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Abstract Generative adversarial networks (GANs) have drawn enormous attention due to their simple

yet effective training mechanism and superior image generation quality. With the ability to generate photo-

realistic high-resolution (e.g., 1024 × 1024) images, recent GAN models have greatly narrowed the gaps

between the generated images and the real ones. Therefore, many recent studies show emerging interest to

take advantage of pre-trained GAN models by exploiting the well-disentangled latent space and the learned

GAN priors. In this study, we briefly review recent progress on leveraging pre-trained large-scale GAN

models from three aspects, i.e., (1) the training of large-scale generative adversarial networks, (2) exploring

and understanding the pre-trained GAN models, and (3) leveraging these models for subsequent tasks like

image restoration and editing.
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1 Introduction

The recent years have witnessed the rapid development of generative adversarial networks (GANs) [1].
Particularly, GAN models are trained by learning to push a fake data distribution towards the real one
via adversarial learning, thereby making the generated data (e.g., images) indistinguishable from the real
one. In general, the GAN models are composed of two parts, i.e., a generator G and a discriminator
D . Specifically, the generator aims at generating fake samples as realistically as possible, while the
discriminator, in turn, aims at distinguishing between real and fake samples to avoid being fooled by the
generator. During the adversary process, the ability of G and D can be constantly improved. Finally,
they may reach a balanced state (i.e., Nash equilibrium), where G is capable of generating images that
D cannot tell between real and fake. A series of studies made tremendous efforts to improve the quality
of GAN-generated images in terms of network structures [2–5], loss functions [6–11], and so on. Recently,
several GAN models (e.g., PGGAN [12], BigGAN [13], and StyleGAN series [14–17]) have shown superior
image generation ability to produce photo-realistic high-resolution (e.g., 1024× 1024) images.

Therefore, the exploration of leveraging GANs for enhancing image quality has drawn upsurging at-
tention. Prior studies often simply take the adversarial loss as an extra term in their learning objectives.
On the one hand, the discriminator and adversarial loss can serve as out-of-the-box components, which
could be readily incorporated into many other models, and bring no extra complexity during inference.
On the other hand, applying adversarial training generally can avoid the models being optimized to a
blurry average solution, which makes the output image contain more sharp and clear details. As such,
the effectiveness has been verified in many vision tasks such as image editing [18–23], image super-
resolution [24–27], image deblurring [28–30], and image dehazing [31–34].
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Figure 1 (Color online) Image interpolation in the pixel space and the latent space. x1 and x2 are two images of the same object.

E(x) denotes the latent code of an image x, which is mapped backed to the latent space by the encoder E. G(E(x)) denotes the

inversion result of x. The first row shows the results of interpolating directly in the pixel space via x = α · x1 + (1 − α) · x2. In

contrast, the second row shows the results of interpolating in the latent space via x = G(β ·E(x1)+ (1−β) ·E(x2)). It can be seen

that the interpolation in the latent space is semantically more plausible. The sample images are from the tower subset of LSUN

dataset [37], and the results in the second row are generated via the officially released model of IDInvert [38].

However, with the development of GANs, it becomes much harder for such a utilization scheme to fully
explore the potential of GAN models. Therefore, many recent studies turn to exploring and leveraging
pre-trained GAN models, whose advantages are analyzed as follows.

Disentanglement of GAN latent space. For many vision tasks like image editing, it is a basic
problem to identify image contents and the manipulation mode of a concept to be edited. Since the con-
cepts are entangled with each other and form an interlaced group of editing spaces (e.g., changing a facial
image to smile or old can both cause wrinkles). Even with the well-labeled datasets (e.g., CelebA [35]),
it is still a very challenging task to describe the manipulation mode directly on the pixels [20–23]. As
a remedy, pre-trained GAN models provide yet another possible solution, where the disentanglement of
latent spaces has been explored recently [14, 36]. As shown in Figure 1 [37, 38], interpolation between
images will cause obvious artifacts, while the same operation in the latent space will be semantically
more plausible. Such a phenomenon clearly illustrates the latent space disentanglement ability of recent
GAN models.

Leveraging pre-trained GAN priors. For tasks with image outputs, regularization terms and
natural image priors are often applied to enhance the output image quality, e.g., local smoothness [39],
non-local self-similarity [40], sparsity [41], etc. Nevertheless, they are either hand-crafted with manually
tuned parameters, or based on strong assumptions that are usually not applicable in real applications,
making the performance and flexibility greatly limited. Some unsupervised methods [42] propose to get rid
of these limitations, but they are designed and evaluated on specific degradations. Dynamic network [43]
or network architecture search (NAS) [44] based methods introduce structure flexibility, but they are
still limited in generalizing to a large variety of degradations. On the contrary, the learning objective of
GAN models is to generate high-quality diverse images from the latent code (which is generally a random
noise). In other words, given a vector located in the latent space, the well-trained GAN models are very
likely to generate a high-quality output. Therefore, the pre-trained GAN models are naturally able to
provide stronger and more reliable high-quality natural image priors. Furthermore, the GAN priors can
be helpful to a wide range of tasks, making it with much more practical significance.

Training scheme & development potentials. Collecting pairwise training data is extremely time-
consuming and expensive, and it is impossible to collect abundant training data for all tasks. Fortunately,
GAN models are trained in an unsupervised manner, where the training images are much easier to collect
without requiring ground-truth labels or reference images. Indeed, there are already a huge amount of
unlabeled images, and the unsupervised training scheme of GAN models makes it easier to apply the
extremely large-scale training sets and to train models with greater capacity for better performance.

As a result, many recent studies show rising interest in pre-trained GAN models and have developed
a series of methods. In this study, we review the recent progress on leveraging pre-trained GAN mod-
els, from understanding GAN models [45–48] to leveraging them for subsequent tasks such as image
editing [49–52] and restoration [53–57], mainly involving,
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Table 1 A summary on the symbols used in this survey

Format Definition Example

Upper-case italic letters (e.g., G) Models or networks Generator G; discriminator D; encoder E ;

MLP F ; segmentation model S

Bold letters (e.g., z) Images or tensors Image x, I; latent code (or random noise) z, w, p, n,

etc.; learned input m; Fourier feature input F ; condition c

Handwritten letter (e.g., Z) Latent spaces or distributions Latent spaces Z, C, W, S,

P, N , F ; loss functions L

Greek letters (e.g., α) Parameters or specified Interpolation parameters or hyperparameters α, β,

λ; θ model parameters; any possible network inputs δ

Double struck letter (e.g., R) Following mathematical definitions Mathematical expectation E; spatial dimension R

• We survey the characteristics of pre-trained GAN models, and the efforts for exploring and acquiring
these characteristics are also introduced.

• Focusing on image restoration and editing tasks, we summarize and compare relevant methods to
utilize pre-trained GAN models.

• We discuss the open problems and potential research directions in this field.
The rest of this study is organized as follows. To begin with, Section 2 introduces recent progress of

GAN models, including network architecture, and training mechanism. Then, the latent space of GANs
as well as methods for GAN inversion are introduced in Section 3. By exploring the characteristics
of pre-trained GAN models (e.g., latent space exploration), the relevant methods and experiments for
understanding pre-trained GAN models are reviewed in Section 4. Based on the impressions of latent
space, we introduce and summarize the methods in Section 5, which leverage pre-trained GANs for
subsequent applications, especially the image editing and restoration tasks. Finally, we discuss the open
problems in this field, and point out some potential directions for future research in Section 6. More
information about relevant methods and repositories can be found at the website 1).

2 Pre-trained generative adversarial networks

2.1 Preliminary

In the deep learning [58] era, when researchers are referring to a task, generally there accompany two
fundamental problems, i.e., data sets and evaluation metrics. For GAN models, these two problems are
even more important. On the one hand, numerous training samples are typically required to avoid over-
fitting and to tap the potential of their superior capacity. On the other hand, the evaluation of generative
models is more difficult since there are no ground-truth or labels for assessment, and generating thousands
or even millions of images for user study is a mission impossible due to the time and labor costs. Therefore,
before introducing the large-scale GAN models, we brief the relevant datasets, as well as the metrics for
evaluating the pre-trained GAN models. Besides, we summarize the symbols used in this survey in
Table 1.

2.1.1 Image datasets for training large-scale GAN models

ImageNet [59] is the very first large-scale natural image dataset, which contains over 14M images from
more than 21k classes (referred to as ImageNet-21k), and the average image size is 469 × 387. The
commonly used configuration is a 1000-class subset with ∼1k images per class (denoted by ImageNet-
1k), and the images are usually resized to 224× 224 or 256× 256 in practice.

CelebA [35] (large-scale CelebFaces Attributes dataset) contains more than 200k facial images from
10k celebrities, each of the images is annotated with 40 attributes, and the aligned images are resized
and cropped to 178 × 218. A subset of CelebA is post-processed to form the CelebA-HQ [12] dataset,
containing 30k facial images with the resolution of 1024 × 1024. The dataset is also extended with
annotations like CelebAMask-HQ [60] via pixel-wise facial component labeling (face parsing).

LSUN [37] & AFHQ [23] are another two datasets of scene and object categories. The LSUN dataset
is composed of 10 scene categories and 20 object categories, each of which contains around 1M labeled

1) https://github.com/csmliu/pretrained-GANs.

https://github.com/csmliu/pretrained-GANs
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images, and the images are provided by resizing the shorter edge to 256 pixels and compressing to JPEG
image quality of 75. On the contrary, AFHQ (Animal Faces-HQ dataset) is composed of only three
categories (i.e., cat, dog, and wildlife), each of which contains around 5k high-quality animal face images
with a resolution of 512 × 512. Recent methods often take a specific category of these two datasets for
training their GAN models, e.g., bedroom, church from LSUN, and cat from AFHQ.

FFHQ [14] (Flickr-Faces-HQ dataset) is a high-quality image dataset collected from Flickr2), containing
70k automatically aligned high-resolution (1024× 1024) facial images with diverse data distribution. To
date, FFHQ is the most popular dataset for training GAN models for facial image generation. Image
editing and restoration methods based on pre-trained GANs are often trained on FFHQ dataset and
evaluated on CelebA-HQ [12] to show the generalization ability.

