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Dear editor,

Vehicle control is one of the key steps of intelligent driv-

ing [1]. Algorithms based on receding horizon optimization

(RHO) can predict future trajectories and handle multiob-

jective constraint conditions; therefore, RHO-based meth-

ods have attracted considerable attention in the field of ve-

hicle control. Although existing methods use RHO to design

controllers, they do not simultaneously meet the multiob-

jective optimal control performance requirements on track-

ing, fuel economy, and ride comfort. The main reasons are

(1) the deficiency of a single control target, (2) the diffi-

culty to achieve global optimization in closed-loop systems,

and (3) the high computational complexity and low compu-

tational efficiency that cannot meet the real-time require-

ments.

To solve the abovementioned problems, the main con-

tributions of this study include the following aspects:

(1) A multiobjective adaptive following control model is es-

tablished. (2) According to the model, a cost function in-

cluding tracking accuracy, fuel economy, and ride comfort is

built. Therefore, the inequality constrained predictive opti-

mization problem can be solved. (3) The RHO is adopted to

guarantee computational efficiency and ensure the real-time

requirements of the vehicle are met.

Modeling of control object. The inverse model is used to

compensate for the longitudinal nonlinearity of a vehicle to

establish a control system with linear input-output charac-

teristics, named generalized vehicular longitudinal dynamics

system (GVLDS) (Figure 1(a)). The input and output char-

acteristics of GVLDS are described by the first-order inertial

transfer function:

αf =
KG

TGs+ 1
αfdes, (1)

where af is the actual acceleration, KG and TG are the sys-

tem gain and time constant of the transfer function model,

respectively, and afdes is the desired acceleration.

Integrated modeling of the dynamic characteristics. The

coupling relationship between vehicles and the longitudi-

nal dynamic characteristics between vehicles need to be

considered. The integrated modeling idea is adopted to

establish a continuous kinetic model of a multiobjective

adaptive tracking control system (Figure 1(b)). Then, the

model of an intervehicular longitudinal dynamics system is

∆ḋ = ∆v−[τh+r(2vf −vfmean)]af , ∆v̇ = ap−af , where ap
is the acceleration of the preceding vehicle. The continuous

dynamic model of the tracking system is established:
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x = [∆d ∆v af ]
T, u = afdes, v = ap,

(2)

where the system state x ∈ R
3 is the vector comprising the

vehicle distance error, relative speed, and intelligent vehicle

acceleration. Eq. (2) is discretized by the zero-order invari-

ant control input method:

x(k + 1) = Ax(k) + Bu(k) +Gv(k). (3)

Let Ts denote the control cycle, and then A=
∑

∞

i=0

φkTk
s

k!
,
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Figure 1 (Color online) (a) Generalized vehicular longitudinal dynamics system; (b) multiobjective adaptive tracking control

system model; experimental results of (c) the desired acceleration, (d) the instantaneous fuel consumption, (e) the vehicle speed,

(f) the relative speed, and (g) the distance error, respectively.
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Cost function. For the multiobjective optimal control,

the cost function of the predicted time domain is as fol-

lows:

L(y, u,∆u) =
∑P

i=0
‖ωCFy(k + i+ 1|k)‖2 · wy

+
∑P

i=0
‖u(k+i|k)‖2 · wu+

∑P
i=0

‖u(k+i|k)‖2 · w∆u,
(4)

where k is the current time, P is the predicted length, and

[k : k + P − 1] is the predicted time domain of the mul-

tiobjective adaptive car-following control for the intelligent

vehicle, (k + i|k) represents the prediction of the k + i time

based on the time information of k, ‖ · ‖ is the 2-Norm of

the matrix, and u is the control increment.

Constraint design. The predictive constraint for multi-

objective adaptive car-following control is given by


































umin 6 u(k + i|k) 6 umax,

∆umin 6 ∆u(k + i|k) 6 ∆umax,

ymin 6 y(k + i+ 1|k) 6 ymax,

asafe · y(k + i+ 1) 6 dsafe + τsafev(k + i+ 1|k),

i = 0 : (P − 1),

(5)

where umin = afmin and umax = afmax are the lower and

upper bounds of the control input, respectively; ∆umin =

jfmin · Ts and ∆umax = jfmax · Ts are the lower and up-

per bounds of the control increment, respectively; ymin and

ymax are the lower and upper bounds of the system output,

respectively. Moreover, v is the inference of the acceleration

of the preceding car, y(k + i+ 1|k) represents the predicted

value of the interference v, and asafe ∈ R
n×n, dsafe ∈ R

n

and τsafe ∈ R
n are the coefficient matrices.

Multiobjective control algorithm. The RHO-based multi-

objective adaptive car-following vehicle control model algo-

rithm is given by

u∗(k) = u(k − 1) +∆u∗(k + 0|k), (6)

where the control input is the desired acceleration; u∗(k) is

the optimal control input of k step; u(k − 1) is the control

input of k − 1 step; u∗(k + 0|k) is the first element of the

optimal control increment. The optimal control increment

u∗(k + i|k) is the optimal solution for the prediction prob-

lem. The Dantzig-Wolfe’s efficient set method is used to

solve the problem [2], and the optimal control law is given.

The cycle of the algorithm is 100 ms.

Experiments. The comparison method is linear quadratic

control (LQC) [3], which is a type of multiobjective coordi-

nated optimal control method and suitable for linear ob-

jects. The urban road experimental results (Figures 1(c)–

(g)) prove the real-time performance of the control method

and the acceleration can meet the longitudinal ride comfort

standard. However, the RHO method is more accurate to

track the preceding vehicle’s acceleration, and its absolute

value is lower than that of the LQC method. The instanta-

neous fuel consumption of the RHO method is lower than

that of the LQC method in most periods, indicating that

the fuel economy of the RHO method is better. The track-

ing speed and accuracy of the RHO method are higher. In

addition, the relative vehicle speed and vehicle distance er-

ror are smaller than those of the LQC method. Therefore,

the tracking performance of the RHO method is better than

that of the LQC method. More details are included in Ap-

pendixes A–E.

Conclusion and future work. The RHO method proposed

in this study effectively solves the three functional require-

ments of intelligent vehicle tracking accuracy, low fuel con-

sumption, and ride comfort. The comparative experimental

results show that the proposed method is superior to the

existing LQC method in the three aspects. In the future,

we will further improve the real-time performance of the

algorithm based on the proposed method.
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