
SCIENCE CHINA
Information Sciences

May 2023, Vol. 66 152102:1–152102:15

https://doi.org/10.1007/s11432-021-3570-5

c© Science China Press 2023 info.scichina.com link.springer.com

. RESEARCH PAPER .

Cy-CNN: cylinder convolution based
rotation-invariant neural network for point cloud

registration

Hengwang ZHAO1†, Zhidong LIANG2†, Yuesheng HE1,

Chunxiang WANG1 & Ming YANG1*

1Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China;
2Research Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240, China

Received 4 July 2021/Revised 14 November 2021/Accepted 18 April 2022/Published online 23 April 2023

Abstract Point cloud registration is a challenging problem in the condition of large initial misalignments

and noises. A major problem encountered in the registration algorithms is the definition of correspondence

between two point clouds. Point clouds contain rich geometric information and the same geometric structure

implies the same feature even if they are in different poses, which motivates us to seek a rotation-invariant

feature representation for calculating the correspondence. This work proposes a rotation-invariant neural

network for point cloud registration. To acquire rotation-invariant features, we firstly propose a rotation-

invariant point cloud representation (RIPR) at the input level. Instead of using the original coordinates,

we propose to use point pair features (PPF) and the transformed coordinates in the local reference frame

(LRF) to represent a point. Then, we design a new convolution operator named Cylinder-Conv which

utilizes the symmetry of cylinder-shaped voxels and the hierarchical geometry information of the surface of

3D shapes. By specifying the cylinder-shaped structures and directions, Cylinder-Conv can better capture

the local neighborhood geometry of each point and maintain rotation-invariance. Finally, we combine RIPR

and Cylinder-Conv to extract normalized rotation-invariant features to generate the correspondence and

perform a differentiable singular value decomposition (SVD) step to estimate the rigid transformation. The

proposed network presents state-of-the-art performance on point cloud registration. Experiments show that

our method is robust to initial misalignments and noises.

Keywords deep learning, point cloud registration, rotation invariant, computer vision

Citation Zhao H W, Liang Z D, He Y S, et al. Cy-CNN: cylinder convolution based rotation-invariant neural net-

work for point cloud registration. Sci China Inf Sci, 2023, 66(5): 152102, https://doi.org/10.1007/s11432-021-3570-5

1 Introduction

Point clouds have recently gained increasing relevance in the field of computer vision as a powerful 3D
representation model [1–3]. Point cloud registration is one of the fundamental problems in many tasks
such as 3D reconstruction [4], pose estimation [5], and object tracking [6]. Registration aims to find a rigid
transformation matrix that aligns two point clouds. Although remarkable progress has been achieved, it
is still a challenging problem for point clouds in the condition of large initial misalignments and noises.

The iterative closest point (ICP) algorithm [7,8] and its variants [9] are widely used methods for point
cloud registration. But they are known to easily converge to a local minimum. Some methods [10, 11]
introduce probability models to the registration framework, but they are also vulnerable to local minima
under large initial misalignment. To improve the robustness to initial misalignment, some methods [12,13]
use hand-crafted rotation-invariant features [14] for correspondence generation. Although these feature-
based methods are more robust to large misalignments, they are sensitive to noises, because the hand-
crafted features are not stable on noisy point clouds.

*Corresponding author (email: MingYANG@sjtu.edu.com)

†Zhao H W and Liang Z D have the same contribution to this work.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-021-3570-5&domain=pdf&date_stamp=2023-4-23
https://doi.org/10.1007/s11432-021-3570-5
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-021-3570-5
https://doi.org/10.1007/s11432-021-3570-5

Zhao H W, et al. Sci China Inf Sci May 2023 Vol. 66 152102:2

Cy-CNN

Input Features Output

Figure 1 (Color online) The illustration of Cy-CNN for point cloud registration. The inputs are the source (blue) point cloud and

the target (green) point cloud with partial occlusion and noises. We use Cy-CNN to extract point-wise features for the two point

clouds. The features are visualized using t-SNE [18]. It clearly shows that the features extracted by Cy-CNN are rotation-invariant

and conducive to correspondence generation, and the final output (red) is well aligned with the source point cloud.

Recently, deep learning is gradually applied to point cloud registration for its powerful capability of
feature representation [15–17]. Most of the learning-based registration methods try to learn rotation-
invariant features for correspondence generation. Although significant progress has been made, these
methods cannot maintain rotation-invariance during both the input stage and the feature learning stage,
making them hard to generalize to unseen initial misalignment. Besides, how to effectively utilize the
surface geometry information of 3D shapes for stable rotation-invariant feature learning is also to be
explored.

In this paper, we propose Cy-CNN, a cylinder convolution based rotation-invariant neural network for
point cloud registration, robust to initial misalignments and noises, as shown in Figure 1 [18]. In order
to acquire rotation-invariant features, we firstly propose a rotation-invariant point cloud representation
(RIPR) in the input stage. We use point pair features (PPF) and the transformed coordinates in the
local reference frame (LRF) to represent a point, instead of using the original coordinates. Then, a
new convolution operator is designed to directly compute the convolution on point clouds. This new
convolution operator, which is named Cylinder-Conv, leverages the symmetry of cylinder-shaped voxels
and the hierarchical geometry information of the surface of 3D shapes. By specifying the cylinder-
shaped structures and directions, Cylinder-Conv can better capture the local neighborhood geometry of
each point and maintain rotation-invariance. Finally, we combine RIPR and Cylinder-Conv to extract
normalized rotation-invariant features. By analyzing the similarity of the normalized features, we generate
the correspondence of the two point clouds. A differentiable singular value decomposition (SVD) step is
performed to estimate the final rigid transformation. The key contributions of our work are as follows:

• We propose a RIPR, which combines PPF and the transformed coordinates in the LRF to represent
a point.

• We propose a new rotation-invariant convolution operator named Cylinder-Conv. It can help to cap-
ture the hierarchical geometry information of the surface of 3D shapes and maintain rotation-invariance.

• We propose Cy-CNN, a cylinder convolution based rotation-invariant neural network for point cloud
registration. It combines RIPR and Cylinder-Conv to extract rotation-invariant features for point cloud
registration. The proposed network presents state-of-the-art performance on point cloud registration.

2 Related work

Classical point cloud registration. The classical point cloud registration algorithms can be classi-
fied into two categories: correspondence based registration algorithms and direct registration algorithms.
The correspondence based registration algorithm consists of establishing the correspondence of two point
clouds and optimizing the distance of such correspondence. ICP [7, 8] establishes correspondences by
searching the closest point in another point cloud and uses the Euclidean metric to optimize the distance
between correspondences. Some variants of ICP use point-to-plane [19], point-to-line [20], or plane-to-
plane [9] to establish the correspondences or improve the optimization algorithm [21]. However, these
methods are sensitive to initial misalignments. Probabilistic models [10, 11] are applied to handle un-
certainty and partiality, but they are still vulnerable to local minima under large initial misalignments.
The hand-crafted rotation-invariant features [14, 22, 23] based methods establish correspondences using
local feature descriptors, and remove outliers with RANSAC [14] or other techniques [12, 24–26]. These
registration methods are robust to initial misalignments, but the hand-crafted features are easily affected

Zhao H W, et al. Sci China Inf Sci May 2023 Vol. 66 152102:3

by noises and cause messy correspondences. For direct registration methods, point-wise corresponding
points are not assigned. Refs. [27–29] represented a point cloud as a Gaussian mixture model (GMM)
where the centroids are points in the point set. But these methods are affected by partial occlusions and
cannot guarantee real-time performance.