Other datasets. Apart from the aforementioned ones, some other datasets [16, 61–65] are also em-
ployed for prototyping and/or training large-scale GAN models. To sum up, large scale and favorable
image quality are two key ingredients of datasets for training high-quality large-scale GAN models. There-
fore, some other datasets like Objects 365 [66], Places 365 [67], and Open Images [68] may also be used
for training GAN models with greater capacity.

2.1.2 Evaluation metrics for assessing GAN models

Mean opinion score (MOS) is the most intuitive index to assess the perceptual quality of images, since the
image quality assessment is conducted by human raters. However, assessing via MOS is very expensive,
and the results may be biased due to factors like subjective perceiving differences. Furthermore, the
time-consuming procedure makes it suitable for small-scale assessment, e.g., user study, but hard to be
employed for the evaluation during training and broader comparison.

Inception Score [69] (IS) is a commonly used metric for evaluating the image quality and class diversity.
Considering a well-trained classifier (e.g., Inception-v3 [70] trained on ImageNet [59] for calculating IS),
the high confidence of classifying a generated image x̂ into a class c (i.e., smaller entropy of p(c|x̂))
generally implies decent image generation quality. On the other hand, better class diversity requires that
the marginal probability distribution of class label approximates uniform distribution, i.e., higher entropy
of p(c). Therefore, the Inception Score is defined by

IS = exp(Ex̂∼pg
[DKL(p(c|x̂)‖p(c))]) = exp(H (c)− Ex̂∼pg

[H (c|x̂)]), (1)

where x̂ is sampled from the generated image distribution pg , DKL(·‖·) denotes Kullback-Leibler (K-L)
divergence, H (·) represents entropy. However, IS is unable to detect mode collapse, e.g., a high Inception
Score will be derived when the generator produces one and only one high-quality image for each class.

Modified inception score [71] (m-IS) modifies IS by introducing the cross-entropy style score, i.e.,
−p(c|xi) log(p(c|xj )), which considers the diversity of a particular class. Formally, m-IS is defined by

m-IS = exp(Ex̂i∼pg
[Ex̂j∼pg

[DKL(p(c|x̂i )‖p(c|x̂j ))]]). (2)

Note that Eq. (2) calculates the m-IS on a particular class, and the final m-IS is obtained by averaging
the scores on all classes.

Mode Score [72] (MS) proposes to improve IS by introducing the prior distribution of the real images,

MS = exp(Ex̂∼pg
[DKL(p(c|x̂)‖p(c

train))]−DKL(p(c)‖p(c
train))), (3)

where p(c) is the same as IS, i.e., the distribution obtained from generated samples, while p(ctrain) is the
distribution of the training data. In this way, MS can evaluate both variety and visual quality in a single
metric. However, IS and MS were proven equivalent by Zhou et al. [73], and they further proposed AM
Score in [74].

AM Score [74] replaces the entropy H (c) in (1) with the K-L divergence between c and ctrain, which
is defined by

AM = DKL(p(c
train)‖p(c)) + Ex̂∼pg

[H (c|x̂)], (4)

where the first term requires that ctrain is close to c, while the second term requires that the class label
predicted from x̂ has low entropy. Besides, AM Score also shows that the entropy should be obtained by
a classifier trained on the given dataset, rather than a general classifier (e.g., trained on ImageNet).

2) https://www.flickr.com/.

https://www.flickr.com/.
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Fréchet inception distance [75]. Considering the drawbacks of IS, Fréchet inception distance (FID)
takes the real images into consideration and calculates the distance between generated images and real
ones. Specifically, FID is defined by

FID = ‖µr − µg‖
2
2 +Tr(Σr +Σg − 2(ΣrΣg)

1
2 ), (5)

where Tr(·) denotes trace of a matrix. The real and generated image features extracted by Inception-
v3 [70] are both assumed to follow the multivariate Gaussian distribution, i.e., φ(x) ∼ N (µr ,Σr ), φ(x̂) ∼
N (µg ,Σg). By utilizing the real samples, FID is not restricted by the training dataset (i.e., ImageNet [59]
for Inception-v3 [70]), and is much more sensitive to mode collapse.

Sliced Wasserstein distance [76]. It is worth noting that the Gaussian assumption of FID does not
always hold true. To avoid such an assumption, Bonneel et al. [76] proposed to calculate the sliced
Wasserstein distance (SWD) to approximate the Wasserstein distance, i.e.,

SWD(Ix , Iy ) =

(
∫

Sd−1

W p
p (RIx (·, θ),RIy (·, θ))dθ

)
1
p

, (6)

where S
d−1 is the unit sphere in R

d , p is set to 2 in practice, R denotes the Radon transform. Please
refer to [76, 77] for more details.

GAN-train & GAN-test [78]. Another problem in GAN training is over-fitting. In other words, the
model memorizes the training samples for generation. The GAN-train and GAN-test indices provide
a more comprehensive evaluation on the GAN model. In particular, GAN-train is the accuracy of a
classifier trained on a generated dataset Dg and evaluated on a real-image validation dataset Dval

r , while
GAN-test is the accuracy of a classifier trained on real-image training set Dtrain

r and tested on Dg . These
two metrics can identify problems such as mode dropping, poor image quality, and over-fitting.

Fréchet segmentation distance [46]. As shown in [46], the mode collapse occurs not only at the dis-
tribution level, but also at the instance level. In particular, certain objects may not be generated by a
GAN model, and this phenomenon is termed by mode dropping. For assessing the mode dropping in a
GAN model, the Fréchet segmentation distance (FSD) is defined by modifying FID, i.e.,

FSD = ‖µg − µt‖
2
2 +Tr(Σg +Σt − 2(ΣgΣt )

1
2 ), (7)

where µt (µg) is the mean pixel count for each object class over a sample of training images (generated
images), and Σt (Σg) is the covariance of these pixels.

Besides, many other metrics like perceptual path length [14], linear separability [14], precision and
recall [79], and geometry score [80] are also explored for better evaluating GANs. For certain tasks like
image restoration, peak signal-to-noise ratio (PSNR), structural similarity (SSIM) [81], and learned per-
ceptual image patch similarity (LPIPS) [82] are also employed for fidelity evaluation. We recommend [83]
for a more comprehensive survey on GAN metrics.

2.2 Large-scale GAN models

GANs are originally proposed for image generation. As such, we take image generation as an example
to introduce the basic concepts and training schemes of GANs, which could be naturally generalized to
other domains. A typical GAN model [1, 3] is composed of a generator and a discriminator, which are
denoted by G and D , respectively. Given a random vector z ∈ Z, the generator maps it to an image x̂,

x̂ = G(z, δ; θG), (8)

where δ denotes other possible inputs (e.g., class condition, layer-wise noise), θG represents the param-
eters of G, x̂ ∈ R

H×W×C denotes the generated C -channel image with the size of H × W . Then, the
discriminator D takes x̂ (or a real image x) as input, and predicts the probability that the input is from
the distribution of real images or the distance to the real image distribution3), and the learning objective
is defined by

min
G

max
D

LGAN(G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1−D(G(z)))]. (9)

3) Precisely speaking, the metric is diversity rather than distance for some adversarial loss functions such as vanilla GAN [1].
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Figure 2 (Color online) Illustration of recent GAN models (see (a)–(d)) and the latent spaces of StyleGAN series [14] (see (e)).

(a) For PGGAN [12], the blue part denotes the progressive growing procedure from 4× 4 to 8× 8. The components with dash lines

are employed for the fade-in strategy, where α is gradually growing to 1. They are discarded when the model grows to a higher

resolution. (b) For BigGAN [13], a specific noise is delivered to each layer together with the class embedding, and the model is

end-to-end trained without the progressive growing procedure. (c) For StyleGAN [14], a series of FC layers are deployed to map

z into w. The green part only belongs to StyleGAN2. (d) For StyleGAN3 [17], the generator is largely modulated to improve the

translational and rotation equivariance. The discriminator is omitted since it is identical with that used in StyleGAN2 [15]. (e) For

simplicity, here we take the StyleGAN series as an example to show the latent spaces based on the GAN inversion task.

In the following, we mainly introduce a handful of recent GAN models that are used in the methods
surveyed in Sections 3–5. We recommend [84, 85] for a comprehensive review of GANs.

PGGAN [12]. Leveraging the progressive growing strategy, PGGAN (or ProGAN) achieves the
1024 × 1024 image generation resolution. Specifically, at the beginning of the training procedure, a
4 × 4 “image” is generated by the initial generator G(4), and the discriminator D (4) accordingly takes
4 × 4 input as well. Once the model converges at a resolution, another layer is deployed at the end of
the generator, which generates images with 2× resolution. Finally we can obtain G(1024), which could
generate high-quality 1024× 1024 images. The overall architecture is shown in Figure 2(a).
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Table 2 Comparison of recent GAN models. The two numbers of parameters for StyleGAN3 [17] are respectively for the trans-

lational equivariant configuration and the rotation equivariant configuration. z, m, and F denote random noise, learned constant,

and Fourier feature input [88], respectively.

GAN model Publication Resolution #Params (M) Training scheme Input Condition Regularization

PGGAN [12] ICLR 2018 1024 23.1 Growing z – Grad. Penalty (GP)

BigGAN [13] ICLR 2019 512 82.5 End-to-end z c + z Ortho. Reg. & R1

StyleGAN [14] CVPR 2019 1024 26.2 Growing m w + n Mixing Reg., GP & R1

StyleGAN2 [15] CVPR 2020 1024 30.0 Multi-scale m w + n Mixing Reg., Lazy R1 & PPL

StyleGAN3 [17] NeurIPS 2021 1024 22.3/15.8 End-to-end F w R1

BigGAN [13]. As the name implies, BigGAN analyzes the influence of GAN model size on generation
quality and proposes an architecture with more parameters and end-to-end trained with a large batch
size. For more stable training, the top singular value of parameters is used to monitor the mode collapse
during training, and a novel regularization term on the generator G is designed according to the analysis.
The R1 zero-centered gradient penalty [86] is also leveraged in the discriminator D . Besides, to achieve
class-conditioned generation, BigGAN delivers the class embedding and noise vector into each residual
block of the generator. Finally, with the large capacity, BigGAN could generate appealing images with
the resolution of 512× 512. The overall architecture is shown in Figure 2(b).

