or return “yes”.

1: Apply Rules 1 and 2 exhaustively on T , and let T ′ denote the reduced graph;

2: M1 ← ∅, M2 ← ∅, k1 ← 0;

3: while k1 < k

4: if exist a type-i triangle t ∈ T ′\A(M1) then

5: M1 ← M1 ∪ {t}, k1 ← k1 + 1;

6: else break;

7: if k1 = k then return “yes”;//Implying that the instance is yes.

8: V2 ← ∅, A2 ← ∅, k2 ← 0;

9: V2 ← T ′\V (M1);

10: Let T2 be the subgraph induced by the vertices in V2;

11: for each vertex u in V (M1) do

12: if exist a type-ii triangle C containing u in T ′ then

13: V2 ← V2 ∪ {u};

14: for each arc e with u as an endpoint do

15: if e is not contained in M1 then add e to T2;

16: while (k2 < k − k1) and (exist a triangle t in T2\A(M2) or I(M2) 6= ∅)

//I(M2) denotes the set of independent triangels in M2.

17: if M2 = ∅ then M2 ←M2 ∪ {t}, k2 ← k2 + 1;

18: else

19: if exist a triangle t ∈ T2\A(M2) such that V (t) ∩ V (M2) 6= ∅ then

20: M2 ←M2 ∪ {t}, k2 ← k2 + 1;

21: else find a triangle in T2\A(M2) arbitrarily, add it to M2, and k2 ← k2 + 1;

22: if exist no triangle in T2\A(M2) then

23: if exist a triangle t ∈ I(M2) then

24: Find a triangle t′ ∈ S(t) with maximum shared arcs; //S(t) denotes the set of type-ii triangles sharing one arc with t.

25: M2 ← (M2\{t}) ∪ {t
′};

26: if k1 + k2 > k then return “yes”;//Implying that the instance is yes.

27: return M1, M2, and T2.

the executions of steps 3–6, if M1 is not empty, then no triangle in M1 shares an arc with other triangles
in M1. Thus, M1 is an arc-disjoint triangle packing. In steps 8–15, a subgraph T2 can be constructed.
Since no arc in A(M1) is added to T2 in steps 8–15, no type-i triangle is contained in T2. Thus, if T2 has
any triangle, it contains only type-ii triangles. In steps 16–21, if M2 is empty, then any triangle in T2

can be added to M2 if it exists. Moreover, if there exists a triangle t in T2\A(M2), then t is added to
M2. Thus, all the triangles added to M2 in steps 16–21 share no arc with other triangles in M2.

Assume that the algorithm reaches step 22, i.e., no triangle is contained in T2\A(M2). Then, M2

obtained so far is a maximal arc-disjoint triangle packing. However, there may exist some independent
triangles in M2. In order to guarantee that each triangle in M2 shares at least one vertex with other
triangles in M2, we need to replace the independent triangles in M2 in steps 23–25. For the independent
triangle t in M2 found in step 23, we prove the following claims.

Claim 1. Before executing steps 22–25, if t is a 1-shared triangle contained in M2, then for any triangle
t1 in S(t), the vertex in V (t1)\V (t) is contained in V (M2).

Proof. Let t = (u, v, w). Without loss of generality, assume that (u, v) is the shared arc. For any
triangle t1 in S(t), assume that t1 = (u, v, z). Suppose that z is not in V (M2). Thus, all the arcs with z
as an endpoint are not in M2. Because (u, v, w) is an independent triangle, all the arcs with u, v, or w as
an endpoint are also not in M2. Since (u, v, z) is a 2-shared or 3-shared triangle, there exists a triangle t′′

that shares one arc (not (u, v)) with (u, v, z). Assume that t′′ and (u, v, z) share the arc (v, z). Obviously,
t′′ shares vertex v with the triangle (u, v, w). Since z is not in M2, all the arcs in t′′ are not contained
in M2, which implies that t′′ can be added to M2 to get a larger packing, contradicting the condition in
step 22. Therefore, z is contained in M2.

Claim 2. The execution of step 25 does not change any nonindependent triangle in M2 into an inde-
pendent triangle.

Proof. Let t = (u, v, w). Since (u, v, w) shares no vertex with other triangles in M2, all the arcs in T2

with u or v as an endpoint are not in M2. It is not hard to observe that each arc in t′ has u or v as an
endpoint, implying that no arc of t′ is in M2\{t}. Thus, after the execution of step 25, nonindependent
triangles are not changed.

Claim 3. Let t be the independent triangle found in step 23, and let t′ be the triangle obtained in
step 24. After the executions of steps 22–25, if t is a type-ii triangle, then step 20 will be executed again,
and after that t′ is not an independent triangle in M2.
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Proof. Let t = (u, v, w). Without loss of generality, assume that (u, v) and (v, w) are two shared arcs
in t. Let t′ = (u, v, z). Since (u, v, w) shares no vertex with other triangles in M2, all the arcs with u, v,
or w as an endpoint are not contained in M2. Thus, no arc of (u, v, z) is in M2\{t}. In step 25, triangle
(u, v, w) is deleted from M2, and t′ is added to M2. It is easy to see that the new M2 is still an arc-disjoint
triangle packing. After the executions of steps 22–25, since t is a type-ii triangle, there exists another
triangle t′′ such that t′′ and t share one arc (not arc (u, v)), and no arc of t′′ is contained in M2, i.e., t

′′

is contained in T2\A(M2). Thus, for the ‘while’ loop in step 16, the condition is satisfied, and a triangle
that shares one vertex with t′ is added to M2 in step 20. Therefore, t′ is not an independent triangle in
M2.