Learning based point cloud registration. (1) Deep learning on point cloud. The point cloud
data is unordered, so it is challenging to perform the convolution operation directly on the point cloud
data. Some methods convert raw point clouds to regular representations. View-based methods [30, 31]
project point clouds to a collection of images and utilize the 2D convolution. Volumetric methods [32,33]
convert point clouds to 3D voxels and apply the 3D convolution. PointNet [34] is a pioneer directly
processing raw point clouds addressing the problem of permutation invariance. Refs. [35–37] considered
the local relationship of point sets. Refs. [38–40] fitted graph convolution [41] to point cloud for better
learning localized features. However, these methods are not specially designed on data representation and
feature extraction for achieving rotation-invariant features. Ref. [42] applied spherical harmonics kernels
to achieve rotation-invariant convolution. But it does not design a rotation-invariant representation of the
point cloud in the input stage. Refs. [43,44] designed rotation-invariant representations based on reference
points of the complete point cloud. Ref. [45] mapped a point cloud into the unit spherical space (relative
to the centroid of the complete point cloud) and extracted features using spherical voxel convolution.
But the reference points of the complete point cloud (like the centroid) are not stable in partially visible
point clouds, which causes these rotation-invariant representations to be easily affected by the partial
occlusions. At the same time, these approaches are designed for classification and segmentation tasks
and cannot be directly applied to registration tasks.

(2) Learning based point cloud registration. Recently, learning-based methods are gradually attempting
to apply to point cloud registration. Refs. [46,47] proposed to learn 3D descriptors utilizing deep neural
networks and PPF. A concurrent study [48] to our method proposes to learn 3D descriptors using a
3D cylindrical convolution layer. Although all extract rotation-invariant features utilizing the properties
of the cylinder, the voxel division and convolution mechanism are different from each other. Besides,
these methods [46–48] only focus on descriptor learning, in which obtaining registration results is not the
final goal. To achieve final registration, approaches such as RANSAC are still necessary to iteratively
remove outliers. Some recent studies [15–17,49–51] presented end-to-end point cloud registrationmethods.
Refs. [15, 50] applied PointNet to learn the global features of point clouds, and iteratively estimated
transformations using neural networks. However, such methods cannot capture local information. To
exploit local information, Ref. [49] detected the keypoints through a point weighting deep neural network.
DCP [16] extracts features for each point for point cloud registration. RPM-Net [17] also learns point-
wise features and establishes the correspondences with a differentiable Sinkhorn layer. However, these
end-to-end point cloud registration methods [15–17, 49–51] cannot maintain rotation-invariance both in
the input stage and the feature learning stage. In our work, the proposed RIPR and Cylinder-Conv
ensure the property of rotation-invariance in the input stage and the feature learning stage, respectively.

3 Methodology

In this study, we propose a rotation-invariant convolutional neural network for point cloud registration
leveraging the symmetry of cylinder-shaped voxels and the hierarchical geometry information of the
surface of 3D shapes. In this section, we introduce the main technical components of the proposed method
that include: rotation-invariant point cloud representation, convolutions on cylinder-shaped voxels, and
architecture.

3.1 Rotation-invariant point cloud representation

To eliminate the influence of rotations at the input stage and leverage the local structure of point clouds,
we propose RIPR combining PPF [52] and the transformed coordinates in the LRF [23], as is shown in
Figure 2. In the existing approaches [23, 52], PPF and LRF are always used independently. To the best
of our knowledge, this is the first time combining PPF and LRF as a rotation-invariant representation
for point cloud feature learning, considering the combination of them provides the network with richer
rotation-invariant information at the input stage. Let X denote the input point cloud, where X =
{x1, x2, . . . , xN} ∈ R

3. For each point xi ∈ X , we define a local neighborhood N (xi) containing K

Zhao H W, et al. Sci China Inf Sci May 2023 Vol. 66 152102:4

x

y

z

x

y

z

(a) (b)

Figure 2 (Color online) Illustration of the RIPR. The circle (shaped in 3D) with radius r means the influence region for a RIPR.

The coordinate system is the LRF in the local region. The query point xi (red) and its K nearest neighbor points xj (blue) form

K pairs. (a) Part of the points in X; (b) part of the points in X after rotations.

nearest neighbor points. The RIPR of xi is given by

RIPR(xi, xj) =
{

PPF(xi, xj) ∈ R
4, x′

j ∈ R
3
}

∈ R
7, (1)

where xj ∈ N (xi), x
′
j is the transformed coordinates in the LRF, PPF(xi, xj) are point pair features [52]

which describe relative distance and angle between xi and each neighbor points xj .

PPF(xi, xj) = (∠(ni, nj),∠(ni,∆xi,j),∠(nj ,∆xi,j), ‖∆xi,j‖) ∈ R
4, (2)

where ‖·‖ denotes the Euclidean norm, ∠(·, ·) denotes the angle between two vectors, ni and nj are the
normals of points xi and xj , and ∆xi,j denotes the offset between xi and xj :

∆xi,j = xj − xi. (3)

To calculate the rotation-invariant transformed coordinates of xj , we construct the LRF by the normal
vector and the average normalized ∆xi,j :

ex =

∑K

j=1
∆xi,j

‖∆xi,j‖

K
,

ey = ex × ni,

ez = ni,

(4)

where × denotes the cross product, ex, ey and ez are the coordinate axes of the LRF. The transformed
coordinates x′

j = (x′
jx, x

′
jy , x

′
jz) ∈ R

3 of xj are calculated as

x′
jx = ∆xi,j

Tex,

x′
jy = ∆xi,j

Tey,

x′
jz = ∆xi,j

Tez.

(5)

To obtain the RIPR of xi, we concatenate the representations of each neighboring points xj ∈ N (xi)
into a vector RIPRxi

∈ R
K×7, which is invariant to any rotation in SO(3). In our design, PPF describes

the relative distance and angles between the query point and neighbor points, and the transformed coordi-
nates in the LRF describe the relative position in the local region. While maintaining rotation-invariance,
the combination of them makes the point cloud representation contain rich geometric information, con-
ducive to subsequent point cloud feature learning.

3.2 Convolutions on cylinder-shaped voxels

To learn point-wise rotation-invariant features for point cloud registration, we define a rotation-invariant
convolution operator named Cylinder-Conv that is able to directly work with point clouds. The convo-
lution operator is applied at each point in a point cloud to extract point-wise features. Figure 3 shows
an example of the Cylinder-Conv operator focusing on one point. Benefiting from the symmetry of the
cylinder, we can obtain the same points before and after rotation in each cylinder-shaped voxel, which

Zhao H W, et al. Sci China Inf Sci May 2023 Vol. 66 152102:5

Convolution order

Max pooling

Cylinder-Conv operator

n
i

Figure 3 (Color online) Illustration of the proposed rotation-invariant convolution operator Cylinder-Conv. The convolution

operator is applied at each point in a point cloud. This is an example of a convolution operator with three cylinder-shaped voxels

focusing on one point. The red point is where the Cylinder-Conv operator is applied, and the gray points in the cylinder-shaped

voxels are the neighbor points of the red point. ni is the calculated normal direction of the red point. The cylinder-shaped voxels

have a ring-like shape. Colors denote different cylinder-shaped voxels without overlapping. These voxels are naturally ordered from

the innermost to the outermost. We use max-pooling to aggregate features of the points in each voxel.

makes Cylinder-Conv have the property of rotation invariance. Besides rotation-invariance, the distin-
guishment of the features in different local areas is also very important for finding exact corresponding
points. To better capture the local neighborhood geometry of each point and make the feature more
distinguishable, we define a series of cylinder-shaped voxels. The so-called cylinder-shaped voxel has a
ring-like shape except the center one (the red cylinder shown in Figure 3) and these cylinder-shaped
voxels have no overlaps.

