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Abstract In this paper, a parametric design approach for stabilizing a quasi-linear second-order system

with partitioned eigenstructure assignment (PESA) is investigated through output feedback control. The

PESA approach is established by partitioning the desired eigenvalue matrix into two parts to separate the

associated right and left eigenvectors into a subset of the generalized eigenvectors simultaneously. A para-

metric controller is established by solving two second-order generalized Sylvester matrix equations, and a

certain form with the desired eigenstructure can be derived with the established quasi-linear output feedback

controller. Unlike the prevailing approach that assigns the entire set of generalized eigenvectors, which is

difficult to satisfy a large number of complicated constraints in practical systems by the normalized pair of

right and left eigenvector matrices, a subset of the generalized eigenvectors is considered. In addition, the

proposed PESA approach provides less computational load and is easy to use. A numerical example and

application in spacecraft rendezvous are provided to verify the numerical economy and high efficiency of the

proposed approach.
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1 Introduction

There are many second-order practical systems subject to the laws of physics, e.g., Kirchhoff’s law and
Lagrangian equation. In the last few years, we have witnessed the developed theoretical advances in
second-order systems [1–5] and wide implementation in many fields, such as multi-agent systems [6–9],
robotic manipulators [10–12] and hemispherical resonator gyroscope [13]. It is worth noting that most
physical systems are quasi-linear, meaning that a nonlinear dynamical system could be expressed as a
linear form.

Even though nonlinear systems have stirred considerable research attention and seminal approaches
have been proposed to handle nonlinearity, such as feedback linearization, backstepping, passivity-based
control and Lyapunov redesign, the dynamic performance is seldom discussed. Most nonlinear approaches
only guarantee stability, and the dynamic performance may not be easy to obtain. Meanwhile, the linear
system has been widely investigated, and the stability and transient responses are characterized by the
closed-loop eigenstructure. Thus, quasi-linear systems are proposed, which are indeed nonlinear but can
be expressed in linear forms. Many real systems can be modeled as quasi-linear systems, such as the
fields of mechanics [14, 15], robotics [16, 17], and missile [18]. Thus, a wide range of theoretical advances
of the quasi-linear systems has been developed [19–25]. It is worth noting that the strict-feedback and
nonstrict-feedback nonlinear systems have been investigated by considering various conditions [26, 27].
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Particularly, the output feedback control method is considered with prescribed performance for uncertain
strict-feedback nonlinear systems [28] and switched non-strict-feedback nonlinear systems [29].

Recently, a branch of parametric approaches has been proposed to deal with the quasi-linear system
with the time-varying coefficient matrices, including state variables and time-varying parameter vectors.
A certain form with the desired eigenstructure can be derived using the established quasi-linear state
feedback or output feedback controller. The controller can be constructed by solving the generalized
Sylvester matrix equations. Even though the parametric approach scheme seems like feedback lineariza-
tion techniques, which derived a closed-loop linear system, they are different in several ways. Feedback
linearization techniques deal with some special types of nonlinear systems. It is achieved by introducing
a feedback mechanism and a change of variables to transform the nonlinear systems into equivalent linear
systems. At the same time, the region of attraction of the origin is unknown. By solving a type of
parameter-varying generalized Sylvester matrix equations, complete parametrization of the quasi-linear
state feedback or output feedback controller can be established. Then, linear systems can be obtained
using the predesigned eigenstructure. In addition, feedback linearization may need to solve partial dif-
ferential equations that define the input-state linearizing transformations. Besides, it lacks a systematic
analytical approach compared with the parametric approach.

The seminal parametric approach was first proposed by Duan [30]. It has greatly enriched some other
theories [2,31–35] and has received successful applications [36,37]. Recently, Duan extended this paramet-
ric approach to quasi-linear systems through state feedback [20], output feedback [21], and applications
in flight vehicle control [38, 39]. Moreover, Gu et al. extended the parametric approach to quasi-linear
second-order systems [22], quasi-linear high-order systems [24,40] and descriptor quasi-linear systems [25].