By Claims 1–3, we get that M2 is an arc-disjoint triangle packing, in which each triangle shares at
least one vertex with other triangles in M2.

The triangles in T can be found in O(n3). All the triangles with bounded shared arc can be found in
O(n4) time. Thus, steps 3–7 can be executed in O(kn4) time. Since the number of vertices in V (M1) is
bounded by 3k, the number of arcs with u as an endpoint is bounded by n, and the number of edges in
M1 is bounded by 3k, steps 10–15 take O(k2n5) time. The conditions in step 16 can be checked in O(n3)
time. Steps 19–21 take time O(n3). The condition in step 22 can be checked in O(n3) time, and the
condition in step 23 can be checked in O(k2) time. For step 24, S(t) can be constructed in O(n) time. In
step 25, the triangle t′ can be found in O(n4) time. Thus, steps 16–25 can be executed in O(kn4) time.
Then, the running time of algorithm MADP is bounded by O(k2n5).

For two triangles t and t′ in T , if t shares at least one vertex with t′, then we call that t is adjacent to
t′. If t and t′ have no common vertex and there exists a sequence of triangles (t, t1, . . . , ti, t

′) such that
tj is adjacent to tj+1 (1 6 j < i), t is adjacent to t1, and ti is adjacent to t′, then we call that t′ can
be reached by t. Given a set Q of arc-disjoint triangles, for each pair of triangles t and t′ in Q, if t is
adjacent to t′ or t can be reached by t′ using only the triangles in Q, then we call that Q is a connected
packing.

Lemma 3. Given a reduced instance (T, k) of the k-ATP-T problem, for the arc-disjoint packing M2

returned by algorithm MADP, the number of vertices in M2 is bounded by 2.5|M2|.

Proof. For the triangles in M2, let {Q1, . . . , Qi} be the collection of maximal connected packings such

that Qj ∩Qj′ = ∅ (1 6 j, j′ 6 i, j 6= j′) and
⋃i

j=1 Qj = M2. It is easy to get that |Q1|+ · · ·+ |Qi| = |M2|.
For any Qj (1 6 j 6 i) in {Q1, . . . , Qi}, since each triangle in M2 shares at least one vertex with other
triangles in M2, the size of Qj is at least two. We now prove the following claim which is used to prove
this lemma.

Claim 4. The number of vertices contained in Qj is bounded by 2|Qj|+ 1.

Proof. Let h be the number of triangles contained in Qj. We prove the claim by induction on h. For
the case that h = 2, i.e., Qj contains two triangles, since Qj is a connected packing, the two triangles
in Qj share one vertex. Thus, the number of vertices in V (Qj) is five, which is 2h+ 1. Now we assume
that any connected packing Qj of size h = d has at most 2d + 1 vertices. We consider the case that
h = d+1. For any Qj with d+1 arc-disjoint triangles, since Qj has d+1 triangles, a subset Q′ of size d
of Qj can be found such that Q′ is also a connected packing. Otherwise, Qj is not a connected packing.
Let t be the triangle in Qj\Q′. By induction assumption, Q′ has at most 2|Q′| + 1 vertices. Since Qj

is a connected packing, t must have at least one vertex shared with the triangles in Q′. Thus, we get
V (Qj) 6 2d+ 1 + 2 = 2(d+ 1) + 1.

Therefore, by Claim 4, the total number of vertices contained in {Q1, . . . , Qi} is

i∑

j=1

(2|Qj|+ 1) = 2(|Q1|+ · · ·+ |Qi|) + i = 2|M2|+ i.

Since Qj (1 6 j 6 i) contains at least two triangles, i is bounded by 1
2 |M2|. Thus, the total number of

vertices contained in {Q1, . . . , Qi} is bounded by 2|M2|+
1
2 |M2| = 2.5|M2|.

Let (T, k) be the reduced instance obtained by applying Rules 1 and 2 exhaustively. We now analyze
the number of vertices in M1. By Corollary 1, we can get the following reduction rule.

Rule 3. Given a reduced instance (T, k) of the k-ATP-T problem, for the arc-disjoint packing M1

returned by algorithm MADP, let Q be a maximal connected packing in M1. If V (Q) ∩ V (T2) = ∅, then
delete the vertices in Q from T and M1, and k = k − |Q|.

Let (T, k) be the reduced instance obtained by applying Rules 1–3 exhaustively.
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Lemma 4. Given a reduced instance (T, k) of the k-ATP-T problem, for the arc-disjoint packing M1

applying Rule 3, the number of vertices in V (M1)\V (T2) is bounded by 2|M1|.