To define a cylinder-shaped voxel, we specify the radius, height, and direction. The radius and height of
a cylinder-shaped voxel determine the receptive field of the proposed convolution operator. Considering
that the normal direction of the local area is rotation-invariant relative to the object and can represent
the surface geometry information of the object, we use the normal direction as the axis direction of
the cylinder-shaped voxel. Principal component analysis (PCA) is used to calculate the normal of local
area [53]. Figure 3 shows a Cylinder-Conv operator with three cylinder-shaped voxels. The union of
these cylinder-shaped voxels yields the domain Ωp. We use |Ωp| to represent the number of voxels in the
domain Ωp. We can define the convolution as

F (p)(n) =
∑

C∈Ω
(n)
p

ω
(n)
C F (C)(n−1), (6)

where ωC ∈ R
O×I denotes the weights applied on one of the cylinder-shaped voxel C ∈ Ωp, ω =

{ωC | C ∈ Ωp} ∈ R
|Ωp|×O×I denotes the weights of Cylinder-Conv, O denotes the dimension of out-

put features, superscript (n) denotes the data or parameters of layer n. F (C) ∈ R
I denotes the feature of

one cylinder-shaped voxel C ∈ Ωp, where I stands for the dimension of input features. F (p) ∈ R
O denotes

the features of the point p. Because the cylinder-shaped voxels are naturally ordered (from innermost to
outermost), there is no ambiguity among the cylinder-shaped voxels. To make the features more robust
to noise, we apply max-pooling to aggregate features of the points in each cylinder-shaped voxel:

F (C) = maxpooling({F (q) : q ∈ ΩC}), (7)

where F (q) ∈ R
I denotes the features of the point q, ΩC denotes the domain of one cylinder-shaped voxel

C. The convolution operator is applied at each point in a point cloud to generate point-wise features.
Figure 3 shows an example of focusing on one point.

The core of the proposed Cylinder-Conv is to aggregate hierarchical local surface information in a
rotation-invariant way, and Cylinder-Conv is applied to each point in a point cloud to extract features.

Zhao H W, et al. Sci China Inf Sci May 2023 Vol. 66 152102:6
N

×
3

N
×

6
4RIPR

module N
×

1
2
8

Cylinder-Conv

module

RIPR

module

Similarity

calculation

& filtering

Correspon-

dence

generation M
×

U

U
×

3 Pose

estimation 4
×

4

X

O
u
tp

u
t

RIPR

M
×

K
×

7

RIPR

module

Cylinder-Conv

module

Cylinder-

Conv

Conv
1×1

(F
1
, F

2
, ..., F

n
)

Conv
1×1

(F
1
, F

2
, ..., F

n
)

Similarity

calculation

 & filtering

F
X

F
Y

Correspondence

generation

Y

Pose

estimation

Conv
1×1 Pooling

…

…

… …

…

…

…

…

…

Outliers

Y
corr

 = S
inlier

Y
ifferentiable SVD

R=VU

D

t = −Rx′+y′

Loss = ||R R
gt
−I||

Cylinder-Conv

module

Cylinder-Conv

module

Cylinder-Conv

moduleM
×

3
M

×
3

M
×

6
4

M
×

1
2
8

M
×

2
5
6

N
×

2
5
6

M
×

K
×

6
4

M
×

6
4

M
×

C
in

M
×

C
o

u
t

M
×

F
n

M
×

F
n

S=F
Y
F

X

S
inlier

=soft max(S
inlier

)

⊥ ⊥

⊥

⊥

′

- -

+||t−t
gt
||

Figure 4 (Color online) The architecture of Cy-CNN. The inputs of our network are the source point cloud X and the target point

cloud Y . The output is a 4× 4 transformation matrix that transforms Y to X. Cin and Cout respectively denote the input channel

and output channel of the Cylinder-Conv module. Conv1×1(F1, F1, . . . , Fn) stands for the 1 × 1 convolution applied sequentially

with corresponding channels Fi, i ∈ 1, . . . , n. FX and FY stand for the normalized features of X and Y . The similarity matrix is

displayed on a grid. The closer the value is to 1, the darker the square is. The columns marked in red are the outliers that will not

appear in Sinlier. x̄′ and ȳ′ are the mass centers of Xinlier and Ycorr. Rgt and tgt are the ground truth transformation.

Most of the learning-based point cloud processing methods [16, 34, 35] need to select the local neighbor
points (e.g., the ball query) to aggregate features. Compared with simply using the ball to define neighbor
points, the cylinder-shaped voxels can better fit the surfaces of the local areas. The neighbor points of
the cylinder-shaped voxels are spread from the surface of the objects. Combined with the multi-scaled
structure of the cylinder-shaped voxels, Cylinder-Conv can capture hierarchical geometry information of
the objects. Such kind of hierarchical geometry information makes the learned features of the different
local areas distinguishable, which is conducive to correspondence generation. In summary, the properties
of the proposed Cylinder-Conv are as follows: (1) Cylinder-Conv is invariant to rotation, owing to the
axial symmetry of cylinder-shaped voxels and rotation-invariance of the normal direction. Neighbor points
within the kernel remain consistent after rotation. Besides, the normal direction flipping issue does not
influence our convolution operator. (2) Cylinder-Conv can exploit the surface geometry information of
objects. That is because the normal represents the direction of the local area of the object. When
Cylinder-Conv is applied to one of the points in the point cloud, the cylinder-shaped voxels can be fitted
to the surface of the local area. Therefore, we can learn features that are distinguishable from different
components of the object. (3) Cylinder-Conv is robust to noise, owing to the multi-scale cylinder-shaped
voxels and the pooling operation in each cylinder-shaped voxel. Such kind of structure also allows a larger
and more receptive field without increasing the number of network layers and contributes to capturing
the hierarchical geometry information of the object.

3.3 Architecture

The architecture of our proposed Cy-CNN is illustrated in Figure 4. The network consists of two major
parts: encoder and registration. The encoder part is composed of RIPR module, Cylinder-Conv module,
and point-wise convolution. The source X (N points) and the target Y (M points) are fed into the RIPR
module which consists of RIPR, a 1 × 1 convolution, and a pooling operation. The pooling operation
aggregates the information of neighbor points. The output of the RIPR module is fed into a series of
Cylinder-Conv modules to extract high-level features. Cylinder-Conv module contains a Cylinder-Conv
operator and a series of 1× 1 convolutions. To combine hierarchical features, we use residual connections
in the Cylinder-Conv module, as shown in Figure 4. With the encoder, we generate point-wise rotation-
invariant normalized features, which are FX ∈ R

N×256 and FY ∈ R
M×256.

The registration part is composed of similarity calculation & filtering, correspondence generation, and
pose estimation. The similarity matrix S is calculated with

S = FY FX
T ∈ R

M×N . (8)

Zhao H W, et al. Sci China Inf Sci May 2023 Vol. 66 152102:7

Let us focus on fXi ∈ R
256 which is the i-th row of matrix FX , and fY j ∈ R

256 which is the j-th row of
matrix FY . Since we have normalized the features, the closer their inner product of fXi and fY j is to
1, the more similar the two vectors are. fY i has different levels of similarity with each element in FX .
Then we focus on si ∈ R

M which is the i-th column of S, which indicates the similarity between fXi and
each element in FY . Intuitively, if the maximum of si is less than a threshold, which means there is no
point in Y that is similar enough to the i-th point in X , the i-th point of X is likely to be a point in
the non-overlapping area. We set a threshold τ , and if the maximum of si is less than τ , the i-th point
of X is regarded as an outlier. Specifically, we remove the i-th column of S and the i-th row of X , then
we obtain Sinlier ∈ R

M×U and Xinlier ∈ R
U×3. The similarity matrix Sinlier can be interpreted as the

correspondence probability between the points in the overlapped area. We use softmax to calculate the
normalized similarity:

S′
inlier = softmax(Sinlier), (9)

where S′
inlier ∈ R

M×U . With such normalized similarity matrix S′
inlier, we generate averaged correspon-

dence points in Y for each point in Xinlier:

Ycorr = S′T
inlierY, (10)

where Ycorr ∈ R
U×3. The points in Xinlier and Ycorr correspond to each other. Given the corresponding

pairs {x′
l ∈ Xinlier, y

′
l ∈ Ycorr}, l = 1, . . . , U , we perform a differentiable SVD step to estimate the relative

pose R and t. For the differentiable SVD, we use the implement in Pytorch. We use the L2 distance in
the Euclidean space as our loss function:

Loss =
∥

∥RTRgt − I
∥

∥

2
+ ‖t− tgt‖

2
, (11)

where R and t are the predicted transformation, Rgt and tgt are the ground truth transformation, ‖·‖2

stands for L2 distance.