StyleGAN [14]. The StyleGAN series [14,15,17] are the most popular GAN models in recent years.
Instead of taking noise as input, Karras et al. [14] proposed to learn a constant input m (as shown in
Figure 2(c)). And they used a mapping network composed of several fully-connected layers to map the
noise z into a latent representationw, which is delivered to the AdaIN [87] layer in each scale. In addition,
layer-wise per-pixel noise was introduced in each scale for further performance improvement and achieved
stochastic variation on generated details. StyleGAN follows the progressive growing training scheme of
PGGAN [12], and the final-stage structure of StyleGAN is shown as the black part in Figure 2(c).

StyleGAN2 [15]. The overall structure of StyleGAN2 is similar to StyleGAN, and the block structure
and regularization terms are modulated for better generalization quality. Besides, StyleGAN2 deploys a
“toRGB” module in each scale for substituting the progressive growing strategy. The lazy regularization
and perceptual path length regularization are also deployed. Furthermore, Karras et al. [16] proposed
StyleGAN2-Ada based on a delicately designed discriminator augmentation mechanism, which largely
improves the generated image quality and significantly stabilizes training in limited data regimes.

StyleGAN3 [17]. Since the StyleGAN architecture was proposed, utilizing pre-trained GAN models
for downstream tasks has drawn much attention, making the equivariance a necessity for many applica-
tions. However, the synthesis process of previous GAN models depends on the coordinates of pixels rather
than the surface of the generated objects. Karras et al. [17] analyzed the cause of such conditions, and
designed a model with translational equivariance and rotation equivariance, which achieves comparable
performance against StyleGAN2 but with even less parameters.

The comparison between these GAN models is shown in Figure 2 and Table 2 [88]. It can be seen
that, in order to achieve realistic generation, these methods keep exploring smoother and more stable
information flow pipelines and architectures, more disentangled and controllable input and condition
forms, as well as better training schemes. In Sections 3 and 4, we will delve more deeply into the GAN
models, trying to analyze and understand the characteristics and properties of pre-trained GANs.

3 GAN inversion

As introduced in Section 1, a natural choice for achieving better output image quality in recent years
is to apply adversarial losses, especially the image editing and restoration methods [18, 19, 24, 28]. How-
ever, such a method is insufficient to fully explore the image generation ability of GAN models. Since
the working scheme of GAN models is to map the random vectors (latent representations) into images
(Eq. (8)), the very first thing to utilize pre-trained GAN models is to invert the input images back into
a meaningful latent space (i.e., GAN inversion). Then the latent representations could be manipulated
or optimized for achieving tasks like image editing or restoration. Thus we first introduce the commonly
used latent spaces in the literature, and then introduce the typical GAN inversion methods.
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3.1 Latent spaces

In order to invert an image back to the latent representation, the first thing is to determine the inversion
target, i.e., the latent space. For this purpose, the reconstruction accuracy, interpretability, as well as
editability should be considered. In the following, we introduce the commonly used latent spaces in the
literature, and an illustration can be found in Figure 2(e).

Z space & C space. Following the vanilla GAN [1], early GAN models [2–5, 12, 13, 89] take random
noise vectors as the input, and generate fake images via a stack of convolution layers, i.e.,

x̂ = G(z, c; θG), (10)

where c is the condition information (e.g., class label, attribute annotations) for conditional GANs [13,89].
Therefore, a natural choice is to directly invert the generation process, and map the image back to a
random noise z, which spans the Z space. Since z is sampled from a very simple distribution (e.g.,
the standard Gaussian distribution), the semantic features are largely entangled in the Z space, and the
simple Z space is too limited to simultaneously represent both content and semantic information. An
alternative way is to jointly use the Z space and the C space, where c ∈ C. Thus some methods (e.g.,
IcGAN [90]) could invert the image into both Z and C spaces, showing extraordinary performance in
disentangling the content and attribute representations. However, these methods require massive human
efforts in labeling the attributes to model the C space.

W space & W+ space. To separate the semantic conditions (e.g., class, style) with image contents
(e.g., identity), Karras et al. [14, 15, 17] proposed the StyleGAN series, which could be formulated by

x̂ = G(m,n,F (z); θG) = G(m,n,w; θG), (11)

where m and n are learnable constant features and layer-wise noises4), F is the multi-layer perceptron
(MLP) for mapping z to w. Due to the superior generation quality of StyleGAN models, they become
the most popular GAN architectures. Instead of mapping back to the Z space, the latent representation
w ∈ W is generally utilized for StyleGAN inversion, which is proven semantically better disentangled
with the affine transmissions by the mapping network F [14]. Based on the W space, some researchers [91]
proposed to predict an individual latent representation for each generator layer (see Figure 2(c)), resulting
in the W+ space, which shows a better inversion accuracy comparing to the W space. Note that the
latent codes in the earlier layers (i.e., the ones near the input end) control coarser-grained attributes,
while the finer-grained attributes are controlled by the latent codes in the latter layers (i.e., the ones near
the output end), and we refer to [14] for detailed illustrations.

S space & P space. Although W and W+ spaces have better properties, the changes in w tend to
influence the whole image, and different dimensions in w follow various distributions. As introduced in
Subsection 4.1, Bau et al. have explored the relationship between neurons and objects in the generated
images. Inspired by the discovery that each neuron (channel) may be related to a specific class or
semantic component, several studies choose to predict channel-wise style parameters [92–94] denoted
by S space, with which one can control the local content of the images. Besides, the S space is also
extended by considering both channel-wise and spatial-wise diversity [95], which is defined by the SA
space, but we still regard it as a kind of S space. Zhu et al. [96] focused on the distribution of the W
space, and proposed to use the latent representation (denoted by p ∈ P) before the last leaky ReLU layer
of the mapping network F . Compared to W , P has a simpler structure (i.e., similar to a multivariate
Gaussian distribution). And they further propose a PN space by mapping the distribution of each latent
representation to be of zero mean and unit variance. The PN space is better filled by the latent codes,
and the image generation quality could be evaluated by the distance between the latent representation
and the average latent code.

N space & F space. For current GAN models, the largest dimension of the latent representation
is 18 × 512 (the 512-dim w for 18 layers, and the dimension of z is much smaller). Even though the
most prominent features of the image have been reconstructed, the high-frequency features cannot be
faithfully reproduced by such latent spaces. Therefore, some studies [57, 97] proposed to leverage the
layer-wise noise maps in StyleGAN and StyleGAN2 (i.e., n ∈ N ), and achieved much more accurate
reconstructions. Yet the N space weakens the editability to some extent; thus another category considers
the features directly. For example, Bau et al. [46] inverted the images into the features at a particular

4) For StyleGAN3 [17], m denotes the Fourier feature [88], while n is deprecated.
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layer to investigate the mode-dropping problem. Kang et al. [98] proposed to map the image back to the
feature map f at a certain scale (e.g., 8× 8), and jointly use the F and W+ spaces (denoted by F/W+
space).

Some methods also consider fine-tuning part of [50, 99] or the whole [57, 100] GAN model, and let
Θ space denote the model parameters. As analyzed in Subsection 4.1, the Θ space is more like the
generation rules rather than a latent space, and we mention it for completeness.

3.2 GAN inversion methods

In the literature, there are mainly three kinds of GAN inversion methods, including optimization-based,
learning-based, and hybrid methods. Table 3 [12, 14–16, 23, 35, 37, 38, 45, 46, 49–57, 59–65, 67, 90–93, 96–
99,101–160] also summarizes the characteristic of these methods, which shows the used backbone, latent
space, inversion method, dataset, and their applications. In the following, the relevant methods are
introduced in detail.

Optimization-based methods. Given a pre-trained GAN model, the objective of GAN inversion is
to find an image x̂ generated by the GAN model which approximates a given image x, i.e.,

x̂∗ = argmin
x̂∈X

ℓ(x̂,x), (12)

where ℓ is a distance like ℓ1 or ℓ2, and X is the image space that is spanned by the images generated by
the GAN model. We require the image to be in the GAN space in order to leverage the properties of
GANs. Thus with (8), it can be rewritten as

z∗ = argmin
z∈Z

ℓ(G(z, δ; θG),x). (13)

Here we use Z space to illustrate the problem, and the formulation can be generalized to other latent
spaces. Because the generator G is differentiable, Eq. (13) can be directly optimized via gradient descent
algorithms [53, 91–93, 96–98, 104–107, 111–114, 118, 120, 124, 135], and the invertibility of GAN models
is discussed by Aberdam et al. [120] and Ma et al. [107] with MLP-based and conv-based generators,
respectively.

To promote the inversion accuracy and training stability, and boost the subsequent applications such
as image editing and restoration, there are many improvements based on the basic formula in (13). Zhu et
al. [103] adopted L-BFGS [161] algorithm instead of Adam [162]. Lipton et al. [105] and Shah et al. [106]
proposed to use projected gradient descent (PGD) for better optimization in the latent space. Later, the
inner loop of PGD was replaced by a neural network by Raj et al. [108]. Daras et al. [111] leveraged the
attention map of the discriminator to boost the inversion. Huh et al. [118] and Kang et al. [98] further
considered the geometric transformations of the subjects.

An obvious problem of optimization-based methods is efficiency. Since the optimization procedure
usually requires thousands of update iterations, it takes a very long time for inversion. To eliminate
this problem, Abdal et al. [91] proposed to initialize with the average latent code (i.e., w̄ obtained when
training StyleGAN [14]). However, it still takes even minutes to invert a 1024 × 1024 image with a
high-end GPU (e.g., NVIDIA Tesla V100). An alternative way is to leverage the learning-based methods,
which predict the latent representation in a single forward pass.

Learning-based methods. Learning-based GAN inversion methods [52, 54–57,90, 119, 123, 125, 128,
129, 131, 133, 134, 141] are generally equipped with an additional encoder E , and the latent code is
optimized in an indirect way. Specifically, they optimize the parameters of the encoder, which is used to
map the image back to the latent code, i.e., E : x → z. Therefore, Eq. (13) can be re-written as

θ∗
E = argmin

θE

∑

i
ℓ(G(E (xi ; θE ), δ; θG),xi), (14)

where θE denotes the parameters of E .
It can be seen that the learning-based methods train the encoder with a whole dataset to learn the

mapping from image to latent code, rather than optimize on a single image. Such a scheme yields several
advantages. First, the optimization becomes smoother, which avoids the latent code from being trapped
into a local optimum. Then, since the encoder has access to a large batch of images, it is easier for the
encoder to learn some patterns from the data, e.g., the semantic directions for image manipulation in the
latent space [52,90,119,123,129,131]. On the contrary, the optimization-based methods generally rely on
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Table 3 A summary of GAN inversion and methods leveraging pre-trained GANs for image editing and restoration. For the

inversion method, “O”, “L”, “T” represent optimization-based, learning-based, and training-based (or fine-tuning) methods, while

“–” means no inversion is performed in this method, and the numbers (without square brackets) are the indices of methods used

for inversion in this table. Note that the methods are ordered (roughly) according to publicly accessible time (e.g., the appearance

time on ArXiv, openreview.net, CVF Open Access, etc.)

