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Dear editor,

Periodic piecewise systems broadly exist in engineering ap-

plications, and different control problems of various periodic

piecewise systems have been studied [1–3]. With the devel-

opment of the network technology, the network-induced de-

lay gives rise to instability and performance degradation of

systems, and many effective solutions have been proposed

to solve it [4]. However, for networked systems with the

switched property, the network-induced delay would simul-

taneously result in the state transmission delay and the con-

troller switching signal transmission delay, which brings the

problem of asynchronous control. The weighted L2-gain in-

dex is developed for the asynchronous switched system with

network-induced delay in [5]. An asynchronous switching

protocol and joint-design method of the switching signal and

controller were proposed in [6,7], respectively. However, few

studies have focused on networked control of periodic piece-

wise systems under asynchronous switching, which are en-

countered in power system applications. Because of the fixed

switching law, the joint design method of the switching law

and controller adopted in an arbitrary switched system is

not applicable to the networked periodic piecewise systems.

Motivated by the above observations, this article studies the

control problem of networked periodic piecewise systems un-

der asynchronous switching with input delay, which can be

combined with distributed systems [8].

Problem formulation. Consider the following continuous-

time periodic piecewise linear system, for t ∈ [jTp +

ti−1, jTp + ti), j = 0, 1, 2, . . . , i ∈ S , {1, 2, . . . , s}:

ẋ(t) = Aix(t) + Biu(t) + Bwiw(t),

z(t) = Cix(t). (1)

Tp is the fundamental period of the system, ti is the switch

instant from the ith subsystem to (i + 1)th subsystem in

the first period, and t0 = 0. s is the number of subsys-

tems in one period. Ti is the dwell time of the ith subsys-

tem, and then one has Ti = ti − ti−1. Assume that the

network induced total time delay is defined as d and has

0 < d < min(Ti). One could find that the system switching

and the controller switching would be asynchronous because

of the transmission delay. Without loss of generality, one

can use two classes of time-delay systems to describe the

networked periodic piecewise systems:

ẋ(t) = Aix(t) + BiKi−1x(t − d) +Bwiw(t),

t ∈ [jTp + ti−1, jTp + ti−1 + d),

ẋ(t) = Aix(t) + BiKix(t− d) + Bwiw(t),

t ∈ [jTp + ti−1 + d, jTp + ti),

x(t) = ϕ(t), t ∈ [−d, 0), (2)

where ϕ(t) is the system initial condition with a delay d. It

can be seen that the networked periodic piecewise system

(2) is controlled by two classes of controllers for any sub-

systems t ∈ [jTp + ti−1, jTp + ti). One class is switching

asynchronously with the networked periodic piecewise lin-

ear system, and the other class is switching synchronously

with the networked periodic piecewise system.

The stability analysis of the networked periodic piecewise

system is given in Appendix A. Based on it, the performance

analysis of the networked periodic piecewise system is given

in the following theorem.

Theorem 1. Consider a networked periodic piecewise sys-
tem (2), given scalars λ > 0, ρ > 0. If there exist the scalar
γ > 0, and the matrices Pi,1 > 0, Pi,2 > 0, Ps+1,1 = P1,1,
i ∈ S, Q > 0, G > 0, such that
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where εi,1 = Θi,1(Pi,1) +
(Pi,2−Pi,1)

d
+ G − e−ρd

d
Q, εi,2 =

Θi,1(Pi,2) +
(Pi,2−Pi,1)

d
+ G − e−ρd

d
Q, εi,3 = Θi,2(Pi,2) +

(Pi+1,1−Pi,2)

Ti−d
+ G − e−λd

d
Q, εi,4 = Θi,2(Pi+1,1) +

(Pi+1,1−Pi,2)

Ti−d
+ G − e−λd

d
Q, Θi,1(Ω) = AT

i Ω + ΩAi +

ρΩ, Θi,2(Ω) = AT
i Ω + ΩAi + λΩ, χi,1 = Pi,1BiKi−1 +

e−ρd

d
Q, χi,2 = Pi,2BiKi−1 + e−ρd

d
Q, χi,3 = Pi,2BiKi +

e−λd

d
Q, χi,4 = Pi+1,1BiKi + e−λd

d
Q, βi1 = −e−ρdG −

e−ρd

d
Q, βi2 = −e−λdG − e−λd

d
Q, then, for any de-

lay 0 < d < min(Ti), the system (2) follows that
∫

∞

0 zT(τ)z(τ)dτ 6 γ̄2
∫

∞

0 wT(τ)w(τ)dτ , where γ̄ =
√

max(λ,ρ)
2α∗

γemax(2α∗
−min((λ,ρ),0))Tp .

Proof. See Appendix B for the proof of Theorem 1.

Remark 1. In this study, Pi1(t) and Pi2(t) are chosen to

be continuous time-varying functions. Comparing with the

multiple constant Lyapunov matrices in [5], the continuous

time-varying Lyapunov matrix obviously has more plentiful

dynamic characteristics.

Remark 2. In this study, with adopting a continuous

time-varying Lyapunov functional, an unweighted H∞ per-

formance criterion is obtained, which would be more desir-

able in applications.

The condition in Theorem 1 is non-convex, which cannot

be solved directly. An algorithm is given in Appendix C to

obtain the controller gain. And the simulations are provided

in Appendix D to illustrate the efficiency of the obtained re-

sults.
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