However, the existing approaches assign the entire set of generalized eigenvectors and should be satisfied
with complicated constraints, which is not feasible in many applications. Meanwhile, it is unnecessary
to assign the entire set of generalized eigenvectors since it will be sufficient to assign a subset of the
generalized eigenvectors. Thus, introducing a scheme that includes less complicated constraints is of
theoretical importance and practical significance. In this study, we will make a dedicated effort to tackle
these difficulties. Inspired by the above studies, we propose a partitioned eigenstructure assignment
(PESA) approach, which greatly reduces a large number of complicated constraints. The proposed
approach reduces the difficulty of the controller design and makes it easier to utilize the method in
practical systems.

To the best of our knowledge, this is the first time that the PESA approach for the quasi-linear systems
is established by partitioning the desired eigenvalue matrix into two parts to separate the associated right
and left eigenvectors into a subset of the generalized eigenvectors simultaneously. The products of partial
right and left eigenvectors have low dimensions and largely reduce the number of complicated constraints.
The proposed PESA approach by output feedback acting on a quasi-linear second-order system has the
following features.

• A parametric controller is established, and a certain form with the desired eigenstructure can be
derived using the established quasi-linear output feedback controller.

• The proposed PESA approach partitions the desired eigenvalue matrix into two parts and constructs
a low dimension constraint by assigning only a subset of the left and right generalized eigenvectors instead
of the entire set, making it numerically economical and efficient.

The remainder of the paper is organized as follows. In Section 2, we introduce the quasi-linear second-
order system and key assumptions. The motivation statement and steps of the proposed PESA approach
to reduce complicated constraints are presented in Section 3. Section 4 states the main results of the
parametric solution, where the proposed parametric solution of the output feedback controller is presented
with arbitrary and diagonal cases. Section 5 provides a numerical example and application in spacecraft
rendezvous to illustrate the validity of the proposed approach. Finally, Section 6 presents the conclusion.

2 System description

Consider the following description of the quasi-linear second-order system:

A2 (ϑ, z, ż) z̈ +A1 (ϑ, z, ż) ż +A0 (ϑ, z, ż) z = B (ϑ, z, ż)u, (1a)

y0 = C0 (ϑ, z, ż) z, (1b)

y1 = C1 (ϑ, z, ż) ż, (1c)
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where z ∈ Rn is the state vector, u ∈ Rr is the control vector, y0 ∈ Rm0 , y1 ∈ Rm1 and m0 +m1 = m
are the measured output and derivative output vectors, A2 (ϑ, z, ż) , A1 (ϑ, z, ż) , A0 (ϑ, z, ż) ∈ Rn×n,
B (ϑ, z, ż) ∈ R

n×r, C0 (ϑ, z, ż) ∈ R
m0×n and C1 (ϑ, z, ż) ∈ R

m1×n represent coefficient matrices of the
quasi-linear system which are piecewise continuous functions in respect of ϑ, z, ż. In addition, ϑ is a
parameter vector within a compact set Ω which is time-varying and satisfies

ϑ = ϑ (t) ∈ Ω ⊂ R
l. (2)

The system (1a)–(1c) also satisfies the following assumptions.

Assumption 1 (See the study of Duan [21] and Gu et al. [22]). B (ϑ, z, ż), C0 (ϑ, z, ż) and C1 (ϑ, z, ż)
are uniformly bounded in respect of ϑ, z, ż.

Remark 1. B (ϑ, z, ż), C0 (ϑ, z, ż) and C1 (ϑ, z, ż) are coefficient matrices of the quasi-linear system,
and it is reasonable to suppose them to be uniformly bounded in respect of ϑ, z, ż. This requirement is
utilized for the coprime factorization introducing later, and this is a restriction of parametric control for
the quasi-linear systems.

Assumption 2 (See the study of Gu et al. [22]). rankA2 (ϑ, z, ż) = n.

A controller is designed in order to control the above system (1a)–(1c):

u =

1
∑

i=0

Ki (ϑ, z, ż) yi (ϑ, z, ż) + v

=
[

K0 (ϑ, z, ż)C0 (ϑ, z, ż) K1 (ϑ, z, ż)C1 (ϑ, z, ż)
]

[

z

ż

]

+ v, (3)

where K0 (ϑ, z, ż) ∈ Rr×m0 ,K1 (ϑ, z, ż) ∈ Rr×m1 are gains of the feedback controller and piece-wisely
continuous in respect of ϑ, z, ż, and v is an external signal. Thus, a closed-loop system is derived by this
controller.