No. Method Publication Backbone
Latent

space

Inversion

method
Dataset∗ Application†

1 BiGAN [101] ICLR 2017 – Z T MN, IN Inv

2 ALI [102] ICLR 2017 – Z T CF, SV, CA, IN Inv, Int

3 Zhu et al. [103] ECCV 2016 DCGAN Z L, O SH, LS, PL‡ Inv, Int, AE

4 IcGAN [90] NeurIPSw 2016 cGAN Z, C L MN, CA Inv, AT, AE

5 Creswell et al. [104] T-NNLS 2018 DCGAN, WGAN-GP Z O OM, UT, CA Inv

6 Lipton et al. [105] ICLRw 2017 DCGAN Z O CA Inv

7 PGD-GAN [106] ICASSP 2018 DCGAN Z O MN, CA Inv

8 Ma et al. [107] NeurIPS 2018 DCGAN Z O MN, CA Inv, IP

9 Suzuki et al. [49] ArXiv 2018 SNGAN, BigGAN, StyleGAN F 3 IN, FL, FF, DA CO

10 GANDissection [45] ICLR 2019 PGGAN F – LS, AD AE, AR

11 NPGD [108] ICCV 2019 DCGAN, SAGAN Z L, O MN, CA, LS Inv, SR, IP

12 Image2StyleGAN [91] ICCV 2019 StyleGAN W+ O FF‡ Inv, Int, AE, ST

13 Bau et al. [109] ICLRw 2019 PGGAN, WGAN-GP, StyleGAN Z, W L, O LS Inv

14 GANPaint [50] ToG 2019 PGGAN Z, Θ L, O, T LS Inv, AE

15 InterFaceGAN [110] CVPR 2020 PGGAN, StyleGAN Z, W 3, 8 CH AE, AR

16 GANSeeing [46] ICCV 2019 PGGAN, WGAN-GP, StyleGAN Z, W 13 LS Inv

17 YLG [111] CVPR 2020 SAGAN Z O IN Inv

18 Image2StyleGAN++ [97] CVPR 2020 StyleGAN W+, N O LS, FF Inv, CO, IP, AE, ST

19 mGANPrior [112] CVPR 2020 PGGAN, StyleGAN Z O FF, CH, LS Inv, IC, SR, IP, DN, AE

20 MimicGAN [113] IJCV 2020 DCGAN Z O CA, FF, LF Inv, UDA, AD, AN

21 PULSE [53] CVPR 2020 StyleGAN Z O FF, CH Inv, SR

22 DGP [114] ECCV 2020 BigGAN Z O, T IN, P3 Inv, Int, IC, IP,

SR, AD, TR, AE

23 StyleGAN2Distillation [115] ECCV 2020 StyleGAN2, pix2pixHD W+ – FF AT, AE

24 EditingInStyle [116] CVPR 2020 PGGAN, StyleGAN, StyleGAN2 F – FF, LS AT

25 StyleRig [51] CVPR 2020 StyleGAN W+ – FF AT

26 ALAE [117] CVPR 2020 StyleGAN W T MN, FF, LS, CH Inv, AT

27 IDInvert [38] ECCV 2020 StyleGAN W+ L, O FF, LS Inv, Int, AE, CO

28 pix2latent [118] ECCV 2020 BigGAN, StyleGAN2 Z O IN, CO, CF, LS Inv, TR, AE

29 IDDistanglement [119] ToG 2020 StyleGAN W L FF Inv, AT

30 WhenAndHow [120] ArXiv 2020 MLP Z O MN Inv, IP

31 Guan et al. [121] ArXiv 2020 StyleGAN W+ L, O CH, CD Inv, Int, AT, IC

32 SeFa [122] CVPR 2021 PGGAN, BigGAN, StyleGAN Z 19, 27 FF, CH, LS, IN, SS, DA AE

33 GH-Feat [123] CVPR 2021 StyleGAN S L MN, FF, LS, IN Inv, AT, AE

34 pSp [54] CVPR 2021 StyleGAN2 W+ L FF, AF, CH, CM Inv, FF, SI, SR

35 StyleFlow [52] ToG 2021 StyleGAN, StyleGAN2 W+ 12 FF, LS AT, AE

36 PIE [124] ToG 2020 StyleGAN W+ O FF AT, AE

37 Bartz et al. [125] BMVC 2020 StyleGAN, StyleGAN2 Z, W+ L FF, LS Inv, DN

38 StyleIntervention [92] ArXiv 2020 StyleGAN2 S O FF Inv, AE

39 StyleSpace [93] CVPR 2021 StyleGAN2 S O FF, LS Inv, AE

40 Hijack-GAN [126] CVPR 2021 PGGAN, StyleGAN Z – CH AE

41 NaviGAN [99] CVPR 2021 pix2pixHD, BigGAN, StyleGAN2 Θ [15] FF, LS, CS, IN AE

42 GLEAN [55] CVPR 2021 StyleGAN W+ L FF, LS Inv, SR

43 ImprovedGANEmbedding [96] ArXiv 2020 StyleGAN, StyleGAN2 P O FF, MF‡ Inv, IC, IP, SR

44 GFPGAN [56] CVPR 2021 StyleGAN2 W L FF Inv, SR

45 EnjoyEditing [127] ICLR 2021 PGGAN, StyleGAN2 Z 12 FF, CA, CH, P3, TR Inv, AE

46 SAM [128] ToG 2021 StyleGAN W+ L CA, CH AE

47 e4e [129] ToG 2021 StyleGAN2 W+ L FF, CH, LS, SC Inv, AE

48 StyleCLIP [130] ICCV 2021 StyleGAN2 W+, S 47, O FF, CH, LS, AF AE

49 LatentComposition [131] ICLR 2021 PGGAN, StyleGAN2 Z L FF, CH, LS Inv, IP, AT

50 GANEnsembling [132] CVPR 2021 StyleGAN2 W+ L, O CH, SC, PT Inv, AT

51 ReStyle [133] ICCV 2021 StyleGAN2 W+ L FF, CH, SC, LS, AF Inv, AE

52 E2Style [134] T-IP 2022 StyleGAN2 W+ L FF, CH Inv, SI, PI, AT,

IP, SR, AE, IH

53 GPEN [57] CVPR 2021 StyleGAN2 W+, N L FF, CH Inv, SR

54 Consecutive [135] ICCV 2021 StyleGAN W+ O FF, RA Inv, Int, AE

55 BDInvert [98] ICCV 2021 StyleGAN, StyleGAN2 F/W+ O FF, CH, LS Inv, AE

56 HFGI [136] CVPR 2022 StyleGAN2 W+, F L FF, CH, SC Inv, AE

57 VisualVocab [137] ICCV 2021 BigGAN Z – P3, IN AE

58 HyperStyle [138] CVPR 2022 StyleGAN2 W+ L FF, CH, AF Inv, AE, ST

59 GANGealing [139] CVPR 2022 StyleGAN2 W – LS, FF, AF, CH, CU TR

60 HyperInverter [140] CVPR 2022 StyleGAN2 W, Θ L FF, CH, LS Inv, Int, AE

61 StyleGAN3-editing [141] ArXiv 2022 StyleGAN3 S L FF, AF, LHQ Inv, AE

62 InsetGAN [142] CVPR 2022 StyleGAN2 W+ O FF, DF‡ CO, IG

63 HairMapper [143] CVPR 2022 StyleGAN2 W+ 47 FF, CM‡ AE

64 SAMInv [144] CVPR 2022 BigGAN-deep, StyleGAN2 W+, F L FF, LS, IN Inv, AE

∗Abbreviations: AD (ADE20K [145]), AF (AFHQ [23]), CA (CelebA [35]), CD (CACD [146]), CF (CIFAR [63]), CH (CelebA-HQ [12]), CM
(CelebAMask-HQ [60]), CO (MS COCO [147]), CS (CityScapes [65]), CU (Caltech-UCSD Birds [148]), DA (Danbooru [149], aka Anime Faces), DF
(DeepFashion [64]), FF (FFHQ [14]), FL (Flowers [150]), IN (ImageNet [59]), LF (LFW [151]), LHQ (Landscapes HQ [152]), LS (LSUN [37]), MF
(MetFaces [16]), MN (MNIST [61]), OM (Omniglot [153]), P3 (Places365 [67]), PL (Places [154]), PT (Oxford-IIIT Pet [155], aka Cats and Dogs), RA
(RAVDESS [156]), SC (Stanford Cars [157]), SS (Streetscape [158]), SV (SVHN [62]), TR (Transient [159]), UT (UT Zappos50K [160]).

†Abbreviations: AD (Adversarial Defense), AE (Attribute Editing, i.e., w/o reference), AN (Anomaly Detection), AR (Artifacts Removal), AT
(Attribute Transfer, i.e., w/ reference), CO (Image Crossover), [U]DA ([Unsupervised] Domain Adaptation), DN (Image Denoising), FF (Face Frontal-
ization), IC (Image Colorization), IG (Image Generation), IH (Information Hiding), Int (Interpolation), Inv (Inversion), IP (Inpainting), PI (Parsing or
Segmentation to Image), SI (Sketch to Image), SR (Image Super-resolution), ST (Style Transfer), TR (Transform and Random Jittering).