4 Experiments

We evaluate the proposed Cy-CNN on the ModelNet40 [54] dataset following the experimental setting
of [15, 16], and we evaluate Cy-CNN on the Stanford Bunny [55], the 3DMatch dataset [56] for real-
world point cloud registration. The ModelNet40 dataset consists of 40 object categories. We leave
out 9 rotationally symmetrical categories such as cone. We randomly sample 1024 points from each
model. Points are centered and rescaled to fit in the unit sphere. We compare our model to ICP [8],
Go-ICP [21], FGR [12], TEASER++ [26], PointNetLK [15], and DCP-v2 [16]. For ICP and FGR, we use
the implementation provided by Intel Open3D. For Go-ICP, TEASER++, PointNetLK, and DCP-v2, we
use the authors’ released codes. Note that FPFH [14] features are used in FGR and TEASER++.

The architecture of the proposed network is shown in Figure 4. We end up using three cylinder-shaped
voxels in the Cylinder-Conv operator because our early experiments show that it is suitable for most of
the datasets. The height and the radii of the three cylinder-shaped voxels on the ModelNet40 dataset
and the Stanford Bunny dataset are 0.05 and [0.05, 0.1, 0.15] m, and that of the three cylinder-shaped
voxels on the 3DMatch dataset are 0.15 and [0.15, 0.20, 0.45] m. The number of cylinder-shaped voxels,
the radius, and the height, which control the resolution of the features, can be adjusted to fit other
data. Two Cylinder-Conv modules are used in our architecture. The parameters of 1× 1 convolutions in
the first Cylinder-Conv module are [32, 64, 128], and the parameters in the second are [128, 128, 256].
The similarity threshold τ for filtering outliers is set as 0.95. We use Adam to optimize the network
parameters. The initial learning rate is 0.001 and divided by 10 at epochs 50 and 150. The network is
trained for a total of 200 epochs. All models in this paper are trained with a GeForce GTX 1080 Ti GPU,
an Intel Xeon E5-2620 CPU, and 32G memory. Root mean squared error (RMSE) and mean absolute
error (MAE) are used to measure the distance between the predicted values and the ground truth values
following the evaluation metric of [15,16]. These metrics should be close to zero if registration is perfect.
All of the angle measurements in the results are in degrees.

4.1 Full dataset train and test

Our first experiment is to train Cy-CNN on the training set and test on the test set in ModelNet40, with
no knowledge of the category label. The point clouds used during training and testing are different. As

Zhao H W, et al. Sci China Inf Sci May 2023 Vol. 66 152102:8

Table 1 Test on unseen point clouds

Model
Initial misalignments [0◦, 15◦] Initial misalignments [15◦, 30◦] Initial misalignments [30◦, 45◦]

RMSE(R) MAE(R) RMSE(t) MAE(t) RMSE(R) MAE(R) RMSE(t) MAE(t) RMSE(R) MAE(R) RMSE(t) MAE(t)

ICP [8] 0.235162 0.165293 0.000028 0.000021 10.47001 9.591403 0.001196 0.001063 26.063487 24.930045 0.002928 0.002629

Go-ICP [21] 0.159222 0.123556 0.000012 0.000010 0.399097 0.317900 0.000033 0.000029 11.139241 8.858796 0.000930 0.000819

FGR [14] 0.125132 0.088014 0.000483 0.000395 0.150846 0.113263 0.000664 0.000578 1.467942 1.134116 0.001754 0.001521

TEASER++ [26] 0.103731 0.072216 0.000351 0.000326 0.132562 0.093437 0.000533 0.000482 1.134051 0.852316 0.001141 0.000842

PointNetLK [15] 0.009819 0.006787 0.000005 0.000004 0.071381 0.062731 0.000432 0.000361 2.291099 1.966454 0.015259 0.012407

DCP-v2 [16] 0.653601 0.549208 0.001278 0.001051 0.732468 0.632514 0.001300 0.001133 0.869550 0.767109 0.001282 0.001136

Cy-CNN (ours) 0.286316 0.240256 0.000036 0.000028 0.295949 0.254710 0.000037 0.000029 0.321398 0.284175 0.000037 0.000029

in previous studies [15, 16], we use random transformation with rotation angles in [0◦, 45◦] along each
axis and translation in [−0.5, 0.5] m during training. The target point cloud Y is a rigid transformation
of the source point cloud X , and we add additive Gaussian noise (µ = 0, σ = 0.02) to X and Y during
training.

To evaluate the performance of our method on clean data during testing, we did not add Gaussian
noise in our first experiment. In Table 1, we evaluate the performance of our method and several state-of-
the-art registration methods with different initial misalignments, where R indicates rotation, t indicates
translation, and the bold entries indicate the best performance. ICP performs well in small initial
misalignments but converges to a local minimum in large initial misalignments. FGR and TEASER++
perform well even at large initialization misalignments. Cy-CNN is comparable to other methods in the
case of small initial misalignments and Cy-CNN outperforms other methods under all the performance
metrics in the case of initial misalignments [30◦, 45◦]. This verifies that our network learns rotation-
invariant features that contribute to correspondence generation even with large misalignments. The
average end-to-end inference time of our network is 25.2 ms.

4.2 Robustness to noise

We explore the robustness of Cy-CNN against noise, which always exists in real-world point clouds. We
add Gaussian noises of different certain standard deviations to the source and target point clouds. This
experiment is more challenging than that without noise due to non one-to-one correspondence. We use
the model from Subsection 4.1 trained on the full Dataset. The rotation and translation settings are
the same with Subsection 4.1. Table 2 shows the results with Gaussian noise (µ = 0, σ = 0.01). Table
3 shows the results with Gaussian noise (µ = 0, σ = 0.02). Compared with the results in Table 1, we
find that FGR and TEASER++ are sensitive to noise. The performance of TEASER++ is better than
FGR but also affected under Gaussian noise (µ = 0, σ = 0.02). We suppose that the manually designed
features used in FGR and TEASER++ are unstable under noise. ICP, Go-ICP, and Cy-CNN remain
robust to noise. This validates that our use of the Cylinder-Conv operator captures hierarchical geometry
information which can alleviate noise interference. The first three columns of Figure 5 show registration
results and feature visualizations of Cy-CNN on some 3D shapes with Gaussian noise (µ = 0, σ = 0.01).
In order to better show the rotation-invariant features, point clouds are colored with low dimensional
embeddings of the local feature using t-SNE [18]. We can see that the same part of the point clouds in
different poses has similar features, which contributes to calculating the correspondence.

To further explore the generalizability of Cy-CNN to unseen noise levels, we test our model (trained in
Subsection 4.1, σ = 0.02) under different noise levels (σ = 0/0.01/0.02/0.03). We compare our method
with three local feature-based methods. Figure 6 shows the results with [30◦, 45◦] initial misalignments.
We can see that the performance of FGR, TEASER++, and DCP-v2 is heavily affected when the noise
level is larger than σ = 0.01. The proposed method shows stronger noise resilience, because the multi-
scale cylinder-shaped voxels and the pooling operation in each cylinder-shaped voxel make the rotation-
invariant feature more stable.

