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Dear editor,

Time delay, which typically appears in many industrial pro-

cesses, is a challenging issue in the control field because de-

lay can cause the system to experience oscillatory responses

or even instability. Time-delay systems belong to the wide

class of infinite-dimensional systems, which are difficult to

handle in theory. Therefore, significant attention has been

paid to system stability analysis with time delay [1–4].

In the real-world applications, a class of delay that vary

periodically in an interval is usually observed in practi-

cal systems. For example, sampled-data systems can be

modeled as time-varying delay systems with sawtooth de-

lay. For such systems, a looped functional approach has

been proposed in [5], which relaxes the conditions on the

Lyapunov functionals commonly employed in systems with

time-varying delay. In [6], a two-sided looped functional ap-

proach was proposed. In the sampled-data system, the delay

function, d(t), is sawtooth and satisfies ḋ(t) = 1 for ∀t 6= tk.

However, many functions cannot satisfy this condition. For

example, the cutting process in a rotating cutting machine

can be modeled as a system with sinusoidal delay [7]. Deter-

mining whether the looped function approach can be applied

in such a situation is the motivation for the current study.

In this study, we focus on stability analysis of systems

with periodically varying delay. Our primary contributions

are summarized as follows. (1) By dividing delay into mono-

tonically increasing intervals and monotonically decreasing

intervals, separate looped functionals are proposed for these

two classes of intervals. (2) A novel looped-functional-based

Lyapunov functional is proposed, and the proposed Lya-

punov functional yields less conservative conditions than ex-

isting ones.

Main results. Consider the following system with time-

varying delay:
{

ẋ(t) =A0x(t) +A1x(t− d(t)),

x(θ) =φ(θ), θ ∈ [−h2, 0],
(1)

where A0 ∈ Rn×n and A1 ∈ Rn×n are system matrices,

x(t) ∈ R
n is the system state, and the initial condition φ(θ)

is a continuous function defined on [−h2, 0]. Here, d(t) is a

continuous bounded function satisfying the following:

d(t) ∈ [h1, h2], |ḋ(t)| 6 µ < 1, (2)

where h1 and h2 are the minimum and maximum of the

delay, respectively. It is assumed that the delay varies peri-

odically between h1 and h2, and each period comprises one

monotonically increasing interval and one monotonically de-

creasing interval.

To reduce the conservativeness of the derived stabil-

ity condition, a framework is proposed to construct the

Lyapunov functional. Without loss of generality, it is as-

sumed that there exist t2k−1 < t2k , k = {1, 2, 3, . . .}, such
that d(t2k−1) and d(t2k) are extreme values of d(t), where

d(t2k−1) = h1 and d(t2k) = h2 are the minimum and

the maximum, respectively. Thus, it is concluded that the

time-delay function d(t) is monotonically increasing in in-

tervals [t2k−1, t2k ] and monotonically decreasing in intervals

[t2k, t2k+1]. Then, similar to [6], two looped functionals are

constructed separately for each of these intervals.

Case 1. When t ∈ [t2k−1, t2k), i.e., ḋ(t) ∈ [0, µ], a looped

functional is defined as follows:

VI(t) = 2ηT1 (t)Q1η2(t)

+ (d(t) − h1)

∫ t−d(t)

t−h2

ẋT(s)Z1ẋ(s)ds

+ (d(t) − h2)

∫ t−h1

t−d(t)
ẋT(s)Z2ẋ(s)ds, (3)

where η1(t) = [
(d(t) − h1)(x(t − h2) − x(t − d(t)))

(h2 − d(t))(x(t − d(t)) − x(t − h1))
] and η2(t) =

[ xT(t) xT(t− h1) xT(t − d(t)) xT(t− h2) ]
T.

Case 2. When t ∈ [t2k, t2k+1), i.e., ḋ(t) ∈ [−µ, 0], a

looped functional is defined as follows:

VD(t) = 2ηT1 (t)P1η2(t)
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+ (d(t) − h1)

∫ t−d(t)

t−h2

ẋT(s)R1ẋ(s)ds

+ (d(t) − h2)

∫ t−h1

t−d(t)
ẋT(s)R2ẋ(s)ds. (4)

Remark 1. Considering that d(t2k−1) = h1 and d(t2k) =

h2, time t ∈ [t2k−1, t2k ] is mapped to delay d(t) ∈ [h1, h2].

Inspired by [6], the two-sided looped functional (3) is con-

structed for t ∈ [t2k−1, t2k ] by exploiting the relationship

between intervals [h1, d(t)] and [d(t), h2]. Similarly, another

functional (4) is constructed for t ∈ [t2k , t2k+1].

Remark 2. Differing from traditional Lyapunov function-

als, VI (t) and VD(t) do not need to be positive. This relax-

ation plays an important role in reducing the conservative-

ness of the derived stability conditions.

As a result, the following stability criterion is obtained

by introducing the proposed looped functionals.

Theorem 1. For given scalars µ ∈ [0, 1) and h2 > h1 > 0,

system (1) is asymptotically stable if there exist P ∈ S
10n
+ ,

W1,W2,W3 ∈ S2n+ , U1, U2 ∈ Sn+, P1, Q1 ∈ R2n×4n,

R1, R2, Z1, Z2 ∈ Sn, and E1, E2, F1, F2 ∈ R3n×13n such

that Eqs. (5)–(8) are feasible.

[

Φ(h1, ḋ(t))
√
h2 − h1E

T
1

∗ −ÛZ1(ḋ(t))

]

ḋ(t)∈[0,µ]

6 0, (5)

[

Φ(h2, ḋ(t))
√
h2 − h1E

T
2

∗ −ÛZ2(ḋ(t))

]

ḋ(t)∈[0,µ]

6 0, (6)

[

Ψ(h1, ḋ(t))
√
h2 − h1F

T
1

∗ −ÛR1(ḋ(t))

]

ḋ(t)∈[−µ,0]

6 0, (7)

[

Ψ(h2, ḋ(t))
√
h2 − h1F

T
2

∗ −ÛR2(ḋ(t))

]

ḋ(t)∈[−µ,0]

6 0. (8)

Detailed proofs of Theorem 1 and two additional corol-

laries are given in Appendixes B and C.

Numerical example. Consider system (1) with

A0 =

[

−2.0 0.0

0.0 −0.9

]

, A1 =

[

−1.0 0.0

−1.0 −1.0

]

.

The delay function is given by d(t) = h1 + h2−h1
2

(1 +

cos 2µ
h2−h1

t). For the different h1 and µ, the maximum al-

lowable upper bounds h2 computed by Theorem 1 for the

example are presented in Table 1. It can be seen that our re-

sults are much larger than those presented in [8,9]. Note that

additional numerical examples are discussed in Appendix D.

Conclusion. This study has investigated the stability

problem for a class of systems with periodic delay. A looped-

functional-based Lyapunov functional has been proposed,

Table 1 Allowable upper bounds of h2 for various h1 and µ

Method h1 = 1 h1 = 2 h1 = 3 h1 = 4

[8] 4.193 4.493 4.397 4.197

µ = 0.1 [9] 4.404 4.572 4.540 4.236

Theorem 1 5.125 5.100 5.178 5.414

[8] 2.305 2.566 3.340 4.169

µ = 0.5 [9] 2.351 2.698 3.418 4.209

Theorem 1 3.622 3.703 4.181 4.825

and the proposed functional takes the periodicity character-

istics of the delay into consideration, which yields new sta-

bility conditions. A numerical example has demonstrated

that the proposed method can reduce the conservativeness

of the computed results significantly compared to existing

methods.
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