‡Some custom datasets collected or regenerated by the authors are omitted since they are not publicly available or can be generated automatically
based on current public datasets.

https://arxiv.org
https://openreview.net
https://openaccess.thecvf.com/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://github.com/clovaai/stargan-v2
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://bcsiriuschen.github.io/CARC/
http://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/tkarras/progressive_growing_of_gans
https://github.com/switchablenorms/CelebAMask-HQ
https://cocodataset.org/#home
https://www.cityscapes-dataset.com/
https://authors.library.caltech.edu/27452/
https://www.gwern.net/Danbooru
http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
https://github.com/nvlabs/stylegan
https://www.robots.ox.ac.uk/~vgg/data/flowers/
https://image-net.org/
http://vis-www.cs.umass.edu/lfw/
https://github.com/universome/alis
https://www.yf.io/p/lsun
https://github.com/NVlabs/metfaces-dataset
http://yann.lecun.com/exdb/mnist/
https://github.com/brendenlake/omniglot
http://places2.csail.mit.edu/
http://places.csail.mit.edu/
https://www.robots.ox.ac.uk/~vgg/data/pets/
https://zenodo.org/record/1188976
http://ai.stanford.edu/~jkrause/cars/car_dataset.html
http://streetscore.media.mit.edu/static/files/streetscore_data.zip
http://ufldl.stanford.edu/housenumbers/
http://transattr.cs.brown.edu/
https://vision.cs.utexas.edu/projects/finegrained/utzap50k/
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Figure 3 (Color online) Illustration of GAN inversion methods. x and x̂ are given real image and generated image, respectively.

The red dotted line means supervision. It can be seen that the in-domain constraint [38] requires the generated image x̂ can be

inverted back into the latent space. Here, z is not restricted in Z space, and may refer to more generic latent code (e.g., w, f , etc.).

(a) Optimization-based method; (b) learning-based method; (c) hybrid method; (d) hybrid method (with in-domain constraint).

other methods (will be introduced in Subsection 4.2). Moreover, while the optimization-based methods
can only be optimized with real images (the latent code of the synthetic images is already available),
the learning-based methods can be trained with synthetic images. In this way, they directly leverage the
ground-truth latent code [90], and Eq. (14) can be written as

θ∗
E = argmin

θE

∑

i
ℓ(E (G(zi , δ; θG); θE ), zi). (15)

Some methods also introduce extra models as auxiliary information or guidance. For example, Nitzan et
al. [119] incorporated a face landmark detection model to control the pose of the generated face images.
Many studies [54, 57, 119] introduced face recognition [163, 164] or contrastive learning [165] models as
ID/content similarity metrics, while some of them [45,134] also introduced semantic segmentation or face
parsing models. Furthermore, vision-language models are also used for inversion and editing [130].

With the encoder, the model can get the latent code in a single forward pass, but the inversion is
generally less accurate than optimization-based methods. Therefore, Wei et al. [134] proposed to use
a multi-stage refinement scheme to keep both accuracy and efficiency, Alaluf et al. [133] introduced an
iterative procedure which is initialized with the average face latent w̄.

Hybrid methods. For both efficiency and accuracy, Zhu et al. [103] proposed the hybrid method that
initializes the latent code for optimization via learning-based methods, which was followed by a series
of studies [38, 50, 108, 121, 132]. Among these methods, we would like to highlight the method named
IDInvert [38], which leverages the encoder for in-domain inversion. Specifically, an encoder is trained like
the learning-based methods following (14), and the discriminator is also leveraged for training. Then,
following the optimization-based methods, the latent code z0 obtained by the encoder is used to initialize
the optimization procedure, and then the learning objective can be formulated by

z∗ = argmin
z∈Z

ℓ(G(z, δ; θG),x)+λ‖z − E (G(z, δ; θG ); θE )‖2, (16)

where λ is the balancing hyper-parameter. It can be seen from (16) that the second term requires that
the image generated with the optimized latent code can be mapped back via the encoder. In other words,
the optimization is guaranteed to be performed within the manifold supported by the encoder (as well
as the generator), and it is called in-domain inversion. Please refer to Figure 3(d) for an illustration.

Guan et al. [121] leveraged the encoder during the optimization process in a collaborative way. In
particular, the encoder (i.e., the embedding network in their study) and the iterator participate in each
other’s procedure. In each iteration, the encoder predicts a latent code as a reasonable initialization for
the iterator, which obviously speeds up the optimization. Then, the iterator obtains a better latent code
via optimization, which conversely serves as supervision for training the encoder. Both the encoder and
the iterator achieve better performance/efficiency, and the method naturally supports online learning.

Apart from the above methods, some studies choose to learn an encoder together with the genera-
tor [101, 102, 117, 166], where the invertibility is guaranteed during the training procedure. Some other
generative models are invertible by design [167, 168], however, the latent representation is typically a
tensor of the same size as the image, which is sampled from a very simple distribution (e.g., Gaussian),
making the latent representation less meaningful, and is beyond the scope of this study.
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4 Analyzing and understanding large-scale GAN models

In this section, we first analyze GAN models from the perspective of image generation, and review the
recent progress on understanding the neurons of pre-trained GANs. Then, we explore the current progress
on latent space disentanglement, one of the key problems of image manipulation using pre-trained GANs.

4.1 Neuron understanding

4.1.1 Preliminary

Analogous to other neural networks, GAN [1] models are also trained in a data-driven manner, making
them a black box which is hard to understand and interpret. To open the black box and better under-
stand the image generation process in GAN generators, a series of studies [45, 46, 109, 169] proposed to
disassemble the pre-trained GAN models and see how objects in the output images are generated.

In particular, as introduced in Subsection 2.2, the generation process in the generator G could be
written as x̂ = G(z). Following the main model paradigm in the deep learning era, a typical GAN
model is composed of a stack of neural layers (e.g., an N -layer GAN model). Thus we can decompose
the generator G into two parts at the i-th layer, and Eq. (8) can be rewritten as

x̂ = G(z) = (GN
i+1 ◦G

i
1)(z) = GN

i+1(G
i
1(z)), (17)

where Gi is the i-th layer of G, and Gb
a = Gb ◦Gb−1 ◦ · · · ◦Ga+1 ◦Ga . Then the feature maps fi at the

i-th layer (i.e., fi = G i
1(z)) contains all information for generating the objects in the output images.

4.1.2 GAN dissection

For a certain convolution layer, the activation at each position is obtained by the sum-of-product operation
between the previous features and the convolution kernels. Since each output channel has a particular
kernel, we can see it as a neuron, which potentially controls the generation of some objects, and the
discussions in this subsection are based on this observation.

Bau et al. [45] first built the relationship between the generated objects and the feature maps from
fi via network dissection techniques [170]. Specifically, for each object class c, a semantic segmentation
model Sc is deployed to get the binary segmentation result Sc(x̂). Then, the relationship between this
class and a feature map fi,u (also known as a neuron) is evaluated by the spatial agreement between the
thresholded feature map and the segmentation result, which is evaluated by the intersection-over-union
(IoU) measure, i.e.,

IoUu,c =
Ez|(f

↑
i,u > tu,c) ∧ Sc(x̂)|

Ez|(f
↑
i,u > tu,c) ∨ Sc(x̂)|

, tu,c = argmaxt
I(f↑

i,u > t ; Sc(x̂))

H(f↑
i,u > t ; Sc(x̂))

, (18)

∧ and ∨ represent intersection and union operations, ↑ denotes the upsampling operation, and tu,c is
determined by maximizing the portion of the mutual information I in the joint entropy H .

In order to further verify the causal effects between the neurons and the generation results, after
identifying the units which are relevant to a specific class of objects, Bau et al. [45] further ablated (or
inserted) the units by setting the activation of the relevant neurons to zero (or a class-specific constant).
Figure 4 shows the results of such modifications. It can be seen that the whole church appears after
ablating the trees, and the grasses are added to the other image. The result indicates that (1) the
generation is under the control of the relevant neurons, whose activation values determine the absence of
the objects in the final generated image, and (2) the previously unseen objects may still be generated,
but sheltered by other objects. Tousi et al. [169] further explored this phenomenon in multiple layers,
and achieved a more accurate manipulation. This procedure could be regarded as an inverse procedure
of the classification task to some extent, where the final prediction also shelters other classes, and we
recommend [171] for an intuitive and interactive understanding.

4.1.3 Generation rule manipulation

When adding some objects in an image as stated in Subsection 4.1.2, it will fail to generate the desired
objects somewhere (e.g., adding a door in the sky). Since the objects could be successfully inserted in
other regions (e.g., adding a door on the wall), Bau et al. [172] asserted that there are some rules in the
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Input Remove trees Input Add grasses

Figure 4 (Color online) Removing or adding particular classes via relevant unit discovery in GANDissection [45].

Two inputs church→dome     church→tree⇒

Figure 5 (Color online) Manipulating the generation rules via [172]. The two input images are modified via the same model.

generation process learned from the data, and they seek to manipulate the rules for verification and a
general modification method at the model level.

Specifically, as shown in Figure 5 [172], suppose the rule in a generator is like Idome = Gchurch→dome

(Gz→church(z)), where the generator could be regarded as an associative memory that stores a set of
key-value pairs {(ki ,vi)}, and is formulated by

vi ≈ Wki , (19)

we can modulate the parameter W (the associative memory) to reorganize the key-value pairs. For
example, we could change the rule church → dome to church → tree, and the results are shown in
Figure 5. The results clearly show the generation process, and help to open the black box of GAN
models.

4.2 Semantic disentanglement and discovery

Understanding visual concepts is vital for many vision tasks like image editing and restoration, which
helps the models to generate semantically consistent results. In this subsection, we review the relevant
methods from two perspectives, i.e., semantic disentanglement and discovery. The former cares more
about encouraging the independence of latent variables, i.e., a perturbation to any component of a latent
variable should result in a change to the output that is distinct, while the latter focuses on discovering
disentangled latent representations of high interpretability, i.e., a perturbation to one dimension should
result in a change along exactly one meaningful attribute.

4.2.1 Semantic disentanglement

In early GAN models (e.g., DCGAN [3]), the concepts or attributes are generally entangled to a large
extent in the rather simple latent space (e.g., standard Gaussian). Although some methods [90] achieve
disentangled attributes by leveraging the conditional GANs [13, 89] trained on datasets with class labels
(e.g., ImageNet [59], LSUN [37]) or attribute annotations (e.g., CelebA [35], RaFD [173]), massive human
efforts are required, which is unacceptable for all tasks. Thus a series of methods [174–180] are proposed
for better disentanglement in GANs.