4.3 Robustness to initial misalignments

We also explore the robustness of Cy-CNN against initial misalignments. In this subsection, we use the
model from Subsection 4.1 trained on full dataset with rotation angles [0◦, 45◦] along each axis and
translation [−0.5, 0.5] m. We test with initial angles [0◦, 90◦) along each axis and translation [−0.5,
0.5] m. Figure 7 shows the experiment results. Cy-CNN achieves better performance than other point
cloud registration methods with large initial misalignments. This also indicates that our model has the

Zhao H W, et al. Sci China Inf Sci May 2023 Vol. 66 152102:9

Table 2 Test on objects with Gaussian noise (µ = 0, σ = 0.01)

Model
Initial misalignments [0◦, 15◦] Initial misalignments [15◦, 30◦] Initial misalignments [30◦, 45◦]

RMSE(R) MAE(R) RMSE(t) MAE(t) RMSE(R) MAE(R) RMSE(t) MAE(t) RMSE(R) MAE(R) RMSE(t) MAE(t)

ICP [8] 0.363799 0.269937 0.000423 0.000367 10.964116 10.095423 0.001403 0.001241 26.603537 25.497968 0.003047 0.002733

Go-ICP [21] 0.156194 0.123945 0.000409 0.000354 0.354194 0.277793 0.000430 0.000374 11.034553 8.870747 0.001267 0.001115

FGR [14] 1.661972 1.361509 0.007024 0.005993 2.403952 1.969845 0.009068 0.007899 8.577731 7.430874 0.016649 0.014575

TEASER++ [26] 1.131462 0.926672 0.003571 0.002963 1.829841 1.427276 0.004742 0.003935 4.364125 3.588270 0.011548 0.009436

PointNetLK [15] 0.633874 0.539278 0.006550 0.005648 0.729381 0.631044 0.007245 0.006251 2.983881 2.556072 0.020383 0.016900

DCP-v2 [16] 5.588781 4.508863 0.002797 0.002299 5.742204 4.864097 0.002849 0.002485 6.982967 6.057312 0.002821 0.002498

Cy-CNN (ours) 0.409451 0.335424 0.002211 0.001826 0.430314 0.359782 0.002185 0.001894 0.482591 0.426159 0.002212 0.001940

Table 3 Test on objects with Gaussian noise (µ = 0, σ = 0.02)

Model
Initial misalignments [0◦, 15◦] Initial misalignments [15◦, 30◦] Initial misalignments [30◦, 45◦]

RMSE(R) MAE(R) RMSE(t) MAE(t) RMSE(R) MAE(R) RMSE(t) MAE(t) RMSE(R) MAE(R) RMSE(t) MAE(t)

ICP [8] 0.891415 0.696285 0.000825 0.000714 11.856294 10.981529 0.001694 0.001495 27.278722 26.185233 0.003239 0.002893

Go-ICP [21] 0.378321 0.311603 0.000807 0.000698 0.643440 0.529441 0.000826 0.000717 11.204717 9.037265 0.001602 0.001405

FGR [14] 9.886202 7.731857 0.023819 0.020084 12.825663 10.741107 0.027244 0.023707 24.364371 21.233212 0.038089 0.033443

TEASER++ [26] 4.260962 3.451379 0.022981 0.018845 10.774972 8.835481 0.026146 0.023513 18.762249 15.241326 0.031860 0.026763

PointNetLK [15] 1.222220 1.035671 0.012446 0.010756 1.393394 1.202675 0.013825 0.011909 3.891121 3.349679 0.027494 0.022897

DCP-v2 [16] 13.600126 11.213411 0.005121 0.004233 14.171057 12.027894 0.005144 0.004493 15.310481 13.330386 0.005114 0.004521

Cy-CNN (ours) 0.714914 0.577209 0.002876 0.002330 0.743338 0.629433 0.002870 0.002491 0.858950 0.760266 0.002859 0.002513

In
p
u
t

F
ea

tu
re

O
u
tp

u
t

Figure 5 (Color online) Registration results and feature visualizations of Cy-CNN. The first three columns are noisy point

clouds. The last three columns are partial point clouds with noises. Top: the source (blue) and target (green) point clouds.

Middle: t-SNE [18] visualization of features. It clearly shows that the features of Cylinder-Conv are rotation invariant. Bottom:

the registration results (red) of our method.

0 0.01 0.02 0.03

Noise level (m)

0

5

10

15

20

25

30

R
M

S
E

 (
°)

FGR
TEASER++
DCP-v2
Cy-CNN (ours)

Figure 6 (Color online) Results with different noise levels. The abscissa is the mean of Gaussian noises, and the ordinate is the

rotation RMSE.

generalizability of unseen initial angles, supporting our use of symmetrical Cylinder-shaped voxels and
RIPR.

In our experiments, ICP fails because of lacking a good initial guess. However, ICP can be used as

Zhao H W, et al. Sci China Inf Sci May 2023 Vol. 66 152102:10

0 15 30 45 60 75 90

Initial misalignments (°)

0

30

60

90

120

150
R

M
S

E
 (

°)

ICP

Go-ICP

FGR

TEASER++

PointNetLK

DCP-v2

Cy-CNN (ours)

Figure 7 (Color online) Results with different initial misalignments. The proposed model achieves reliable registration even with

large and unseen initial misalignments.

(a) (b) (c) (d)

Figure 8 (Color online) The demonstration of the two-step registration procedure. (a) The source (blue) and target (green) point

cloud. The initial angles are generated in [0◦, 90◦) along each axis. (b) The result (red) of ICP with large initial misalignments and

the value of RMSE(R) is 87.533◦. (c) The initial transformation (red) is provided by Cylinder-Conv and the value of RMSE(R) is

2.412◦. (d) The result (red) of ICP initialized with Cy-CNN. With an initial transformation provided by Cy-CNN, ICP converges

to the global optimum. The value of RMSE(R) is 0.023◦.

Table 4 Test on unseen categories

Model
Initial misalignments [0◦, 15◦] Initial misalignments [15◦, 30◦] Initial misalignments [30◦, 45◦]

RMSE(R) MAE(R) RMSE(t) MAE(t) RMSE(R) MAE(R) RMSE(t) MAE(t) RMSE(R) MAE(R) RMSE(t) MAE(t)

ICP [8] 0.229181 0.166492 0.000026 0.000022 12.849926 11.985556 0.001507 0.001348 30.984059 30.099091 0.003650 0.003273

Go-ICP [21] 0.115038 0.088632 0.000009 0.000008 0.566037 0.418517 0.000050 0.000044 13.072995 10.563528 0.001154 0.001014

FGR [14] 0.013766 0.011688 0.000146 0.000123 0.020753 0.017284 0.000152 0.000134 1.226873 1.092993 0.001102 0.000997

TEASER++ [26] 0.092356 0.059531 0.000313 0.000276 0.112732 0.082953 0.000462 0.000401 1.012623 0.745820 0.001083 0.000877

PointNetLK [15] 0.001889 0.001660 0.000011 0.000009 0.110262 0.096065 0.000945 0.000776 5.920093 4.981530 0.0373815 0.031065

DCP-v2 [16] 2.118484 1.583357 0.018179 0.013319 3.614282 2.696888 0.027249 0.019143 6.400655 4.666704 0.044429 0.029158

Cy-CNN (ours) 0.307489 0.261533 0.000041 0.000032 0.322620 0.281512 0.000042 0.000034 0.359220 0.318854 0.000042 0.000034

a local registration algorithm by initializing with a rigid transformation from the proposed Cy-CNN.
Figure 8 shows an example of this two-step procedure. Although ICP fails in the condition of large initial
misalignments, with an initialization provided by Cy-CNN, it converges to the global optimum. This
experiment shows that, in some scenes, ICP can be an effective way to fine-tune the output of Cy-CNN.

4.4 Category split

In order to test the generalizability on unseen categories, we train our model on 20 categories, then test
on the held-out categories which have not been seen during training. Other methods are also tested
on the held-out categories. Table 4 shows the results of this experiment. Compared with Table 1, we
find ICP, Go-ICP, FGR, and TEASER++ are not sensitive to categories. The learning-based method
PointNetLK performs well when the initial misalignments are small ([0◦, 15◦]) on unseen categories, but it
degenerates when the rotation becomes large ([30◦, 45◦]). Another learning-based method DCP-v2 shows
the sensitivity to unseen categories, especially at large initialization misalignments. Cy-CNN exhibits
similar results to Table 1. Because our network learns rotation-invariant features that are unrelated to
categories, Cy-CNN has the ability to generalize for registration on categories that are unseen during
training.