Proof. We first prove that for any maximal connected packing Q of M1, the number of vertices in
V (Q)\V (T2) is at most 2|Q|. For the case that Q has only one triangle, because Rule 3 cannot be applied
anymore on T , the triangle in Q must have at least one vertex shared with the triangles in T2. Thus,
the number of vertices in V (Q)\V (T2) is at most two. Now we assume that the size of Q is at least two.
Since Q is a connected packing, similar to the proof of Claim 4, we can get that the number of vertices
in Q is bounded by 2|Q|+ 1. Because there must exist at least one vertex in V (Q) that is contained in
V (T2), the number of vertices in V (Q)\V (T2) is bounded by 2|Q|.

Let {P1, . . . , Pi} be the collection of maximal connected packings in M1 such that Pj ∩ Pj′ = ∅

(1 6 j, j′ 6 i, j 6= j′), and
⋃i

j=1 Pj = M1. We get that

|V (M1)\V (T2)| = |V (P1)\V (T2)|+ · · ·+ |V (Pi)\V (T2)|

= 2|P1|+ · · ·+ 2|Pi| = 2|M1|.

We now analyze the number of vertices in T2. Let V12 = V (M1) ∩ V (T2); i.e., V12 is the set of vertices
both in M1 and T2. To bound the number of vertices in T2, we construct a bipartite graph. For each
arc e in M2, add a vertex ve to Y . Add all the vertices in V (T2)\V (M2) to B. We construct a bipartite
graph G = (Y ⊎ B,E) as follows. For two vertices u ∈ Y and v ∈ B, if there is a triangle constructed
by the corresponding arc of u and vertex v in T2, then add an edge uv to E. Let H be a maximum
matching in the bipartite graph G. Based on H , each edge in H corresponds to a triangle. Since H is
a matching, any two edges h1, h2 in H share no vertex. The two triangles t1 and t2 corresponding to h1

and h2 respectively share at most one vertex, hence arc-disjoint. Thus, the matching H corresponds to
an arc-disjoint triangle packing in T2 of size |H |. By Corollary 1, if |H | > k − |M1|, then we get that
(T, k) is a yes-instance. In the following, we assume that the size of H is less than k − |M1|.

Lemma 5. Let (T, k) be an input instance of k-ATP-T and let T2 be the subgraph returned by the
algorithm MADP. For any subset X of B\(V (H) ∪ V12), if there exists a proper arc-disjoint triangle
packing S of T containing the vertices in X , then there exists a subset X ′ of V (H)∩B such that a proper
arc-disjoint triangle packing S′ can be constructed satisfying that (1) S′ contains the vertices in X ′ and
no vertex in X ; (2) |S′| = |S|.

Proof. Assume that S is a proper arc-disjoint triangle packing in T containing the vertices in X . Let
S1 = S ∩M1. If S1 is not empty, then delete the triangles in S1 from S. Based on the bipartite graph
G = (Y ⊎ B,E), we construct a new bipartite graph G′ = (Y ⊎B,E′) as follows. Let E′ = E. For each
edge uv in E\H , assume that u is contained in Y , and v is contained in B. If the triangle constructed
by the corresponding arc of u and vertex v is not in S, then delete edge uv from E′. Let K = E′\H . It
is easy to see that for each edge uv in K, where u is contained in Y and v is contained in B, the triangle
constructed by the corresponding arc of u and vertex v is contained in S.

For any vertex x in X , we now build a subgraph Fx using the edges in K and H . We will build
a collection of sets L1, . . . , Lh, where Li (1 6 i 6 h) is the set of vertices of G′ contained in Fx and
Li ∩ Lj = ∅ (1 6 i, j 6 h, i 6= j). First, add x to L1. For each edge e in K with x as an endpoint, add
the other endpoint of e to L2, and add edge e to Fx. Assume that Li (1 6 i < h) has been constructed.
We now give how to construct Li+1. For each vertex v in Li, if i is even, then a matched edge e′ in H
containing v as an endpoint can be found, the other endpoint of e′ is added to Li+1, and e′ is added to
Fx. If i is odd and there exists at least one edge in K containing v as an endpoint, then add all the
vertices in N(v)\Li to Li+1, and add all the edges {uv|u ∈ N(v)\Li} to Fx. Repeat the above process
until Lh is constructed. We prove the following claims.

Claim 5. The subgraph Fx is a tree, and each path in Fx from the root to a leaf has an even number
of edges.

Proof. We construct a directed graph F ′x based on Fx. Let x be the root in F ′x. For each edge uv in
Fx, where u is contained in Li and v is contained in Li+1 (1 6 i < h), we add an arc from u to v to F ′x.
Obviously, x has in-degree zero. For each vertex w in Li where i is an even number, the in-degree of w
is at most one. Otherwise, there exist two edges e1 and e2 in K such that e1 and e2 share one vertex
contained in Y , implying that the corresponding two triangles in S share one arc, a contradiction. For
each vertex w in Li where i is an odd number, the in-degree of z is at most one. Otherwise, there exist
two edges e1 and e2 in H such that e1 and e2 share one vertex in B, implying that two matched edges
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have a common vertex, a contradiction. Thus, each vertex except x in F ′x has in-degree one. Since x has
in-degree zero and other vertices in F ′x\{x} has in-degree one, F ′x is a directed acyclic graph. We now
prove that the underlying graph Fx of F ′x is a tree. Since F ′x is a directed acyclic graph, if there exists a
cycle in Fx, then a vertex with in-degree two in F ′x can be found, contradicting that each vertex in F ′x
has in-degree one or zero.