A2 (ϑ, z, ż) z̈ +Ac1 (ϑ, z, ż) ż +Ac0 (ϑ, z, ż) z = B (ϑ, z, ż) v, (4)

with

Ac0 (ϑ, z, ż) = A0 (ϑ, z, ż)−B (ϑ, z, ż)K0 (ϑ, z, ż)C0 (ϑ, z, ż) , (5a)

Ac1 (ϑ, z, ż) = A1 (ϑ, z, ż)−B (ϑ, z, ż)K1 (ϑ, z, ż)C1 (ϑ, z, ż) . (5b)

The closed-loop system (4) is transformed into a quasi-linear first-order form by defining x = [ z ż ]T:

E (ϑ, x) ẋ = Ac (ϑ, x)x+Bc (ϑ, x) v, (6)

with

E (ϑ, x) =

[

In 0

0 A2 (ϑ, x)

]

, (7a)

Ac (ϑ, x) =

[

0 In

−Ac0 (ϑ, x) −Ac1 (ϑ, x)

]

, (7b)

Bc (ϑ, x) =

[

0

B (ϑ, x)

]

. (7c)

This approach aims to turn the closed-loop system (6), which is transformed by (1a)–(1c), into a linear
system with a predesigned eigenstructure by the designing controller (3).

3 Motivation and steps of the proposed PESA to reduce complicated con-
straints

First of all, the description of existing generalized eigenstructure assignment [22] in the quasi-linear
second-order systems is presented. Namely, it seeks the gain matrices K0 (ϑ, z, ż) ∈ Rr×m0 ,K1 (ϑ, z, ż) ∈
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Rr×m1 and two corresponding matrices Tg
T (ϑ, x) ∈ R2n×2n, Vg (ϑ, x) ∈ R2n×2n satisfying

Tg
T (ϑ, x)Ac (ϑ, x) = FTg

T (ϑ, x)E (ϑ, x) , (8)

Ac (ϑ, x) Vg (ϑ, x) = E (ϑ, x)Vg (ϑ, x)F, (9)

and

Tg
T (ϑ, x)E (ϑ, x)Vg (ϑ, x) = I2n, (10)

where F ∈ R2n×2n is similar to the matrix Ac (ϑ, x) with desired eigenvalues. The existing scheme assigns
the entire set of generalized eigenvector and needs to satisfy the normalized pair (10). However, it is not
necessary to assign the entire set of generalized eigenvector columns of Vg and Tg while it would be
sufficient to assign a subset of the generalized eigenvector columns of them. If F is partitioned into two
parts, the associated right and left eigenvectors are separated simultaneously. The products of partial
right and left eigenvectors have low dimensions and this can greatly reduce the number of constraints.
Such a fact naturally inspires us to propose the following PESA problem.

Remark 2. It is worth noting that this PESA approach does not mean only partial eigenvalues are
assigned and just F , which includes the information of eigenvalues, is separated into two parts, so the
associated right and left eigenvectors are separated simultaneously which naturally gives partial right and
left eigenvectors. If F is in a Jordan form or diagonal, it can be directly separated as

F =

[

Fl

Fr

]

. (11)

If F is an arbitrary matrix, it requires that the structure of Fr and Fl has a common Jordan form with
F after some similarity transformation.

The subsets of right and left eigenvectors of the (E (ϑ, x) , Ac (ϑ, x)) of the proposed PESA-based
parametric approach are established as

To
T (ϑ, x)Ac (ϑ, x) = FlTo

T (ϑ, x)E (ϑ, x) , (12)

Ac (ϑ, x)Vo (ϑ, x) = E (ϑ, x)Vo (ϑ, x)Fr, (13)

and

To
T (ϑ, x)E (ϑ, x)Vo (ϑ, x) = 0(2n−m)×m, (14)

where TT
o ∈ R(2n−m)×2n, Vo ∈ R2n×m, Fl ∈ R(2n−m)×(2n−m) and Fr ∈ Rm×m.

Remark 3. The prevailing approach that assigns the entire set of generalized eigenvectors in [22] surely
holds the relation (10) between right and left eigenvector matrices since the approach deals with the same
F and TT

g = V −1
g . However, the proposed PESA approach has a new relation (14) since F is partitioned

into two parts, and the products of the partial right and left eigenvector matrices equal zero.

