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Dear editor,

With the popularization of digital techniques, practical con-

trol systems are usually implemented via embedded micro-

processors, and sampled-data control is applied. The sys-

tem state is sampled and received by the controller only

at discrete sampling instants [1]. Sampled-data control is

fundamentally time-triggered, which may cause unnecessary

data transmission if the change of the current sampled data

is relatively small compared with the previously released

data. As an alternative, an event-trigger (ET) scheme is

proposed in which the sampled data is released only when

a prescribed triggering condition is satisfied [2–6]. How-

ever, the event-trigger threshold in those studies is assumed

to be constant. When the system state changes, the con-

stant threshold will lose the ability to respond to the change.

To address this limitation, an adaptive event-trigger (AET)

scheme whose threshold can be adjusted dynamically ac-

cording to the system state is proposed [7]. Note that the

goal of AET control is to design a sampled-data controller

with an AET scheme that can guarantee a longer sampling

period or fewer triggering times. The most common way to

achieve this goal is to reduce the design conservativeness by

using improved Lyapunov functionals. Here, discontinuous

Lyapunov functionals that take advantage of the sampling

characteristic are proposed [8,9]. However, developing a dis-

continuous Lyapunov functional to analyze the AET-based

sampled-data stabilization of delayed complex-valued neu-

ral networks (CVNNs) directly in a complex domain is a

challenging problem.

In this study, sampled-data stabilization of delayed

CVNNs subject to an AET scheme is addressed. The pri-

mary contributions of this study are as follows. (1) To

further reduce data transmission, an AET communication

scheme is designed to help select the necessary sampled data.

(2) A discontinuous Lyapunov functional in a complex do-

main is developed, and several free matrices are introduced

to obtain a relaxed result. (3) A stability analysis of the

closed-loop system is carried out directly in the complex do-

main. A less conservative stabilization criterion expressed

into real and complex LMIs is derived. It has been demon-

strated that the sampling period can be increased, and the

triggering times can be reduced.

Notations. Throughout this study, Rn, Cn, Rn×n, and

Cn×n represent the n-dimensional real and complex Eu-

clidean spaces and the sets of n × n real and complex ma-

trices, respectively. For A ∈ Rn×n, A−1 denotes the inverse

of matrix A and A > 0 implies that A is a real symmetric

positive definite matrix. “T” and “*” denote the transposi-

tion and the complex conjugate transposition, respectively.

diag{l1, l2, . . . , ln} represents a diagonal matrix. Sym{X}
means X +XT or X +X∗. ⋆ denotes the symmetric block

in a real symmetric matrix, and ||z|| =
√
z∗z represents the

modulus of a vector z ∈ Cn.

Problem formulation. Consider the delayed CVNN de-

scribed as follows:

ż(t) = −Dz(t) + Af(z(t)) + Bf(zτ (t)) + u(t), t > 0, (1)

where z(t) = [z1(t), z2(t), . . . , zn(t)]T ∈ Cn denotes the sys-

tem state; diagonal matrix D > 0 denotes the neuron self-

feedback; zτ (t) = z(t−τ(t)) = [z1τ (t), z2τ (t), . . . , znτ (t)]T ∈
Cn and 0 6 τ(t) 6 τ is the time delay where τ̇(t) 6 µ < 1

is satisfied. f(z(t)) = [f1(z1(t)), f2(z2(t)), . . . , fn(zn(t))]T

and f(zτ (t)) = [f1(z1τ (t)), f2(z2τ (t)), . . . , fn(znτ (t))]T are

the activation functions with fi(0) = 0, and A,B ∈ Cn×n

are the connection weight matrices.

Assumption 1. The component functions fi(·) are Lips-

chitz continuous on C. In other words, there exist positive

constants Fi (i = 1, 2, . . . , n) such that

||fi(ui)− fi(vi)|| 6 Fi||ui − vi||, ∀ ui, vi ∈ C.
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The stabilization problem of system (1) will be considered

under aperiodic sampling. The sampling instants are defined

as 0 = l0 < l1 < · · · < lq < · · · < limq→∞ lq = ∞. The sam-

pling period λq = lq − lq−1 satisfies 0 < λm 6 λq 6 λM ,

where two constants λm and λM are the lower and upper

bounds of λq, respectively. The controller is designed as

u(t) = Kz(tk), t ∈ [tk, tk+1), (2)

where K ∈ Rn×n is the control gain to be designed later.

By taking (2) into (1), system (1) is reduced to

ż(t) =−Dz(t) + Af(z(t)) + Bf(zτ (t))

+Kz(tk), t ∈ [tk, tk+1). (3)

To select the necessary sampled data z(tk), an AET

scheme is introduced. The introduced scheme helps to de-

termine whether the sampled signal z(lr) should be released.