We now prove that each path in Fx from root to leaf has an even number of edges. Since x is contained
in X , then all the edges with x as an endpoint are not in H , implying that the edges between L1 and L2

are unmatched edges. By the construction of Fx, the edges between Li and Li+1 are unmatched edges
when i is an odd number, and the edges between Li and Li+1 are matched edges when i is an even
number. Thus, if there exists a path in Fx from root to a leaf with an odd number of edges, then there
exists an augmenting path, contradicting that H is a maximum matching.

We now prove a claim that characterizes the relationship between two trees; say Fx and Fy.

Claim 6. For any two different vertices x, y in X , the two trees Fx, Fy constructed by the above process
have no common vertex.

Proof. Assume that Fx and Fy have common vertices, Fx has height h1, and Fy has height h2. Assume
that a vertex z is both contained in Fx and Fy, where z is contained in Li of Fx such that i is the smallest
index of all the sets having a common vertex with Fy. Assume that uz is contained in Fx, where u is in
Li−1. Assume that vz is contained in Fy, where z is contained in Lj of Fy, and v is contained in Lj−1 of
Fy. Obviously, v is not in Fx, and u is not in Fy. We consider the following cases.

(1) Number i is odd (even) and number j is even (odd). It is easy to see that in Fx, z is contained in
B, and in Fy, z is contained in Y , a contradiction. Similarly, when i is an even number and j is an odd
number, a contradiction can be obtained.

(2) Number i and number j are both odd. It is easy to see that in Fx and Fy , z is contained in B.
Thus, all the vertices contained in Li−1 and Lj−1 are contained in Y . Since uz and vz are contained in
H , v is not in Fx, and u is not in Fy, there exist two matched edges that have a common vertex, which
is a contradiction.

(3) Number i and number j are both even. It is easy to see that in Fx and Fy, z is contained in Y .
Thus, all the vertices in Li−1 and Lj−1 are contained in B. Since uz and vz are in K, v is not in Fx, and
u is not in Fy, two triangles in S share an arc, which is a contradiction.

The next claim guarantees that we can find some triangles by the constructed trees to replace some
triangles in S.

Claim 7. By considering all the vertices in X , a collection FX of trees can be obtained, and |FX | = |X |.
For any triangle (u, v, w) in S, if no vertex from {u, v, w} is contained in B and there exists an edge e in
H such that e is constructed by the corresponding vertex of an arc e′ from (u, v, w) and a vertex b in B,
then e cannot be in FX .

Proof. Since arc e′ is contained in (u, v, w) and (u, v, w) is contained in S, any other triangle except
(u, v, w) in S cannot contain e′. Otherwise, S is not an arc-disjoint triangle packing. Thus, for the
corresponding vertex v′ of arc e′ in Y , there is no edge with v′ as an endpoint in K. Suppose that
e is contained in FX , then there must exist another edge e′′ with v′ as an endpoint in K, which is a
contradiction.

For each vertex x in X , each edge in Fx corresponds to a triangle in T , and we add the triangles
constructed by the edges between Li (1 6 i < h, i is an even number) and Li+1 in Fx to S′. By Claim 5,
the number of the edges between Li (1 6 i < h, i is an even number) and Li+1 in Fx is equal to the
number of the edges between Li (1 6 i < h − 1, i is an odd number) and Li+1 in Fx. Note that the
edges between Li (1 6 i < h, i is an even number) and Li+1 in Fx are all contained in H , and the edges
between Li (1 6 i < h − 1, i is an odd number) and Li+1 in Fx are all contained in K, implying that
S′ ∩ S = ∅ and S′ contains no vertex in X . By Claim 6, for any two different vertices x and y, Fx

and Fy have no common edge. Thus, S′ is an arc-disjoint triangle packing. By Claim 7, no triangle in
{(u, v, w)|{u, v, w} ⊆ V (M2), (u, v, w) ∈ S} shares arcs with any triangle in S′. Thus, all the triangles
in {(u, v, w)|{u, v, w} ⊆ V (M2), (u, v, w) ∈ S} can be added to S′. By the construction process of the
trees in FX , for a vertex w in (V (B)\V (H))∩ V12, if w is contained in a triangle of S, then no edge with
endpoint w is contained in FX . Thus, we can add all the triangles in S with a vertex in (V (B)\V (H))∩V12

to S′. Since all the triangles in S1 are type-i triangles, we have that S1 ∩ S′ = ∅. Add all the triangles
in S1 to S′, and we get that |S′| = |S|.