A route of methods achieves disentanglement by maximizing the mutual information. InfoGAN [175]
is an early exploration on this task, which introduces an extra latent code c alongside the original random
variable z. The model architecture is the same as (10), while the meaning of c is automatically learned
via mutual information maximization when optimizing the GAN models, i.e.,

min
G

max
D

LInfoGAN(G,D) = LGAN(G,D)− λI (G(z, c; θG ); c), (20)
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where I (x ; y) denotes the mutual information between x and y, and LGAN is defined in (9). In particular,
a regressor is trained to predict the input c. As such, the changes in c are required to influence the
generation in a distinct way, which forces c to be traceable and disentangled. Zhu et al. [177] argued
that the latent variation predictability can represent the disentanglement, and improved InfoGAN by
predicting the relative changes between two generated images with only one dimension of the latent
vector changed, i.e.,

min
G

max
D

LVP-GAN(G,D) = LGAN(G,D)− λI (G(z; θG ),G(z + ǫd; θG);d), (21)

where d is a one-hot vector with the same dimension as z, and ǫ∈N (0, 1). Note that the first metric of
GAN disentanglement is proposed based on the observation. They further assumed that the interpretable
representation should be spatially consistent, and improved the variation predictability in [178].

Another category focuses on the gradient of the GAN models with respect to the inputs. Ramesh et
al. [174] focused on the coordinate directions in the latent space, and proposed a spectral regularizer
to align the leading right-singular vectors of the Jacobian of GAN models w.r.t. the inputs with the
coordinate axes, so that the trajectories are semantically meaningful. Peebles et al. [176] achieved disen-
tanglement by encouraging the Hessian matrix of the GAN models w.r.t. the inputs to be diagonal, and
the Hutchinson’s estimator is leveraged to approximate the regularization. It is worth noting that the
authors also showed the ability of the Hessian Penalty to “deactivate” redundant components. Wei et
al. [179] required that when perturbing a single dimension of the network input, the change in the output
should be independent (and uncorrelated) with those caused by the other input dimensions. Based on
this assumption, they changed the assumption in [176] from ∂

∂zj
(∂G
∂zi

) = 0 to [∂G
∂zj

]T ∂G
∂zi

= 0. He et al. [180]

embedded a linear subspace in each layer of the GAN model by directly adding a group of basis Ui , where
the i-th noise zi is rewritten as UiLizi + µi , and Li is a diagonal matrix indicating the importance of
basis vectors, µi denotes the origin of the subspace. They required that the basis is orthogonal, i.e.,
minimizing ‖UT

i Ui − I‖2F .
As introduced in Subsection 2.2, recent large-scale GAN models (especially the StyleGAN [14] series)

achieve disentangled latent representations by sending the conditional information to the generator layers
(see Figure 2), and the StyleGAN model maps the latent code into an intermediate latent space, i.e.,
W space via an MLP. A series of regularization terms are deployed for more stable training and better
disentanglement, e.g., the mixing regularization and perceptual path length regularization. Please refer
to Table 2 for more information. However, since the disentanglement is implicitly achieved in the W
space, researchers also focused on finding meaningful semantic directions in the GAN models, which are
introduced as follows.

4.2.2 Semantic discovery

To find meaningful semantic directions in the latent spaces, the supervised, semi-supervised, and unsu-
pervised methods are introduced respectively as follows.

Supervised methods. The most intuitive way to leverage the manually annotated supervision is to
model the semantic space explicitly via conditional GANs, where the attribute vector is delivered into
the GAN model. Perarnau et al. [90] followed this intuition in IcGAN and adopted two encoders to map
images into both the random noise space and the attribute space. However, this scheme is unavailable
for unconditional GANs, which only synthesize images from random noise. Besides, the methods require
massive human efforts for data annotation, which makes it inflexible and expensive.

Therefore, researchers sought to find indirect ways to leverage the annotations. For example, Shen et
al. [110] assumed that there is a hyperplane in the latent space for binary attributes (e.g., male and
female), which serves as the separation boundary between the opposite attributes. Thus they proposed
to leverage the normal vector of the hyper-plane as the editing direction, and the support vector machine
(SVM) is deployed for obtaining the hyper-plane. Refs. [115, 126, 127] followed a similar assumption.
Wang et al. [126] trained a proxy model which can map the input noise to the attribute space, and
the gradient of the proxy model w.r.t. the input noise is used as the non-linear editing direction. Vi-
azovetskyi et al. [115] leveraged the pre-trained image attribute classifier to find the class centers of
attributes in the latent space, and used the direction between different centers to represent the editing
direction. Zhuang et al. [127] introduced a group of learnable editing directions d, and the pre-trained
image attribute classifier is used to align each of the directions with an attribute.
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Instead of learning editing directions, Abdal et al. [52] introduced a conditional normalizing flow model
in W-space of StyleGAN, which takes the attributes as conditions to map the latent w back into the
noise space. To edit the attributes, one can obtain the edited latent w′ by inverting the noise with new
attributes. Besides, several methods focused on editing specific attributes in similar ways, for example,
Alaluf et al. [128] sought to edit the age via an age regressor, and Goetschalckx et al. [47] tried to make
the images more memorable with a memorability predictor.

Semi-supervised methods. The methods mentioned above still find the attribute directions directly
related to the supervision (i.e., the manually annotated attributes), and some researchers proposed to
edit some attributes with indirect supervision. As introduced in Subsection 4.1, Bau et al. [45] revealed
the relationship between the GAN model neurons and the appearance of objects, which inspires a series
of disentanglement methods to achieve spatially precise control [92,93,123]. Nitzan et al. [119] leveraged
a pre-trained identification model and a landmark detection model, with which the attributes that can
be described via landmarks (e.g., expression) are decomposed with the identity; thus the attributes can
be transferred to other faces. Tewari et al. [51] shared a similar idea but employed a pre-trained three-
dimensional morphable face model (3DMM) to learn synthetic face image editing, which is later extended
to real faces in [124]. Huh et al. [118] learned transformation of input shift, rescaling, etc., and estimated
spatial transformation together with the latent variable. In particular, the spatial positions of the objects
are obtained via a pre-trained object detection model. Xu et al. [135] bypassed the requirement of
the pre-trained classifier by leveraging video data and optical flow. Jahanian et al. [181] applied data
augmentation methods to the original data and trained the model in a self-supervised manner, but they
are limited to these simple semantic features. Zhu et al. [182] achieved local editing by providing a
bounding box, where the optimization is forced to only edit the given regions. It is worth noting that the
large-scale vision-language models are introduced by Patashnik et al. [130], which leverages the common
latent space for visual-linguist features, and combines the image-domain semantic discovery with the
intrinsic semantic information in languages.

Unsupervised methods. Compared to supervised and semi-supervised methods, the unsupervised
scheme has two main advantages. First, it avoids the need for manual labeling, and thus is more applicable
to generalize to other categories, which greatly promotes the practical value of the methods. Second, the
lack of supervision information also implies the lifting of restrictions, i.e., the models are encouraged to
find new semantic features, which are not necessarily labeled by human annotators.

Some methods for semantic disentanglement introduced in Subsection 4.2.1 also support semantic dis-
covery, which mainly considers the gradient w.r.t. inputs or mutual information. For example, Ramesh et
al. [174] found trajectories corresponding to the principal eigenvectors, which is extended by Wang et
al. [183] via further introducing the Riemannian geometry metric. Peebles et al. [176] leveraged their
Hessian-based regularization term to identify interpretable directions in BigGAN’s latent space. Voynov et
al. [36] adopted similar strategies as [177], which learns a group of editing basis. By adding a perturbation
to the latent code, the model is required to predict the perturbation given the original and modified image
pairs. Tzelepis et al. [184] further argued that existing methods assume the latent directions are linear,
which limits the disentanglement. Thus they introduced an RBF kernel to map the latent representations
into a non-linear space, and learned a non-linear RBF path.

As analyzed in Subsection 4.1.2, the final output is determined by the features in the previous layers;
thus GAN features can be considered for easier semantic discovery than the image domain. Following
this idea, Härkönen et al. [48] proposed that the principal components of early layer features represent
important factors of variations, so that they find semantic directions by PCA operation over the early
feature space. Collins et al. [116] sought to find attributes relevant to a region of interest (ROI), and
proposed to cluster the features in a layer and sort the channels by the relevance with the ROI regions
(following the idea of [45] but in an unsupervised way). From another perspective, the parameters also
play an important role in the generation process, which has also been introduced in Subsection 4.1.3.
Therefore, there are also some methods leveraging the parameter space for semantic discovery. Shen and
Zhou [122] formulated the perturbation in a layer and the corresponding changes in the output image,
and finally the relationship between the semantic directions and the parameter matrix is derived, leading
to a closed-form solution, which achieves an efficient and effective semantic factorization method (termed
by SeFa). Cherepkov et al. [99] followed similar strategies to [36, 183], and proposed two methods in
the parameter domain by considering parameter perturbation and the Hessian of LPIPS w.r.t. the GAN
parameters.
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Figure 6 (Color online) Out-of-distribution image interpolation. Before interpolation, two cat images from the AFHQ dataset [23]

are mapped back to the latent space (i.e., z1 and z2) via a GAN model [91] trained with the FFHQ dataset [14]. It can be seen

that even the image can be well reconstructed, the interpolation results (G(λ · z1 + (1− λ) · z2)) are looming the shape of human

faces.

5 Applications to image editing and restoration

Since most GAN models are trained in an unsupervised manner, they are not limited to a specific task
and can serve as a generic prior for many other tasks with visual outputs (e.g., images). In this section,
we will go through these applications, where a brief summary can be found in Table 3.

5.1 Image editing

As introduced in Section 3 and Subsection 4.2, the latent spaces of recent GAN models have been
widely explored in the literature. With the exhilarating attribute disentanglement ability of the latest
GAN models, we are able to discover and traverse the latent spaces in a more semantic-aware way,
making image editing applicable with pre-trained GAN models. In this subsection, we briefly review the
image editing applications relying on semantic disentanglement and discovery methods, including image
interpolation, style transfer, image crossover, attribute editing, image transform, etc.

5.1.1 Image interpolation (image morphing)

Image interpolation, also known as image morphing, aims at interpolating two images semantically. By
observing the generated images, we can have an intuitive sense of the space used for interpolation;
i.e., a well-characterized space should be reflected in smooth and semantically appropriate transitions
in the interpolated images. Therefore, apart from generating new images, image interpolation is often
utilized to evaluate the quality of the discovered latent space. For example, as shown in Figure 1, the
interpolation operation in the pixel space (i.e., I = α · x1 + (1 − α) · x2) leads to obvious artifacts, and
the results cannot meet the semantic expectations. On the contrary, the interpolation in the latent space
(e.g., [38, 91, 103, 135]) is able to well describe the change of view, which can be formulated by

I = G(β · z1 + (1 − β) · z2); θG), (22)

where z1 and z2 can be obtained by the inversion methods (Section 3) from two images x1 and x2.