Zhao H W, et al. Sci China Inf Sci May 2023 Vol. 66 152102:11

Table 5 Test on partially visible data with noise

Model RMSE(R) MAE(R) RMSE(t) MAE(t)

ICP [8] 27.469155 26.230035 0.054282 0.048805

Go-ICP [21] 11.641246 9.321784 0.026926 0.021493

FGR [14] 8.712343 7.664377 0.020346 0.018321

TEASER++ [26] 6.931573 5.621506 0.019642 0.015930

PointNetLK [15] 9.234156 8.124132 0.037327 0.033414

DCP-v2 [16] 7.121321 6.234231 0.034124 0.031571

Cy-CNN (ours) 2.762431 2.251381 0.016126 0.014541

Input Feature Output

Figure 9 (Color online) The registration results of partially visible data with noise on the Stanford Bunny dataset.

4.5 Partially visible data

We evaluate Cy-CNN on the common registration scenario of aligning partially visible data, in which the
ranges of the two point clouds do not completely overlap. Depending on the data collection method, point
cloud data is usually partially visible in the real world. For example, the RGB-D camera only collects the
points visible to the camera. We simulate the partially visible data on ModelNet40 as follows. For each
point cloud, we randomly place a point in space and compute the 768 nearest neighbors. This operation
can be thought of as placing a sensor in a location and sampling data of the 3D shapes. Next, we add
Gaussian noise (µ = 0, σ = 0.01) to the partial point cloud. The random transformation is similar to
Subsection 4.2 with rotation angles [0◦, 45◦] along each axis and translation [−0.5, 0.5] m during training.
We train PointNetLK [15], DCP-v2 [16] and our model on partially visible data sampled from ModelNet40
dataset [54]. We evaluate the models with initial misalignments [30◦, 45◦] and translation [−0.5, 0.5] m.
The results are shown in Table 5. The performance of ICP, Go-ICP, FGR, and TEASER++ is similar
to that in Subsection 4.2. Our method outperforms other methods in this experiment. This indicates
that our method can resist partial deletion of point clouds to a certain extent. The last three columns of
Figure 5 show the example results of partially visible data on ModelNet40.

4.6 Real-world data

To evaluate the performance of our method on real-world point clouds, we first test our model on the
Stanford Bunny dataset [55]. Because the dataset only has 10 real scans, we fine-tune the model used in
Table 5 for 30 epochs with a learning rate of 0.0001. For each scan, we generate 100 training examples by
randomly transforming and sampling the scan as we do on ModelNet40. Table 6 shows the quantitative
registration results, and Figure 9 shows the qualitative registration results and feature visualization on
the Stanford Bunny dataset. We can see that even if the target point cloud and the transformed point
cloud are not completely overlapped, our method can align the two point clouds. This result can be
fine-turned with ICP as mentioned in Subsection 4.3.

To evaluate the performance of our method on 3D scene registration, we perform experiments on the
3DMatch dataset [56], which consists of 62 real-world indoor scenes. Each scene contains some partially
overlapped fragments and has the ground truth transformations that can be used for evaluation. We follow
the official specifications and split the data into 54 scenes for training and 8 for testing. As a preprocessing
step, we apply voxel-grid downsampling and randomly sample 4000 points for each point cloud fragment.
During training and testing, we add additional Gaussian noise (µ = 0, σ = 0.01), rotation angles [0◦, 45◦],
and 70% partial occlusions. Table 6 shows the quantitative registration results, and Figure 10 shows the
qualitative registration results and feature visualization on the 3DMatch dataset. We can see that the

Zhao H W, et al. Sci China Inf Sci May 2023 Vol. 66 152102:12

Table 6 Ablation experiments of parameter setting

Dataset Height (m) Radius (m) τ RMSE(R) MAE(R) RMSE(t) MAE(t)

Stanford Bunny 0.03 [0.03, 0.06, 0.09] 0.95 3.129834 2.563814 0.017112 0.015321

Stanford Bunny 0.05 [0.05, 0.10, 0.15] 0.95 2.845304 2.328922 0.016610 0.014977

Stanford Bunny 0.10 [0.10, 0.20, 0.30] 0.95 3.319361 2.716920 0.017364 0.015747

Stanford Bunny 0.05 [0.05, 0.10, 0.15] 0.99 2.883757 2.352211 0.016932 0.015121

Stanford Bunny 0.05 [0.05, 0.10, 0.15] 0.90 2.930663 2.398790 0.017013 0.015051

Stanford Bunny 0.05 [0.05, 0.10, 0.15] 0.80 3.077196 2.518729 0.017121 0.015342

Stanford Bunny 0.05 [0.05, 0.10, 0.15] 0.70 3.231055 2.644665 0.017236 0.015551

Stanford Bunny 0.05 [0.05, 0.10, 0.15] 0.60 3.263367 2.671112 0.017283 0.015628

3DMatch 0.10 [0.10, 0.20, 0.30] 0.95 4.182783 3.483261 0.017732 0.015984

3DMatch 0.15 [0.15, 0.30, 0.45] 0.95 3.764543 3.133166 0.017413 0.015603

3DMatch 0.20 [0.20, 0.40, 0.60] 0.95 4.015261 3.341835 0.017647 0.015861

3DMatch 0.15 [0.15, 0.30, 0.45] 0.99 3.879905 3.237347 0.017585 0.015819

3DMatch 0.15 [0.15, 0.30, 0.45] 0.90 3.893215 3.245125 0.017613 0.015833

3DMatch 0.15 [0.15, 0.30, 0.45] 0.80 4.087876 3.407381 0.017721 0.015912

3DMatch 0.15 [0.15, 0.30, 0.45] 0.70 4.272261 3.543676 0.017829 0.016236

3DMatch 0.15 [0.15, 0.30, 0.45] 0.60 4.293256 3.579113 0.017831 0.016358

Input Feature Output

Figure 10 (Color online) The registration results of 3D scenes on the 3DMatch dataset.

features of the same geometric structure of the two point cloud fragments are similar (e.g., the chair),
which is conducive to correspondence generation. And the predicted transformation makes the two point
clouds align well. This verifies that Cy-CNN is able to handle 3D scene reconstruction applications.

4.7 Ablation study

Effectiveness of different components. In the proposed Cy-CNN architecture, RIPR and Cylinder-
Conv are two components that can be replaced. To study the effectiveness of RIPR in Subsection 3.1, we
replace RIPR with PPF or coordinates in LRF. That is because only using PPF or LRF respectively is
also a kind of rotation-invariant representation. To study the effect of the symmetry of cylinder-shaped
voxels in Cylinder-Conv, we replace Cylinder-Conv with a uniform grid voxel based convolution [36]
which is aligned with the world coordinate system without considering local surface direction. Both the
direction and the grid shape of the voxel [36] cause it to be not rotation-invariant. To study the ability
of Cylinder-Conv to capture hierarchical geometric information of the surface of objects, we replace
Cylinder-Conv with DGCNN [38] which learns local features via constructing the k-NN graph. We train
the models with grid voxel based convolution [36] using and not using RIPR, the models with DGCNN
using and not using RIPR, and the models with Cylinder-Conv not using RIPR as the experiment setting
in Subsection 4.1. The model with Cylinder-Conv using RIPR is the model which has been trained in

Zhao H W, et al. Sci China Inf Sci May 2023 Vol. 66 152102:13

Table 7 Ablation experiments on ModelNet40 dataset

Model PPF LRF RMSE(R) MAE(R) RMSE(t) MAE(t)

Hua et al. [36] ✔ ✕ 3.938751 3.269163 0.004578 0.003708

Hua et al. [36] ✕ ✔ 3.817526 3.034327 0.004432 0.003661

Hua et al. [36] ✔ ✔ 2.393821 1.938614 0.004312 0.003536

DGCNN [38] ✔ ✕ 3.067987 2.485069 0.004815 0.003903

DGCNN [38] ✕ ✔ 2.617781 2.113263 0.004641 0.003732

DGCNN [38] ✔ ✔ 1.399740 1.147787 0.004252 0.003487

Cylinder-Conv (ours) ✔ ✕ 0.810549 0.655653 0.003681 0.002982

Cylinder-Conv (ours) ✕ ✔ 0.732503 0.591325 0.003242 0.002413

Cylinder-Conv (ours) ✔ ✔ 0.482591 0.426159 0.002212 0.001940

Subsection 4.1. We test with initial misalignments [30◦, 45◦] and translation [−0.5, 0.5] m. We also add
Gaussian noises (µ = 0, σ = 0.01) to the point clouds.