By Lemma 5, we get the following reduction rule.
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Rule 4. For the reduced instance (T, k) of the k-ATP-T problem and based on the bipartite graph
G = (Y ⊎B,E), delete the vertices in B\(V (H) ∪ V12) from T and B.

We then prove the final conclusion of this section.

Theorem 2. The k-ATP-T problem admits a kernel of size 3.5k.

Proof. Assume that (T, k) is the reduced instance obtained by applying Rules 1–4 exhaustively. By
calling algorithm MADP, if the output is not “yes”, two maximal arc-disjoint packings M1, M2, and a
subgraph T2 of T can be obtained. By Lemma 3, |V (M2)| is bounded by 2.5|M2|. Since Rule 4 is not
applicable on T , T2\V (M2) is bounded by k−|M1|+ |V12|. Thus, the number of vertices in T2 is bounded
by

2.5|M2|+ k − |M1|+ |V12|,

and T has at most

|V (M1)| − |V12|+ |T2| 6 3|M1| − |V12|+ 2.5|M2|+ k − |M1|+ |V12|

6 k + 2.5(|M1|+ |M2|)

vertices. Since |M1|+ |M2| 6 k, the number of vertices in T is bounded by 3.5k.

4 A 7k vertex kernel for k-TP-ST

In this section, we give a 7k vertex kernel for k-TP-ST. The main idea contains two steps. First, we prove
that the kernel size is bounded by 2|F | + k, where F is a matched feedback arc set. Second, we prove
that |F | 6 3k. Thus, the kernel size is bounded by 7k vertices. We first give the following lemma which
implies that F can be computed in polynomial time.

Lemma 6 ([36]). For a sparse tournament T , a matched feedback arc set of T can be found in polynomial
time.

If a vertex v is not contained in any triangle, then we can delete it since the input instance (T, k) is
yes if and only if the instance (T \{v}, k) is yes. Hence, we have the following reduction rule.

Rule 5. For any vertex u in T , if u is not contained in any triangle, then delete u from T .

Let (T, k) be the reduced instance obtained by applying Rule 5, and let F be a matched feedback arc
set in T obtained by the polynomial algorithm in [36]. For each arc e ∈ F , add a vertex ve to Y . Add
the vertices in V (T )\V (F ) to B. We construct a bipartite graph G = (Y ⊎ B,E) as follows. For two
vertices u ∈ Y and v ∈ B, if there is a triangle constructed by the corresponding arc of u and vertex v,
then add uv to E. Let H be a maximum matching in G. For an edge yb ∈ H where y ∈ Y and b ∈ B,
there is a triangle with vertex b and with the arc corresponding to y. Since H is a matchcing, any pair
of edges in H is vertex-disjoint. Note that F is a matching, implying that H is a set of vertex-disjoint
triangles. Thus, if |H | > k, then (T, k) is a yes-instance. In the following, we assume that the size of H
is less than k.

Lemma 7. For the reduced instance (T, k) of the k-TP-ST problem, based on the bipartite graph
G = (Y ⊎ B,E) and matched feedback arc set F , for any triangle t = (u, v, w) in T , t does not satisfy
any condition in the following:

(1) Triangle t contains at least two vertices in B;
(2) Triangle t contains one vertex in B and the other two vertices in {u, v, w}\B are contained in

different arcs of F .

It is easy to see that if t satisfies any condition in Lemma 7, then all the arcs of t are not contained in
F , contradicting that F is a matched feedback arc set in T . Hence we omit the proof of Lemma 7. For
each edge e in G, a triangle t of T can be constructed based on e. For simplicity, we say that t is the
corresponding triangle of edge e.

Lemma 8. For the reduced instance (T, k) of the k-TP-ST problem, for any subset X of B\V (H), if
there exists a proper vertex-disjoint triangle packing S of T containing all the vertices in X , then there
exists a subset X ′ of V (H)∩B such that a proper vertex-disjoint triangle packing S′ can be constructed
satisfying that (1) S′ contains the vertices in X ′ and no vertex in X ; (2) |S′| = |S|.

The proof of Lemma 8 is similar to the one of Lemma 5 and we omit it. By Lemma 8, we get the
following rule.
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Rule 6. For the reduced instance (T, k) of the k-TP-ST problem and based on the bipartite graph
G = (Y ⊎B,E), delete the vertices in B\V (H) from T and B.

Assume that (T, k) is the reduced instance obtained by applying Rules 5 and 6, and let F be a matched
feedback arc set in T .

Lemma 9. For the reduced instance (T, k), the number of vertices in T is bounded by 2|F |+ k.

Proof. Since F is a matched feedback arc set, the number of vertices in V (F ) is 2|F |. By Lemma 8,
and because Rule 6 is not applicable on T , the number of vertices in B is bounded by k. Since each
vertex of T is either contained in V (F ) or B, the number of vertices in T is bounded by 2|F |+ k.