Remark 4. In fact, it is difficult to satisfy a large number of complicated constraints (10) in practical
systems by the normalized pair of right and left eigenvector matrices. Thus, the idea of PESA is proposed
and provides less computational load to make it easier to be utilized than the prevailing approach that
assigns the entire set of generalized eigenvectors. If the full eigenvectors assignment is utilized, the con-
straint needs to satisfy (10) and it includes 2n× 2n equations in this condition. However, the constraint
(14) of the proposed PESA approach only needs to satisfy (2n−m)m equations, which greatly reduces
the number of constraint equations and is more numerically economical and efficient.

In order to unfold the following analysis, some transformations about the partial set of left and right
generalized eigenvectors in (12) and (13) are introduced. In order to simplify the analysis, the partial left
closed-loop eigenvector matrix is rewritten as

TT
o (ϑ, x) =

[

TT
o0 (ϑ, x) TT

o1 (ϑ, x)
]

, (15)

where TT
o0 ∈ R(2n−m)×n and TT

o1 ∈ R(2n−m)×n. Then Eq. (12) is rewritten as

[

TT
o0 (ϑ, x) TT

o1 (ϑ, x)
]

Ac (ϑ, x) = Fl

[

TT
o0 (ϑ, x) TT

o1 (ϑ, x)
]

E (ϑ, x) . (16)
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Substituting (7a) and (7b) into the above equation, it follows that

Fl
2TT (ϑ, x)A2 (ϑ, x) + FlT

T (ϑ, x)Ac1 (ϑ, x) + TT (ϑ, x)Ac0 (ϑ, x) = 0, (17)

where

TT
o1 (ϑ, x) = TT (ϑ, x) , (18a)

TT
o0 (ϑ, x) = FlT

T (ϑ, x)A2 (ϑ, x) + TT (ϑ, x)Ac1 (ϑ, x) . (18b)

And the partial right closed-loop eigenvector matrix is also rewritten as

Vo (ϑ, x) =

[

Vo0

Vo1

]

, (19)

where Vo0 ∈ Rn×m and Vo1 ∈ Rn×m. Then Eq. (13) is rewritten as

Ac (ϑ, x)

[

Vo0 (ϑ, x)

Vo1 (ϑ, x)

]

= E (ϑ, x)

[

Vo0 (ϑ, x)

Vo1 (ϑ, x)

]

Fr. (20)

Substituting (7a) and (7b) into the above equation, it follows that

A2 (ϑ, x)V (ϑ, x)F 2
r +Ac1 (ϑ, x)V (ϑ, x)Fr +Ac0 (ϑ, x)V (ϑ, x) = 0, (21)

where

Vo0 (ϑ, x) = V (ϑ, x) , (22a)

Vo1 (ϑ, x) = V (ϑ, x)Fr. (22b)

Problem 1. Consider the system described by (1a)–(1c) under Assumptions 1 and 2. For two matrices
Fr = Rm×m and Fl = R(2n−m)×(2n−m), find all the matrices K0 (ϑ, z, ż) ∈ Rr×m0 ,K1 (ϑ, z, ż) ∈ Rr×m1

and all the matrices To ∈ R2n×(2n−m) and Vo (ϑ, x) ∈ R2n×m satisfying (17), (21), and, meanwhile,
meeting the constraint (14).

4 Parametric solution

Consider that there exist a pair of polynomial matrices






















N (ϑ, x, s) =

ωr
∑

i=0

Ni (ϑ, x) s
i,

D (ϑ, x, s) =

ωr
∑

i=0

Di (ϑ, x) s
i,

(23)

which satisfy the following time-varying right coprime factorization:
[

s2A2 (ϑ, x) + sA1 (ϑ, x) +A0 (ϑ, x)
]−1

B (ϑ, x) = N (ϑ, x, s)D−1 (ϑ, x, s) , (24)

where N (ϑ, x, s) ∈ Rn×r [s], D (ϑ, x, s) ∈ Rr×r [s], and ωr = max{deg (dij (ϑ, x, s)) , i = 1, 2, . . . , r, j =
1, 2, . . . , r, } when D (ϑ, x, s) = [dij (ϑ, x, s)]r×r.