The necessary sampled data z(tk) is picked out, and the next

transmission instant tk+1 is determined as follows:

tk+1 = tk +

r−1
∑

j=1

λj + inf
r
{λr |e∗(lr)Ωe(lr)

> α(t)z∗(lr)Ωz(lr)}, (4)

where e(lr) = z(lr)− z(tk), tk is the latest transmission in-

stant, lr = tk +
∑r

j=1 λj is the current sampling instant,

r > 0 is the number of sampling intervals from the former

transmission instant tk to the current sampling instant lr ,

λj are the variable sampling periods, Ω > 0 is the trigger

matrix, and α(t) is the threshold function which is regulated

by

α̇(t) =
θ

α(t)

(

1

α(t)
− α0

)

e∗(lr)Ωe(lr), (5)

where α(t) ∈ (0, 1] and α0 and θ are two given positive con-

stants. For simplicity, let θ = 1 in the following Theorem 1

and Corollary 1 in Appendix C.

The signal holding interval [tk , tk+1) , Ψ can be divided

into subintervals Ψr = [lr , lr + λr+1), i.e., Ψ = ∪p−1
r=0 Ψr

with lr being defined in (4), and tk+1 = lp.

Theorem 1. For given scalars γ1, γ2, γ3, and α0,

system (1) with controller (2) and AET scheme (4)-(5)

is globally asymptotically stabilized if there exist matrices

P > 0, Q > 0, R1 > 0, X > 0, Zi > 0 (i = 1, 2, 3), Ω >

0, H1 > 0, H3 > 0, Y1 > 0, Y3 > 0, arbitrary matri-

ces S, Y2, H2, Ni, Mi (i = 1, 2), L, diagonal matrices

Λ1, Λ2 > 0, and invertible matrix G, such that the follow-

ing LMI conditions are feasible for λ̃ ∈ {λm, λM}:

Ξ1(λ̃) = Φ1 +Φ2 + λ̃Φ3 + Φ6 + Φ7 + Φ8 < 0,

Ξ2(λ̃) = Φ1 +Φ2 + λ̃(Φ4 +Φ5) + Φ6 +Φ7 +Φ8 < 0,
(6)

U1 =

(

Z1 S

⋆ Z1

)

> 0, U2 =







Y1 Y2 N1

⋆ Y3 N2

⋆ ⋆ Z2






> 0,

U3 =







H1 H2 M1

⋆ H3 M2

⋆ ⋆ Z3






> 0,

where Φ1 = Sym{ǫT1 Pǫ6} + ΠT
1 QΠ1 − (1 − µ)ΠT

2 QΠ2 +

ǫT1 R1ǫ1 − ǫT3 R1ǫ3 + τ2ǫT6 Z1ǫ6 − ΠT
3 U1Π3,Φ2 =

−ΠT
4 XΠ4 + Sym{ΠT

4 (N1Π5 − 2N2ǫ8)} + ǫT1 FΛ1Fǫ1 −
ǫT4 Λ1ǫ4 + ǫT2 FΛ2Fǫ2 − ǫT5 Λ2ǫ5,Φ3 = Sym{ΠT

4 XΠ7} +

ǫT6 Z2ǫ6,Φ4 = ΠT
4 (Y1 +

λ2

M

3
Y3)Π4 + Sym{ΠT

4 N2Π6},Φ5 =

Sym{ΠT
10(H1+

λ2

M

3
H3+M̄1)Π11},Φ6 = Sym{ΠT

8 Π9},Φ7 =

ΠT
10(H1 +

λ2

M

3
H3 + M̄1)Π10 + Sym{ΠT

10M̄2Π11} +

ǫT6 Z3ǫ6,Φ8 = ǫT7 Ωǫ7 − α0ǫ
T
9 Ωǫ9,Π1 = [ǫT1 , ǫ

T
4 ]

T,Π2 = [ǫT2 ,

ǫT5 ]
T,Π3 = [ǫT1 − ǫT2 , ǫ

T
2 − ǫT3 ]

T,Π4 = [ǫT1 − ǫT7 , ǫ
T
8 ]

T,

Π5 = [ǫT1 − ǫT7 ]
T,Π6 = [ǫT1 + ǫT7 ]

T,Π7 = [ǫT6 , ǫ
T
1 ]

T,Π8

= [ǫT1 + γ1ǫ
T
6 + γ2ǫ

T
7 + γ3ǫ

T
9 ]

T,Π9 = [−ǫT6 G − ǫT1 GD +

ǫT4 GA + ǫT5 GB + ǫT7 L − ǫT9 L]
∗, Π10 = [ǫT1 , ǫ

T
7 , ǫ

T
8 ]

T, Π11 =

[ǫT6 , 0, ǫ
T
1 ]T, M̄1 = [M2,M2, 0], M̄2 = [M1,−M1,−2M2],

ǫi = [0n×(i−1)n, In, 0n×(9−i)n], i = 1, 2, . . . , 9. Further-

more, the control gain is solved by K = G−1L.

Proof. See Appendix C.

Conclusion. In this study, an AET scheme, covering the

traditional ET scheme as a special case, is designed to ad-

dress the stabilization of delayed CVNNs subject to aperi-

odic sampling. A discontinuous Lyapunov functional in a

complex domain is developed to facilitate the stability anal-

ysis, which contains several free matrices and thus may lead

to some relaxed stability conditions. A less conservative

stabilization criterion is derived by which the control gain

and the trigger matrix can be synthesized simultaneously.

The simulation comparisons show that the sampling period

can be increased and the triggering times can be reduced by

using the proposed AET scheme and the constructed dis-

continuous Lyapunov functional.
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