A topological sort σ can be obtained in T \F , denoted by σ = (v1, v2, . . . , vn), where vi is a vertex
in V (T ) and n is the number of vertices in T . Let σ(v) be the index of v in T . For any arc (vi, vj)
(1 6 i, j 6 n, i 6= j) in T , if i < j, then arc (vi, vj) is called a forward arc under σ; if i > j, then arc
(vi, vj) is called a backward arc under σ; if i = j + 1, then arc (vi, vj) is called a consecutive backward
arc under σ. For any triangle (vi, vj , vh) (1 6 i, j, h 6 n), if there exists an ordering of indexes in {i, j, h}
that are consecutive, then triangle (vi, vj , vh) is called a consecutive triangle in T .

Let β = (t1, . . . , th) be an ordering of the vertex-disjoint triangles in T , and let Ti be the subgraph

obtained by deleting the vertices of triangles in
⋃i

r=1{tr} from T . If β satisfies the following properties:
(1) the triangles in {t1, . . . , th} construct a maximal vertex-disjoint triangle packing; (2) for each ti
(1 6 i 6 h), if ti is not a consecutive triangle, no triangle in Ti−1 is a consecutive triangle, then we call
that β is a special ordering of the triangles.

For any triangle ti = (u, v, w) in β, if an arc e in the matched feedback arc set F satisfies one of the
following conditions: (1) e is contained in ti; (2) one endpoint of e is contained in ti; (3) e is contained
in a triangle in subgraph Ti−1 and not contained in any triangle in subgraph Ti, then we say that e is
influenced by triangle ti. For a backward arc f = (vi, vj) (1 6 j < i 6 n), we call f spans the vertex v if
j < σ(v) < i. For a minimal matched feedback arc set F and a topological sort σ in T \F , the following
three lemmas give some properties between F and σ.

Lemma 10. Let F be a minimal matched feedback arc set in T and σ a topological sort in T \F . Then,
all the arcs in F are backward arcs under σ.

Proof. Assume that there exists an arc f contained in F that is not a backward arc. Then, all the arcs
in T \(F\{f}) are forward arcs. Therefore, F\{f} is also a matched feedback arc set, contradicting that
F is a minimal matched feedback arc set. Thus, all the arcs in F are backward arcs.

Lemma 11. Let F be a minimal matched feedback arc set in T and σ a topological sort in T \F . For
any arc f = (x, y) in F , if there exists a vertex v in T such that σ(y) < σ(v) < σ(x), then (y, v, x) is a
triangle in T .

Proof. Since F is a minimal matched feedback arc set and f is an arc in F , all the arcs with u or v as
an endpoint are not contained in F\{f}. By Lemma 10, f is a backward arc. Then, all the arcs except
f with u or v as an endpoint are forward arcs. It is not hard to see that (y, v, x) is a triangle under σ.

Lemma 12. For any arc f = (x, y) in F , f is not contained in any triangle in T if and only if f is a
consecutive backward arc under σ.

Proof. We first prove that if f is a consecutive backward arc in T , then f is not contained in any triangle
in T . Assume that f is contained in a triangle t, then t needs two backward arcs in F , contradicting that
F is a matching. We now prove the other direction. Assume that f is not a consecutive backward arc in
T . By Lemma 11, there exists a vertex v in T such that (x, v, y) is a triangle.

Given a reduced instance (T, k) of the k-TP-ST, let F be a minimal matched feedback arc set of T ,
and let P be a maximal vertex-disjoint triangle packing with a special ordering β = (t1, . . . , t|P |) of T .

Recall that Ti (1 6 i 6 |P |) is the subgraph obtained by deleting the vertices of triangles in
⋃i

r=1{tr}
from T . If |P | > k, then (T, k) is a yes-instance. In the following, we assume that the size of P is less
than k.

Lemma 13. There exist at most three arcs in F that are influenced by a consecutive triangle in β.

Proof. Assume that ti = (u, v, w) is a consecutive triangle in β. Then, at least one arc in ti is contained
in F . Without loss of generality, assume that (w, u) is contained in F and influenced by ti. It is possible
that an arc in F may have v as an endpoint. Assume that after deleting the triangle ti, there exists an
arc f in F not contained in other triangles in Ti−1. Then, f is influenced by triangle ti. We first prove
that arc f spans vertices u, v, w. Let f = (x, y), where σ(y) < σ(x). Assume that f does not span u, v, w.
Then, we get that either σ(x) < σ(u) or σ(y) > σ(w). Since F is a minimal matched feedback arc set,
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f must be contained in a cycle and be a backward arc. Then, there must exist at least one vertex in T
that is spanned by f , implying that f is not a consecutive arc. By Lemma 11, f is contained in a triangle
without containing any vertex of ti, contradicting that f is influenced by ti.

Since after deleting the triangle ti, arc f is not contained in any triangle in Ti, by Lemma 12, f is a
consecutive arc in Ti. Thus, f spans only u, v, w in T . Therefore, after deleting the triangle ti, there
exists at most one non-consecutive backward arc in F that is not contained in any triangle in Ti. Thus,
there exist at most three arcs in F that are influenced by consecutive triangle ti.

We are ready to prove that |F | 6 3k, except there are some unknown relationships between F and the
influenced arcs in F . We first prove that the number of arcs in F influenced by a consecutive triangle is
at most three.