Table 7 shows the experiment results. The models using PPF or LRF are marked with a “✔”, and
the models without using PPF or LRF are marked with a “✕”. When a model simultaneously uses PPF
and LRF, it can be seen as using RIPR in Subsection 3.1. By comparing the models only using PPF
(lines 1, 4, 7) with the models only using LRF (lines 2, 5, 8), we find that the performance of LRF
is slightly better than that of PPF. We infer that is because using the coordinates in LRF as input is
beneficial to feature learning, compared to only using PPF as input. By comparing the models using
RIPR with the models not using RIPR, we find that the performance of the combination of PPF and
LRF (lines 3, 6, 9) is better than only using either one of them (lines 1, 2, 4, 5, 7, 8). That is because
RIPR provides richer information combining surface structure and relative positions in the local region
than only using PPF or LRF as a representation. By comparing the models using grid voxel based
convolution [36] (lines 1–3) with the models using Cylinder-Conv (lines 7–9), Tabel 7 shows that the
models using Cylinder-Conv perform better. Neighbor points in grid voxels will change after rotation
while neighbor points in cylinder-shaped voxel maintain invariance. By comparing models using DGCNN
(lines 4–6) with Cylinder-Conv (lines 7–9), we find that Cylinder-Conv outperforms DGCNN. Cylinder-
Conv can better exploit the surface information of objects owing to the usage of the normal direction as
mentioned in Subsection 3.2. Moreover, the multi-scale cylinder-shaped voxels and the pooling operation
in each cylinder-shaped voxel make the neighbor relationship more robust to jitter than the k-NN graph
used in DGCNN. Using the proposed Cylinder-Conv, we learn robust and rotation-invariant features from
different components of the object, which contributes to the registration results.

Parameter setting. To study the influence of the size of cylinder-shaped voxels and the similarity
threshold τ on the performance of our method, we set different parameters to train and test our model on
the Stanford Bunny dataset and the 3DMatch dataset. These two datasets introduced in Subsection 4.6
are real-world datasets, which can verify the value of our method on real-world applications. For the
Stanford Bunny dataset, we retrain our model on Subsection 4.1 using different parameters and fine tune
it on the Stanford Bunny dataset. For the 3DMatch dataset, we directly train our model on the 3DMatch
dataset using different parameters. Other experimental settings are the same with Subsection 4.6. Table 6
shows the experiment results. We observe that the proper sizes of the cylinder-shaped voxels on the
Stanford Bunny dataset (object-level point cloud) are 0.05 m of height and [0.05, 0.10, 0.15] m of radii,
the proper sizes of the cylinder-shaped voxels on the 3DMatch dataset (3D scene point cloud) are 0.15
m of height and [0.15, 0.30, 0.45] m of radii. We infer that when the size is too small the captured
geometric information is not sufficient for correspondence generation, and when the size is too large, too
much contextual information is encoded, thus weakening the distinctiveness of features. For the choice
of similarity threshold τ , we adjust its value in [0.6, 0.99] and observe the results. We find that if τ is
too large (tending to 1), too few correspondences are generated which impacts the final pose estimation;
if τ is too small (tending to 0), too many outliers are in the correspondences which also impacts the
final pose estimation. We find that when τ is less than 0.7, the results change very slightly. We think
that is because nearly no point is filtered as an outlier when τ is less than 0.7, which means the value
of τ gradually makes no sense when τ is tending to be small. So we end up reporting the results of
τ ∈ [0.6, 0.99]. As shown in Table 6, we find that 0.95 is a proper choice, and the jitter of τ only has a
slight influence on the results.

Zhao H W, et al. Sci China Inf Sci May 2023 Vol. 66 152102:14

Table 8 Inference time (s)

Number of points ICP Go-ICP FGR TEASER++ PointNetLK DCP-v2 Cy-CNN (ours)

512 0.008 14.713 0.026 0.017 0.045 0.007 0.012

1024 0.019 15.531 0.083 0.046 0.056 0.009 0.025

2048 0.032 15.942 0.143 0.093 0.148 0.021 0.051

4.8 Computational efficiency

We analyze the inference time of various methods with the computing platform mentioned before. The
averaged inference time using different numbers of points is shown in Table 8, which is averaged over
the entire test set. Note that ICP, Go-ICP, FGR, and TEASER++ are executed on the CPU and the
remaining algorithms on the GPU. Our algorithm is significantly faster than Go-ICP, FGR, TEASER++,
and PointNetLK, but it is slower than ICP and DCP-v2.

5 Conclusion

In this paper, we propose Cy-CNN, a novel cylinder convolution based rotation-invariant neural network
for point cloud registration. The core of Cy-CNN is to learn point-wise rotation-invariant features for
calculating the correspondence between two point clouds, where RIPR and Cylinder-Conv ensure the
property of rotation-invariance in the input stage and the learning stage, respectively. Extensive exper-
iments show that our end-to-end trainable model is reliable to predict high-quality registration results
in a single pass, even with large initial misalignments and noise. Our method also shows the ability to
generalize to unseen categories and the compatibility with ICP for more accurate estimation.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 62173228, 61873165).

References

1 Liu B S, Chen X M, Han Y H, et al. Accelerating DNN-based 3D point cloud processing for mobile computing. Sci China Inf

Sci, 2019, 62: 212102

2 Peng H T, Zhou B, Yin L Y, et al. Semantic part segmentation of single-view point cloud. Sci China Inf Sci, 2020, 63: 224101

3 Zhao H, Zhu C Y, Xu X, et al. Learning practically feasible policies for online 3D bin packing. Sci China Inf Sci, 2022, 65:

112105

4 Han L, Gu S, Zhong D, et al. Real-time globally consistent dense 3D reconstruction with online texturing. IEEE Trans

Pattern Anal Mach Intell, 2022, 44: 1519–1533

5 Fang S, Li H, Yang M. LiDAR SLAM based multivehicle cooperative localization using iterated split CIF. IEEE Trans Intell

Transp Syst, 2022. doi: 10.1109/TITS.2022.3174479

6 Holz D, Ichim A E, Tombari F, et al. Registration with the point cloud library: a modular framework for aligning in 3-D.

IEEE Robot Automat Mag, 2015, 22: 110–124

7 Chen Y, Medioni G. Object modelling by registration of multiple range images. Image Vision Computing, 1992, 10: 145–155

8 Besl P J, McKay N D. Method for registration of 3-D shapes. In: Proceedings of Sensor Fusion IV: Control Paradigms and

Data Structures, 1992. 586–606

9 Segal A, Haehnel D, Thrun S. Generalized-ICP. In: Proceedings of Robotics: Science and Systems, Seattle, 2009. 435

10 Agamennoni G, Fontana S, Siegwart R Y, et al. Point clouds registration with probabilistic data association. In: Proceedings

of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016. 4092–4098

11 Magnusson M, Lilienthal A, Duckett T. Scan registration for autonomous mining vehicles using 3D-NDT. J Field Robotics,

2007, 24: 803–827

12 Zhou Q Y, Park J, Koltun V. Fast global registration. In: Proceedings of European Conference on Computer Vision. Berlin:

Springer, 2016. 766–782

13 Ma J, Jiang X, Fan A, et al. Image matching from handcrafted to deep features: a survey. Int J Comput Vis, 2021, 129:

23–79

14 Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration. In: Proceedings of IEEE Interna-

tional Conference on Robotics and Automation, 2009. 3212–3217

15 Aoki Y, Goforth H, Srivatsan R A, et al. PointNetLK: robust & efficient point cloud registration using pointnet. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. 7163–7172

16 Wang Y, Solomon J M. Deep closest point: learning representations for point cloud registration. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision, 2019. 3523–3532