There are two special cases that are worth mentioning. As revealed by Abdal et al. [91], when per-
forming GAN inversion via optimization-based methods, a GAN model trained with face datasets can
well reconstruct an image from other classes (e.g., cats). However, since the optimization-based meth-
ods are less constrained and can have a much larger accessible latent space, interpolating between these
reconstructed images will not produce meaningful results (see Figure 6), which further verifies the propo-
sitions of IDInvert [38] about domain-regularized optimization (see (16)). Another thing is about the
training/fine-tuning based inversion methods (see Table 3). For more accurate reconstruction, some of
these methods (e.g., [114]) will derive a specific group of model parameters for each sample. In this way,
there will be two sets of θG when performing image interpolation operations, which is inconsistent with
(22). Fortunately, Wang et al. [185] showed that when fine-tuned from the same checkpoint, the parame-
ters of two models can be interpolated to achieve an intermediate function. Thus, the image interpolation
can be performed as

I = G(β · z1 + (1− β) · z2);β · θG1 + (1 − β) · θG2), (23)

where θG1 and θG2 are the specialized parameters for reconstructing x1 and x2, respectively.
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Figure 7 (Color online) Style transfer and image crossover. The images are processed by IDInvert [38].

5.1.2 Style and attribute transfer, image crossover

As shown in [14], the features in earlier layers control coarser-grained attributes like structure and pose,
while the ones in latter layers control finer-grained attributes like appearance and textures. For the
StyleGAN series, the latent codes are corresponding to these layers in the W space, and with the style
mixing regularization during training, the latent codes in different layers can be distinct [14]. Therefore,
the pre-trained StyleGAN models are ready-to-use for style transfer tasks by replacing the latent codes in
latter layers with the ones from the style image [91,115,121,123,134]. In this way, the characters regarded
as style (e.g., color, stroke, texture) are transferred to the content image. Instead of simply mixing style
codes from different images, some studies also perform a more precise control by specifying the attributes
to be transferred [51, 119], which can be combined with the methods introduced in Subsection 4.2 for
disentangling the attributes. Some methods [54, 134] also considered image-to-image translation tasks
such as transferring sketch or parsing (segmentation) images into natural ones, or generating toonified
versions of a human face.

Apart from the global tasks of style and attribute transfer, some methods focus on local modifications
from two perspectives, i.e., local style transfer and image crossover. The former is the style transfer task
in a local region, while the latter is to combine multiple images and regenerate the stitched image to
make it visually plausible. For example, Ref. [131] introduced random masks (e.g., m1 and m2) during
training, such that the encoder will be compatible with masked input images, making it possible to
combine multiple incomplete images by corresponding mask directly,

I = G(E (m1 ◦ x1 +m2 ◦ x2)), (24)

which generates more realistic and natural images than blending in pixel or latent spaces like,

I = G(E (α · x1 + (1− α) · x2)), (pixel space blend) (25)

I = G(α · E (x1) + (1− α) · E (x2)). (latent space blend) (26)

Note that Image2StyleGAN++ [97] performs local style transfer in both W+ and N spaces. Ans some
methods transfer the features rather than latent codes [49, 116]. Visual results are given in Figure 7.

5.1.3 Attribute editing

Attribute editing aims to modify certain attributes of an image (e.g., age, gender), which is a popular
application of GAN models in recent years. The difference between attribute editing and attribute transfer
in Subsection 5.1.2 is that the reference image is not necessary for attribute editing tasks. Some methods
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Figure 8 (Color online) Attribute editing with manipulation directions found by InterFaceGAN [110].

focus on physical attributes. For example, Zhu et al. [103] and Abdal et al. [97] took color strokes provided
by users as input and optimized the image towards a reasonable appearance where the color or shape of
regions covered by the strokes is modified, while the background regions are kept unchanged. Jahanian et
al. [181] focused on self-supervised training for zooming, shifting, rotating, brightness adjustment, and
etc.

To manipulate the attributes more closely related to semantic concepts, some methods [47, 52, 90,
114, 115, 128] leveraged pre-trained attribute classifiers or attribute labels of the datasets to identify the
manipulation direction in the latent space. Some methods [38,93,110,112] chose to first define an attribute
separation hyperplane and take the normal vector as editing directions. Considering the non-linearity of
the latent space, especially when manipulating the attributes to a large extent, Wang et al. [126] proposed
to learn a proxy model to estimate the gradient of the pre-trained GAN models and modify the attributes
step by step. The primary drawback of the aforementioned methods is that they need annotated labels (or
classification models trained with these labels) for training. To eliminate the dependence on these labels,
some studies [99,122] proposed unsupervised methods to disentangle different attributes, which have been
introduced in detail in Subsection 4.2. Besides, some methods [45,50,92] achieved local attribute editing
based on the observations introduced in Subsection 4.1.2.

There are also some other interesting methods to achieve attribute editing. Image2StyleGAN [91]
used a one-shot method that obtains the manipulation direction vector via the difference between two
images. Ref. [123] sampled global or local features in the latent space which resulted in random new
attributes. E4E [129] leveraged an encoder for generating target latent codes directly instead of the
previous inversion+editing methods. Alaluf et al. [141] leveraged StyleGAN3 for image editing, and
designed an encoder network for images that are unaligned. Visual results of image editing are given in
Figure 8.

5.1.4 Image transform and jittering, visual alignment

Since StyleGAN [14] introduces layer-wise noises (i.e., theN space), it naturally supports random jittering
on different layers. Pan et al. [114] further added Gaussian noise to the Z space of BigGAN model [13] and
achieved image jittering with larger variance. Jahanian et al. [181] also explored the image transformation
with pre-trained GANs. As introduced in Subsection 2.2, StyleGAN3 [17] adopts equivariant layers, which
greatly facilitates the output image quality when performing transform operations like shifting.

Based on the image transform operations, some methods leverage pre-trained GANs for visual align-
ment. For example, pSp [54] constrained that face images are inverted to the same latent code with its
horizontally flipped counterpart, which leads to a frontal face for profile ones. Peebles et al. [139] further
extended the method to more general cases by clustering one or several center points (e.g., frontal for
faces), and finally they can obtain a spatial transformer network that can perform visual alignment as
well as the reverse process. In other words, we can edit the transformed (aligned) images for dealing with
a certain object in all video frames. In Figure 9, we show several examples of these applications.

5.2 Image restoration

Unlike the applications introduced in Subsection 5.1, which mainly leverage the exhilarating latent space
disentanglement ability of recent GAN models, image restoration tasks rely more on the high-quality
natural image priors provided by the pre-trained large-scale GAN models. Note that the GAN model
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Figure 9 (Color online) Dense visual alignment method [139] trained with GAN supervision. Please zoom in for better observation.

is trained to learn the mapping g : z 7→ x, where z is generally sampled from a simple distribution
(e.g., the standard Gaussian distribution z ∼ N (0, I)), while x ∈ X represents the high-quality training
datasets. With the millions or billions of training iterations, we assume that {zi} covers at least a
truncated Gaussian space, or more precisely, a manifold, which is defined by M. In other words, given
a latent code sampled in M, a well-trained GAN model helps to constrain the output to the X space;
i.e., the output tends to be a high-quality image following the training image distribution. In this way,
given a corrupted image, we can find a latent code in the latent space, which has the smallest “distance”
from this corrupted image. Then the image generated from the latent code can be regarded as the one
with the highest likelihood among all possible high-quality counterparts. The relevant image restoration
applications include image super-resolution, image denoising, image inpainting, image colorization, and
artifacts removal, and we will go through these applications in this subsection.

5.2.1 Image super-resolution, image denoising, image inpainting, and image colorization

Considering the common methods used for image super-resolution, image denoising, image inpainting,
and image colorization, we introduce these applications together in this part. Overall, these methods can
be divided into two classes, i.e., unsupervised and supervised. Specifically, for unsupervised methods [53,
112, 114], the optimization objective is typically defined by

Lunsup = argmin
z

‖ζ(G(z; θG))− xLQ‖
p
p + ρ(z), (27)

where ζ denotes the degradation function (e.g., down-sampling for image super-resolution, color-to-gray
for image colorization, masking for image inpainting), and ρ denotes the regularization on z derived
from the distribution of the latent space (e.g., Gaussian). Here we note that, as shown in Figure 10, the
denoising task here is actually inpainting tasks with random defective pixels rather than additive noise
suppressing, and for super-resolution tasks the degradation process is approximated by simple down-
sampling algorithms like bicubic. These drawbacks make the optimization-based unsupervised methods
limited to a certain range of tasks, where the ground-truth images are unavailable during inference.

To solve this problem, with the development of learning-based methods, the ground-truth (reference)
images can be utilized for training the encoder to obtain the restoration results, i.e., the supervised
methods. With the reference, the encoder can directly learn the mapping f : xLQ 7→ zHQ, which
is then delivered into the pre-trained GAN model to obtain the high-quality output image xHQ =
G(zHQ; θG) [54–57,96, 125, 134]. In particular, the loss function is defined by

Lsup =
∑

i

‖ξi(G(E (xLQ; θE ); θG)− ξi(xHQ)‖
p
p + ρ(z), (28)

where ξi denotes the identity operation or models for loss functions like identity loss [163], LPIPS loss [82],
and face parsing loss [60], which are utilized for better identity preserving or perceptual image quality. It
is worth noting that, unlike other methods which produce the output images directly by the pre-trained
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Figure 10 (Color online) Image restoration with GPEN [57] pre-trained with FFHQ [14] dataset.
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Figure 11 (Color online) Artifacts removal via GANDissection [45], where the neurons controlling the generation of artifacts are

set to zero.

GAN model, GLEAN [55] stacks an extra decoder on the top of the GAN model, where the features
from the pre-trained GAN model as taken as intermediate features to improve the quality of the output
generated by the extra decoder. Visual results can be found in Figure 10.