Lemma 14. There exist at most three arcs in F that are influenced by a non-consecutive triangle in β.

Proof. Assume that ti = (u, v, w) is a non-consecutive triangle in β. Then, there is no consecutive
triangle in Ti−1. At least one arc in ti is contained in F . Without loss of generality, assume that (w, u)
is contained in F . Since (w, u) is a backward arc in Ti−1, then σ(u) < σ(v) < σ(w). For the triangle ti,
the backward arc (w, u) is contained in F and influenced by ti. It is possible that an arc in F may have
v as endpoint. Assume that after deleting the triangle ti, there exists an arc f in F not contained in
other triangles in Ti−1. Then, f is influenced by triangle ti. We first prove that arc f spans exactly two
vertices in {u, v, w}. Let f = (x, y), where σ(y) < σ(x). We consider the following cases.

(1) Arc f does not span u, v, w. The proof of this case is similar to the one of Lemma 13.
(2) Arc f spans u, v, w. Then, we get that σ(y) < σ(u) < σ(w) < σ(x). Since ti is not a consecutive

triangle, there exists a vertex z such that σ(u) < σ(z) < σ(w). By Lemma 11, f is contained in triangle
(y, z, x) without containing any vertex in ti, contradicting that f is influenced by ti.

(3) Arc f only spans one vertex of {u, v, w}. Without loss of generality, assume that f spans u. By
Lemma 11, (x, u, y) is a triangle. Since Ti contains no consecutive triangles, there exists a vertex z such
that σ(y) < σ(z) < σ(x). By Lemma 11, f is contained in triangle (y, z, x) without containing any vertex
in ti, contradicting that f is influenced by ti.

Since after deleting the triangle ti, arc f is not contained in any triangle in Ti, by Lemma 12, f is
a consecutive arc in Ti. We have that f spans only two vertices in {u, v, w} that are consecutive in σ.
Therefore, after deleting the triangle ti, there exists at most one non-consecutive backward arc (in F )
that is not contained in any triangle in Ti. Thus, there exist at most three arcs in F that are influenced
by triangle ti.

By Lemmas 13 and 14, we get the following lemma.

Lemma 15. For a maximal vertex-disjoint triangle packing P with a special ordering β of T and a
minimal matched feedback arc set F of T , if |P | 6 k, then |F | 6 3k.

Proof. For any triangle ti in β, if ti is a consecutive triangle in P , by Lemma 13, at most three backward
arcs in F are influenced by ti. If ti is not a consecutive triangle, by Lemma 14, at most three backward
arcs in F are influenced by ti. The number of triangles in β is |P |. Therefore, at most 3|P | arcs in F are
influenced by the triangles in β.

We now prove that each arc in F must be influenced by the triangles in β. Assume that there exists
an arc f in F that is not influenced by the triangles in β. Then, in the subgraph T|P |, f is contained in
a triangle with three vertices from T \V (P ), contradicting that P is a maximal vertex-disjoint triangle
packing. Thus, we get that if |P | 6 k, then |F | 6 3k.

We are ready to prove the final conclusion of this section.

Theorem 3. The k-TP-ST problem admits a kernel of size 7k.

Proof. For a given instance (T, k) of the k-TP-ST problem, by Lemma 6, a minimal matched feedback
arc set F can be obtained in polynomial time. We first apply Rules 5 and 6 exhaustively on T . By
Lemmas 9, the number of vertices in T is bounded by 2|F | + k, and by Lemma 15, we get that |F | is
bounded by 3k. Thus, the number of vertices in T is bounded by 2 · 3k + k = 7k.

5 A 7k vertex kernel for k-FVS-ST

In this section, we provide a kernel with 7k vertices for k-FVS-ST. Similarly to Section 4, we have that
|F | 6 3k; otherwise, there are more than k vertex-disjoint triangles, implying that the instance is ‘no’—
breaking this more than k vertex-disjoint triangles needs more than k vertices. Thus, the only thing we
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need is to prove that the kernel size is bounded by 2|F |+ k, where F is a matched feedback arc set.

Before designing the reduction rules, we first construct a bipartite graph as in Section 4. For each arc
e ∈ F , add a vertex ve to X . Add the vertices in V (T )\V (F ) to Y . We construct a bipartite graph
G = (X ⊎ Y,E) as follows. For two vertices u ∈ X and v ∈ Y , if there is a triangle constructed by the
corresponding arc of u and vertex v, then add uv to E. An expansion B′ = (X ′ ⊎ Y ′, E′,M) of B is
a subgraph in B where X ′ ⊆ X , Y ′ ⊆ Y , E′ is induced by X ′ ∪ Y ′, M is matching satisfying X and
N(Y ′) ⊆ X ′. If we cannot find an expansion structure, then we can directly bound the size of the kernel,
which is proved later. One can see that m 6 3k by Lemma 15. Then, the main idea is removing the
redundant vertices in V (Y ) and bounding the size of V (Y ). For a vertex x ∈ X , let arc(x) denote the
corresponding arc in F of u. We first give a lemma which can help us to study the structure.