Similarly, there exist polynomial matrices:


































H (ϑ, x, s) =

ωl
∑

i=0

Hi (ϑ, x) s
i,

L (ϑ, x, s) =

[

L0 (ϑ, x, s)

L1 (ϑ, x, s)

]

=









ωl
∑

i=0

L0i (ϑ, x) s
i

ωl
∑

i=0

L1i (ϑ, x) s
i









,

(25)

which satisfy the time-varying right coprime factorization:
[

s2AT
2 (ϑ, x) + sAT

1 (ϑ, x) +AT
0 (ϑ, x)

]−1
[

CT
0 (ϑ, x) sCT

1 (ϑ, x)
]

= H (ϑ, x, s)L−1 (ϑ, x, s) , (26)

where H (ϑ, x, s) ∈ Rn×m [s], L (ϑ, x, s) ∈ Rm×m [s], L0 (ϑ, x, s) ∈ Rm0×m [s], L1 (ϑ, x, s) ∈ Rm1×m [s]
and ωl = max{deg (lij (ϑ, x, s)) , i = 1, 2, . . . , r, j = 1, 2, . . . , r} when L (ϑ, x, s) = [lij (ϑ, x, s)]m×m.
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4.1 Case of Fl and Fr being arbitrary

With the above preparation, the general solution to Problem 1 in terms of the above polynomial matrices
N (ϑ, x, s), D (ϑ, x, s), H (ϑ, x, s) and L (ϑ, x, s) is presented.

Theorem 1. Let N (ϑ, x, s) and D (ϑ, x, s) be a couple of right coprime polynomial matrices given by
(24), and H (ϑ, x, s) and L (ϑ, x, s) be a couple of right coprime polynomial matrices given by (26). Then
all the solutions to Problem 1 can be stressed as follows.

(1) Problem 1 has a solution if and only if there exist two matrices Zl ∈ Rm×(2n−m) and Zr ∈ Rr×m

satisfying

[

I (Fl)
T · · · (Fωl

l )T
]

Θ(Zl, Zr)















I

Fr

...

Fωr
r















= 0, (27)

where

Θ (Zl, Zr) = [Θij (Zl, Zr)]ωln×ωrn
, (28)

with

Θij (Zl, Zr) = FlZ
T
l H

T
i−1 (ϑ, x)A2 (ϑ, x)Nj−1 (ϑ, x)Zr

+ ZT
l H

T
i−1 (ϑ, x)A1 (ϑ, x)Nj−1 (ϑ, x)Zr

− ZT
l L

T
1i−1 (ϑ, x)C1 (ϑ, x)Nj−1 (ϑ, x)Zr

+ ZT
l H

T
i−1 (ϑ, x)A2 (ϑ, x)Nj−1 (ϑ, x)ZrFr,

i = 1, 2, . . . , ωl + 1, j = 1, 2, . . . , ωr + 1. (29)

(2) Under the premise of the above solution, the partial left and right eigenvector matrices To and Vo

are expressed as

To =

[

To0

To1

]

=













AT
2 (ϑ, x)T (Zl, Fl)F

T
l

+AT
1 (ϑ, x)T (Zl, Fl)

−CT
1 (ϑ, x)Wl1 (Zl, Fl)

T (Zl, Fl)













, (30)

and

Vo =

[

Vo0

Vo1

]

=

[

V (Zr, Fr)

V (Zr, Fr)Fr

]

, (31)

where














































V (Zr, Fr) =

ωr
∑

i=0

Ni (ϑ, x)ZrF
i
r ,

T (Zl, Fl) =

ωl
∑

i=0

Hi (ϑ, x)ZlF
i
l ,

Wl1 (Zl, Fl) =

ωl
∑

i=0

L1i (ϑ, x)ZlF
i
l .

(32)

(3) Thus, the gain matrices for the output feedback controller are parameterized as either

K (ϑ, x) = Wr (Zr, Fr) (C (ϑ, x)Vo (Zr, Fr))
−1

(33)

or

TT (Zl, Fl)B (ϑ, x)K (ϑ, x) = WT
l (Zl, Fl) , (34)

where

K (ϑ, x) =
[

K0 (ϑ, x) K1 (ϑ, x)
]

, (35)
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C (ϑ, x) =

[

C0 (ϑ, x) 0

0 C1 (ϑ, x)

]

, (36)

WT
l (Zl, Fl) =

[

WT
l0 (Zl, Fl) WT

l1 (Zl, Fl)
]

, (37)























Wr (Zr, Fr) =

ωr
∑

i=0

Di (ϑ, x)ZrF
i
r ,

Wl0 (Zl, Fl) =

ωl
∑

i=0

L0i (ϑ, x)ZlF
i
l .