5.2.2 Artifact removal

As shown by Bau et al. [45], similar to other objects, the generation of some artifacts is also controlled
by the neurons of the GAN model. Therefore, the network dissection technique can also be used to
identify the neurons that cause the artifacts, which can bring an obvious image quality improvement (the
FID [75] improves from ∼43 to ∼27). Shen et al. [110] further explored artifact removal in the latent
space, where a linear-SVM is trained with 4k bad results to obtain the separation hyperplane, and the
artifacts are successfully suppressed by using the normal vector. Ref. [169] trained an artifact classifier
with a proposed dataset, and identified the flawed regions via Grad-CAM [186]. Then the artifacts are
suppressed in a sequential process. The visual results are shown in Figure 11.

5.3 Other applications

Apart from the aforementioned image editing and restoration applications, the pre-trained GAN models
can also be applied to other tasks, for example, information hiding [134], unsupervised domain adapta-
tion [113], adversarial defense [113, 114], anomaly detection [113], 3D reconstruction [187, 188], and so
on. Besides, a new trend in leveraging pre-trained GAN models is to combine multiple GAN models for
generating different parts (e.g., the face region and the whole body) [142], which has great potential for
generating images with complex scenes and rich contents.

6 Discussion

6.1 Comparison with other generative models

Apart from GANs, there are several well-known generative models, e.g., variational auto-encoder
(VAE) [189], normalizing flow [167], autoregressive models [190], and diffusion models [168]. In this
subsection, we briefly compare GANs with these models from several aspects.

Generation quality. In terms of generation quality, GAN models and diffusion models perform best.
Recently, diffusion models start to emerge and have obtained a lot of attention. They are also successfully
applied in several large-scale text-guided image generation models like DALL·E 2 [191] and Imagen [192].

Inference speed. However, diffusion models have a major problem with inference speed, where tens
or hundreds of steps are required. By contrast, VAE, normalizing flow, and GANs can generate images
in a single forward pass. Autoregressive models are the least efficient due to pixel-by-pixel generation.
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Diversity in generated images. In terms of diversity, the mode collapse problem of GAN models
is well known. The other generation models have better performance than GANs on diverse generations.

Semantic representations. Thanks to the structural design of the StyleGAN series, GAN models
have the best semantic representation in the latent space, which has been shown in Subsection 4.2.
Normalizing flow and diffusion models require that the latent code should have the same size as the
image, which limits their semantic representation ability in the latent space.

To sum up, GAN models have been extensively explored, and the well-constructed latent represen-
tation makes it suitable for semantic-oriented tasks. The diffusion models have shown appealing image
generation ability, yet utilizing pre-trained diffusion models for subsequent tasks remains to be explored.

6.2 Connections to high-level vision tasks

In this survey, we discuss the applications of pre-trained GAN models on low-level vision tasks like image
editing and restoration, which largely leverage the generative image priors learned by the GAN models.
Since GANs have also been deployed in high-level vision tasks [193–195], for completeness, we also briefly
discuss the connections between pre-trained GANs and high-level vision tasks. It is worth noting that
high-level tasks are more closely related to the image generation process introduced in Subsection 4.1.2,
which makes the features of pre-trained GAN models more discriminative for high-level vision tasks (e.g.,
part segmentation).

Pre-trained GANs for data augmentation. The most intuitive way to utilize pre-trained GAN
models for high-level vision tasks is generating extra samples for data augmentation [196, 197]. The
GAN-based data augmentation can help with expanding the data scale, generating out-of-distribution
samples, and balancing the data distribution between classes.

High-level tasks with pre-trained GANs. As shown in [198], the features of pre-trained GAN
models are “discriminative” enough for part segmentation tasks. Ref. [199] further proposed a progressive
finetuning strategy to reduce the gap between image generation and part segmentation. For anomaly
detection, both the generator and the discriminator were employed for training [200]. Besides, Refs. [201,
202] leveraged pre-trained GAN models for initializing adversarial attack models.

6.3 Challenges and open problems

6.3.1 GAN inversion

For leveraging pre-trained GAN models on real images, it is a fundamental task to invert them into the
latent space, with which the images should be well reconstructed via the GAN models. Although existing
GAN inversion methods have demonstrated decent performance, they are still far from perfect, and there
are many challenging problems that remain unsolved.

Fidelity and editability. When inverting a real image into latent space, there exists a trade-off
between the reconstruction fidelity and latent code editability. On the one hand, for methods that only
use the W space (or the derived spaces like W+ or S spaces), their reconstruction accuracy is greatly
limited due to the narrow latent space in comparison to the image space. Besides, mode dropping [46] is
a severe problem influencing the inversion quality. On the other hand, for methods that leverage spatial
dimensions (e.g., the F [98], Θ [99, 138], and N [57, 97] spaces), the editability becomes a main concern
as these spaces are less disentangled. Wang et al. [136] took a step forward by controlling the passage
of spatial-dimension features with the latent code in W space, which achieves a better trade-off between
fidelity and editability. However, it still remains to be better solved for real-world applications, especially
when there are geometry changes (e.g., zoom, rotation) or camera movements.

Out-of-distribution generalization. Since mode dropping [46] occurs even when a subject has
shown in the training images, the out-of-distribution generalization ability (on unseen classes or domains)
is a main concern of pre-trained GANs. Indeed, with less constrained optimization, the GAN models are
able to generate images from classes that have no intersection with the training set [91]. Nevertheless,
the resultant latent code does not fall into the meaningful latent space; i.e., the semantic directions
in the latent space are inconsistent with the out-of-distribution images. So that we are unable to edit
these images following the prior learned in the training set. Some methods have tried to adapt GAN
models to new domains via few-shot learning via cross-domain correspondence [203], but the properties
like editability require further exploration.
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6.3.2 Image generation, editing, and restoration

Current methods have achieved appealing performance on image generation, editing, and restoration
tasks, where the results are photo-realistic and the semantic information is well represented. Here we
conclude some potential directions for better leveraging pre-trained GANs.

Multi-GAN composition. Due to the limited model capacity and training mechanism, it is rather
hard for a single GAN model to generate a complex scene with every object photo-realistic and nat-
ural. Therefore, Frühstück et al. [142] tried to combine two pre-trained GAN models together for a
compositional GAN model, one of which is for generating the whole body of a person, while the other is
responsible for providing a better face region. The two GAN models are combined by joint-optimizing
the latent codes. It is of great potential to generate complex scenes via the combination of multiple GAN
models.

Physical rules and 3D awareness. For the purpose of image editing or video generation, the GAN
models should be aware of the physical rules for realistic results, and the 3D awareness also benefits to
produce reasonable structures. As introduced in Subsection 5.1.4, the pre-trained GAN models are able
to manipulate the geography properties of the images. In other words, they have implicitly learned some
physical rules from the training set. Besides, the 3D priors like 3DMM have been implied for learning face
editing models [51, 124], and neural radiance field (NeRF) has also been incorporated in some 3D-aware
generative models [204]. These models have shown the great advantage of 3D awareness. It is also worth
noting that the embedded physical rules and 3D awareness will benefit the combination of multiple GAN
models for generating complex scenes.

Diverse and reliable results. A major problem of existing image editing and restoration methods
based on pre-trained GANs is that only one result is obtained for a given input. Yet these two tasks
are both ill-posed, which prefer diverse results for more flexible choices. More importantly, for image
restoration tasks, since the input image is usually greatly degraded, the results are sometimes less reliable.
In this condition, we argue that providing multiple results with confidence scores and/or precise editing
directions recommended based on the degraded input will be more applicable, where timely feedback and
adjustment can be obtained through user participation (e.g., eyewitness).

Multi-modality combination. It is common sense that the generated images should be semantically
consistent, and we hope that we can directly provide the semantic descriptions to modify the generated
(edited, restored) results. To this end, many studies [130, 191, 192] have sought to combine language
models with generative models, and exhibit extraordinary performance in text-guided image editing. It
is challenging yet exciting for the pre-trained GAN models to be well-aligned with semantic concepts in
the languages, which will make the real-world application based on pre-trained GANs more convenient.

Toward more general image restoration. Even with well-trained GAN models as prior, image
restoration is still a challenging ill-posed problem, and the GAN prior is restricted by the training data.
To alleviate this problem, some studies [205] discussed the possibility of face image restoration without
face and GAN priors, which are limited to simple degradations (e.g., bicubic interpolation) but are worth
further exploration. Li et al. [206] proposed to solve this problem by considering the trade-off of accuracy
and universality between GAN models trained with faces images or natural images, and explored to
transfer priors of faces to natural images by learning degradation model from the face regions. AirNet [207]
proposed to extract degradation representations via contrastive learning from the input images, which can
also be combined with pre-trained GAN models for better blind restoration. In a word, it still requires
tremendous efforts toward more general image restoration.

6.3.3 Others

Combining with other generative models. Compared to other generative methods (e.g., VAE [189],
Normalizing Flow [167], and Diffusion Models [168]), the advantages of GAN models lie in the superior
image quality (vs. VAEs), flexible structure (vs. normalizing flows), and efficient sampling (vs. diffusion
models). However, GAN models approximate the data distribution in an implicit way, and they are
unstable to train and can easily lead to mode collapse. A potential way is to combine the GAN models
with other generative methods, which can give full play to the advantages of both methods. For example,
Lyu et al. [208] proposed to use GANs to generate an intermediate result for diffusion models, Grover et
al. [209] combined the maximum likelihood of normalizing flow with GANs.

Evaluation metrics. For boosting the development of GANs and techniques of leveraging pre-
trained GAN models, the evaluation metrics play an important role. For intuitive evaluations such as
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reconstruction quality and mode dropping, there have been some methods like FID [75] and FSD [46].
However, indirect or more complex evaluations like the detail and semantic consistency after editing
and restoration are less explored. Besides, for the aforementioned challenging problems, corresponding
evaluation metrics are also desired to evaluate the effectiveness.

6.4 Conclusion

Behind the superior generation ability, GAN models have shown the concept abstraction ability and the
learned generative image priors, which have been extensively explored in recent methods. In this study,
we give a comprehensive survey of recent progress on leveraging pre-trained GAN models for image
editing and restoration tasks, where the two main features of recent GAN models are utilized, i.e., the
disentanglement ability of the latent space and the generative image priors inherently learned by the
GAN models. By introducing the neuron understanding methods, we try to construct an intuitive and
in-depth impression of pre-trained GAN models. Subsequently, we review the GAN inversion methods
as well as the semantic disentanglement and discovery techniques, and the relevant applications of image
editing and restoration tasks are introduced. Finally, we discuss some challenges and open problems in
leveraging pre-trained GAN models for image editing and restoration.
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