Lemma 16. For a k-FVS-ST instance (T, k), let B′ = (X ′ ⊎ Y ′, E,M) be an expansion structure (if
exist) of B. Then (T, k) is a yes-instance if and only if (T ′, k) is a yes-instance, where T ′ is from T by
removing Y ′\V (M).

Proof. As T ′ is the subgraph of T , if (T, k) is yes, then (T ′, k) is also yes. We prove the other direction.
Suppose that there is a feasible solution S for (T ′, k). The main idea is that we can replace S by S′ such
that S′ is a solution for (T, k) and |S′| 6 |S|. Let Y1 = Y ′ ∩ V (M).

Let R = ∅. For each vertex x ∈ X ′, if S ∩ V (arc(x)) = ∅, then we randomly add one vertex from
V (arc(x)) to R. We obtain S′ = S\Y1 ∪R. We have |R| 6 |S ∩ Y1| because for each x V (arc(x)) ∩ S = ∅
there needs a vertex y ∈ Y1 to break the triangle corresponding to the matching edge xy. Since |R| 6
|S ∩ Y1|, we have |S′| 6 |S|.

Now we prove that S′ is a solution of (T, k). Suppose for contradiction that there is a triangle t in
T −S′. Then t must contain some vertex in Y ′\V (M). Since Y ′ is a vertex set in which each vertex is not
incident to F , then t contains exactly one vertex y ∈ Y ′\V (M). Noting that Y ′ is not in the minimum
vertex cover, we have that any vertex in Y ′ is only adjacent to some vertex in X ′. Moreover, t must be
formed by arc(x) and y where x ∈ X ′. However, we choose at least one vertex from arc(x), which implies
that t cannot exist.

The following reduction is from a folklore that in a tournament a vertex is in a cycle if and only if it
is in a triangle.

Rule 7. Delete all the vertices that are not in the triangles.

We apply Rule 7 exhaustively and find an expansion structure. For the bipartite graph B = (X ⊎Y,E)
corresponding to T , we find a minimum vertex cover. In the bipartite graph the minimum vertex cover
Vα is equal to the maximum matching. If we have a matching M whose size is larger than k, then we
get a no-instance because there are at least k + 1 vertex-disjoint triangles. Then, the vertex cover of B
is at most k. Letting X ′ = Vα ∩X and Y ′ = Y \Vα, we have a bipartite graph B′ = (X ′ ⊎ Y ′, E′) where
E is the edges induced by X ′ ∪ Y ′. As X ′ is a subset of minimum vertex cover, there is a matching M
satisfying X ′ into Y ′. For a vertex y ∈ Y ′, if there exists an edge e incident to y, then e is incident to
some vertexes in X ′; otherwise, e is not covered. So, we have N(Y ′) ⊆ X ′. As a result, B′ is an expansion
structure. It is possible that X ′ = ∅. In this case, we prove that k-FVS-ST admits a 7k vertex kernel.
If X ′ = ∅, then there is no edge e′ incident to both a vertex in X and a vertex in Y \Y ′. By Rule 7, we
have Y = Y ′, and the number of the vertex is at most 2m + k. By Lemma 15, m 6 3k, we have a 7k
vertex kernel. In the following, we assume that X ′ is not empty.

We provide a reduction rule which is related to the expansion structure.

Rule 8. For a k-FVS-ST instance (T, k), let B′ = (X ′ ⊎ Y ′, E,M) be an expansion structure of B.
Deleting all the vertices in Y ′\V (M).

Rule 8 can be applied safely. Let (T ′, k) be the instance after applying Rule 8, and by Lemma 16, the
instance (T ′, k) is yes if and only if (T, k) is yes. Thus, Rule 8 is safe. To use the above reduction rules
exhaustively, we can get a 7k vertex kernel. Now, we prove the kernel of k-FVS-ST.

Theorem 4. The k-FVS-ST problem admits a kernel of size 7k.

Proof. If we cannot find an expansion structure in B corresponding T , we can get a 7k vertex kernel,
which has been discussed above. We now assume that there is an expansion structure B = (X ′ ⊎
Y ′, E′,M). Then by Rule 8, |Y ′| = |X ′|. Since the minimum vertex cover is at most k, |X ′|+ |Y \Y ′| 6 k.
we have |Y | 6 k and the vertex of the resulting graph is at most 2m+ k, which implies that k-FVS-ST
admits a 7k vertex kernel as m 6 3k by Lemma 15.
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6 Conclusion

In this paper, we give some improved linear kernels in tournaments or sparse tournaments. The main
result is the 3.5k kernel for the k-ATP-T problem. Since there is a (3 + ǫ)k vertex kernel [29] for the
edge-disjoint triangle packing problem in undirected graphs, there may be a (3+ ǫ)k vertex kernel for the
k-ATP-T problem. Actually, the crucial work is to bound the number of vertices in T2. In tournaments,
a vertex set that destroys all triangles is a feedback vertex set. Another interesting problem is whether
there exist linear kernels for the vertex-disjoint triangle packing problem and the feedback vertex set
problem in tournaments.
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