(38)

Remark 5. Even though both Eqs. (33) and (34) can be utilized to obtain the gain matrices and they
have a common solution, Eq. (33) is simpler and more direct. In addition, Eq. (34) can be turned into

K(ϑ, x) = ((TTB)
T
TTB)−1(TTB)TWT

l if (TTB)
T
TTB has a full rank.

Proof. The sketch of the proof can be stressed through the following steps.
• Obtain the second-order generalized Sylvester equations by (17) and (21), and then the parametric

expressions of (32) and (38) can be derived.
• Under the premise parametric expressions of V (Zr, Fr), Wr (Zr, Fr), T (Zl, Fl), Wl0 (Zl, Fl) and

Wl1 (Zl, Fl), the condition (27) is proven.
• Derive all the corresponding parameterized gain matrices and prove that both the two expressions

(33) and (34) are common.
Step 1. Obtain the second-order generalized Sylvester equations and related parametric expressions.
Substituting (5a) and (5b) into (17) and (21), it follows that

Fl
2TT (ϑ, x)A2 (ϑ, x) + FlT

T (ϑ, x)A1 (ϑ, x) + TT (ϑ, x)A0 (ϑ, x)

= TT (ϑ, x)B (ϑ, x)K0 (ϑ, x)C0 (ϑ, x) + FlT
T (ϑ, x)B (ϑ, x)K1 (ϑ, x)C1 (ϑ, x) ,

(39)

and
A2 (ϑ, x)V (ϑ, x)F 2

r +A1 (ϑ, x)V (ϑ, x)Fr +A0 (ϑ, x)V (ϑ, x)

= B (ϑ, x)K0 (ϑ, x)C0 (ϑ, x) V (ϑ, x) +B (ϑ, x)K1 (ϑ, x)C1 (ϑ, x)V (ϑ, x)Fr.
(40)

Let
WT

l0 (ϑ, x) = TT (ϑ, x)B (ϑ, x)K0 (ϑ, x) , (41)

WT
l1 (ϑ, x) = TT (ϑ, x)B (ϑ, x)K1 (ϑ, x) , (42)

and
Wr (ϑ, x) = K0 (ϑ, x)C0 (ϑ, x)V (ϑ, x) +K1 (ϑ, x)C1 (ϑ, x) V (ϑ, x)Fr. (43)

With the help of (31), (35) and (36), Eq. (43) is rewritten as

Wr (ϑ, x) = K (ϑ, x)C (ϑ, x)Vo (ϑ, x) , (44)

and then Eqs. (39) and (40) can deduce the following second-order generalized Sylvester equations with
the help of (41), (42) and (44), respectively:

Fl
2TT (ϑ, x)A2 (ϑ, x) + FlT

T (ϑ, x)A1 (ϑ, x) + TT (ϑ, x)A0 (ϑ, x)

= WT
l0 (ϑ, x)C0 (ϑ, x) + FlW

T
l1 (ϑ, x)C1 (ϑ, x) , (45)

and
A2 (ϑ, x) V (ϑ, x)F 2

r +A1 (ϑ, x)V (ϑ, x)Fr +A0 (ϑ, x)V (ϑ, x) = B (ϑ, x)WT
r (ϑ, x) . (46)

Thus, the related solutions to these second-order generalized Sylvester equations are obtained as (32) and
(38) by utilizing the well established solutions in [30].

Step 2. Prove the condition (27).
Throughout (18a) and (18b), the definitions of Ac1 in (5b) and Wl1 in (42), Eq. (30) can be easily

obtained. Furthermore, Eq. (31) can be directly obtained by (22a) and (22b).
Substituting (7a), (7b), (30) and (31) into (14), the following formula can be obtained:

FlT
T (Zl, Fl)A2 (ϑ, x)V (ϑ, x) + TT (ϑ, x)A1 (ϑ, x)V (ϑ, x)
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−WT
l1 (Zl, Fl)C1 (ϑ, x)V (ϑ, x) + TT (Zl, Fl)A2 (ϑ, x)V (ϑ, x)Fr = 0. (47)