17 Yew Z J, Lee G H. RPM-Net: robust point matching using learned features. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2020. 11824–11833

18 van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learning Res, 2008, 9: 2579–2605

19 Censi A. An ICP variant using a point-to-line metric. In: Proceedings of IEEE International Conference on Robotics and

Automation, 2008. 19–25

20 Pomerleau F, Colas F, Siegwart R, et al. Comparing ICP variants on real-world data sets. Auton Robot, 2013, 34: 133–148

21 Yang J, Li H, Campbell D, et al. Go-ICP: a globally optimal solution to 3D ICP point-set registration. IEEE Trans Pattern

Anal Mach Intell, 2015, 38: 2241–2254

22 Rusu R B, Blodow N, Marton Z C, et al. Aligning point cloud views using persistent feature histograms. In: Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. 3384–3391

https://doi.org/10.1007/s11432-019-9932-3
https://doi.org/10.1007/s11432-018-9689-9
https://doi.org/10.1007/s11432-021-3348-6
https://doi.org/10.1109/TPAMI.2020.3021023
https://doi.org/10.1109/TITS.2022.3174479
https://doi.org/10.1109/MRA.2015.2432331
https://doi.org/10.1016/0262-8856(92)90066-C
https://doi.org/10.1002/rob.20204
https://doi.org/10.1007/s11263-020-01359-2
https://doi.org/10.1007/s10514-013-9327-2
https://doi.org/10.1109/TPAMI.2015.2513405

Zhao H W, et al. Sci China Inf Sci May 2023 Vol. 66 152102:15

23 Yang J, Quan S, Wang P, et al. Evaluating local geometric feature representations for 3D rigid data matching. IEEE Trans

Image Process, 2019, 29: 2522–2535

24 Ma J, Wu J, Zhao J, et al. Nonrigid point set registration with robust transformation learning under manifold regularization.

IEEE Trans Neural Netw Learn Syst, 2018, 30: 3584–3597

25 Ma J, Zhao J, Jiang J, et al. Locality preserving matching. Int J Comput Vis, 2019, 127: 512–531

26 Yang H, Shi J, Carlone L. TEASER: fast and certifiable point cloud registration. IEEE Trans Robot, 2020, 37: 314–333

27 Myronenko A, Song X B. Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell, 2010, 32:

2262–2275

28 Jian B, Vemuri B C. Robust point set registration using Gaussian mixture models. IEEE Trans Pattern Anal Mach Intell,

2011, 33: 1633–1645

29 Li L, Yang M, Wang C, et al. Robust point set registration using signature quadratic form distance. IEEE Trans Cybern,

2018, 50: 2097–2109

30 Su H, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of

the IEEE International Conference on Computer Vision, 2015. 945–953

31 Wu B, Wan A, Yue X, et al. SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation

from 3D lidar point cloud. In: Proceedings of IEEE International Conference on Robotics and Automation, 2018. 1887–1893

32 Tchapmi L, Choy C, Armeni I, et al. SEGCloud: semantic segmentation of 3D point clouds. In: Proceedings of International

Conference on 3D Vision, 2017. 537–547

33 Maturana D, Scherer S. VoxNet: a 3D convolutional neural network for real-time object recognition. In: Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015. 922–928

34 Qi C R, Su H, Mo K, et al. PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2017. 652–660

35 Qi C R, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Proceedings

of Advances in Neural Information Processing Systems, 2017. 5099–5108

36 Hua B S, Tran M K, Yeung S K. Pointwise convolutional neural networks. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018. 984–993

37 Lin L Q, Huang P D, Xue F Y, et al. Hausdorff point convolution with geometric priors. Sci China Inf Sci, 2021, 64: 210105

38 Wang Y, Sun Y, Liu Z, et al. Dynamic graph CNN for learning on point clouds. ACM Trans Graph, 2019, 38: 1–12

39 Liang Z, Yang M, Deng L, et al. Hierarchical depthwise graph convolutional neural network for 3D semantic segmentation of

point clouds. In: Proceedings of International Conference on Robotics and Automation, 2019. 8152–8158

40 Valsesia D, Fracastoro G, Magli E. Learning localized representations of point clouds with graph-convolutional generative

adversarial networks. IEEE Trans Multimedia, 2020, 23: 402–414

41 Cao W M, Zheng C T, Yan Z Y, et al. Geometric deep learning: progress, applications and challenges. Sci China Inf Sci,

2022, 65: 126101

42 Poulenard A, Rakotosaona M J, Ponty Y, et al. Effective rotation-invariant point CNN with spherical harmonics kernels.

In: Proceedings of International Conference on 3D Vision, 2019. 47–56

43 Li X, Li R, Chen G, et al. A rotation-invariant framework for deep point cloud analysis. IEEE Trans Visual Comput Graph,

2021. doi: 10.1109/TVCG.2021.3092570

44 Chen C, Li G, Xu R, et al. ClusterNet: deep hierarchical cluster network with rigorously rotation-invariant representation

for point cloud analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

4994–5002

45 You Y, Lou Y, Liu Q, et al. Pointwise rotation-invariant network with adaptive sampling and 3D spherical voxel convolution.

In: Proceedings of the AAAI Conference on Artificial Intelligence, 2020. 12717–12724

46 Deng H, Birdal T, Ilic S. PPFNet: global context aware local features for robust 3D point matching. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2018. 195–205

47 Deng H, Birdal T, Ilic S. PPF-FoldNet: unsupervised learning of rotation invariant 3D local descriptors. In: Proceedings of

the European Conference on Computer Vision (ECCV), 2018. 602–618

48 Ao S, Hu Q, Yang B, et al. SpinNet: learning a general surface descriptor for 3D point cloud registration. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021. 11753–11762

49 Lu W, Wan G, Zhou Y, et al. DeepVCP: an end-to-end deep neural network for point cloud registration. In: Proceedings of

the IEEE International Conference on Computer Vision, 2019. 12–21

50 Khazari A E, Que Y, Sung T L, et al. Deep global features for point cloud alignment. Sensors, 2020, 20: 4032

51 Gojcic Z, Zhou C, Wegner J D, et al. Learning multiview 3D point cloud registration. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2020. 1759–1769

52 Drost B, Ulrich M, Navab N, et al. Model globally, match locally: efficient and robust 3D object recognition. In: Proceedings

of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010. 998–1005

53 Huang H, Li D, Zhang H, et al. Consolidation of unorganized point clouds for surface reconstruction. ACM Trans Graph,

2009, 28: 1–7

54 Wu Z, Song S, Khosla A, et al. 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2015. 1912–1920

55 Turk G, Levoy M. The Stanford 3D Scanning Repository. Stanford University Computer Graphics Laboratory, 2005.

http://graphics.stanford.edu/data/3Dscanrep

56 Zeng A, Song S, Nießner M, et al. 3DMatch: learning local geometric descriptors from RGB-D reconstructions. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. 1802–1811

https://doi.org/10.1109/TIP.2019.2959236
https://doi.org/10.1109/TNNLS.2018.2872528
https://doi.org/10.1007/s11263-018-1117-z
https://doi.org/10.1109/TRO.2020.3033695
https://doi.org/10.1109/TPAMI.2010.46
https://doi.org/10.1109/TPAMI.2010.223
https://doi.org/10.1109/TCYB.2018.2845745
https://doi.org/10.1007/s11432-021-3311-2
https://doi.org/10.1145/3326362
https://doi.org/10.1109/TMM.2020.2976627
https://doi.org/10.1007/s11432-020-3210-2
https://doi.org/10.1109/TVCG.2021.3092570
https://doi.org/10.3390/s20144032
https://doi.org/10.1145/1618452.1618522

	Introduction
	Related work
	Methodology
	Rotation-invariant point cloud representation
	Convolutions on cylinder-shaped voxels
	Architecture

	Experiments
	Full dataset train and test
	Robustness to noise
	Robustness to initial misalignments
	Category split
	Partially visible data
	Real-world data
	Ablation study
	Computational efficiency

	Conclusion