With the help of (32) and (38), the above equation can be expressed as

Fl

(

ωl
∑

i=0

(

F i
l

)T
ZT
l H

T
i (ϑ, x)

)

A2 (ϑ, x)





ωr
∑

j=0

Nj (ϑ, x)ZrF
j
r





+

(

ωl
∑

i=0

(

F i
l

)T
ZT
l H

T
i (ϑ, x)

)

A1 (ϑ, x)





ωr
∑

j=0

Nj (ϑ, x)ZrF
j
r





−

(

ωl
∑

i=0

(

F i
l

)T
ZT
l L

T
1i (ϑ, x)

)

C1 (ϑ, x)





ωr
∑

j=0

Nj (ϑ, x)ZrF
j
r





+

(

ωl
∑

i=0

(

F i
l

)T
ZT
l H

T
i (ϑ, x)

)

A2 (ϑ, x)





ωr
∑

j=0

Nj (ϑ, x)ZrF
j
r



Fr = 0. (48)

As a consequence, this equation can be directly rewritten in the form of (27).
Step 3. Derive all the corresponding parameterized gain matrices.
Substituting (41) and (42) into (37) gives

WT
l (Zl, Fl) = TT (ϑ, x)B (ϑ, x)K (ϑ, x) . (49)

Under the premise steps, the gain matrices can be easily derived by (44) and (49), respectively. How-

ever, TTB is not a square matrix, so both sides of (49) are multiplied by (TT (Zl, Fl)B (ϑ, x))
T

and

post-multiplied by the inverse of ((TTB)
T
TTB)−1 to obtain K (ϑ, x) = ((TTB)

T
TTB)−1(TTB)TWT

l if

(TTB)
T
TTB has a full rank.

With the help of (43) and (49), we can obtain that Eqs. (33) and (34) have a common solution if and
only if the following condition holds:

TT (ϑ, x)B (ϑ, x)Wr (ϑ, x) = TTBKCVo = WT
l (ϑ, x)C (ϑ, x)Vo (ϑ, x) . (50)

In order to prove (50), we need the following preparations.
First of all, substituting (5b) and (42) into (18b), it follows that

TT
o0 (ϑ, x) = FlT

T (ϑ, x)A2 (ϑ, x) + TT (ϑ, x)Ac1 (ϑ, x)

= FlT
T (ϑ, x)A2 (ϑ, x) + TT (ϑ, x) (A1 (ϑ, x)−B (ϑ, x)K1 (ϑ, x)C1 (ϑ, x))

= FlT
T (ϑ, x)A2 (ϑ, x) + TT (ϑ, x)A1 (ϑ, x)− TT (ϑ, x)B (ϑ, x)K1 (ϑ, x)C1 (ϑ, x)

= FlT
T (ϑ, x)A2 (ϑ, x) + TT (ϑ, x)A1 (ϑ, x)−WT

l1 (ϑ, x)C1 (ϑ, x) , (51)

and the above equation gives

TT (ϑ, x)A1 (ϑ, x) = WT
l1 (ϑ, x)C1 (ϑ, x) + TT

o0 (ϑ, x)− FlT
T (ϑ, x)A2 (ϑ, x) . (52)

Then substituting (5a), (18b) and (41) into (17) gives

0 = Fl
2TT (ϑ, x)A2 (ϑ, x) + FlT

T (ϑ, x)Ac1 (ϑ, x) + TT (ϑ, x)Ac0 (ϑ, x)

= TT (ϑ, x) (A0 (ϑ, x)−B (ϑ, x)K0 (ϑ, x)C0 (ϑ, x))

+ Fl

(

FlT
T (ϑ, x)A2 (ϑ, x) + TT (ϑ, x)Ac1 (ϑ, x)

)

= TT (ϑ, x) (A0 (ϑ, x)−B (ϑ, x)K0 (ϑ, x)C0 (ϑ, x)) + FlT
T
o0 (ϑ, x)

= TT (ϑ, x)A0 (ϑ, x)− TT (ϑ, x)B (ϑ, x)K0 (ϑ, x)C0 (ϑ, x) + FlT
T
o0 (ϑ, x)

= TT (ϑ, x)A0 (ϑ, x)−WT
l0 (ϑ, x)C0 (ϑ, x) + FlT

T
o0 (ϑ, x) , (53)

and the above equation gives

TT (ϑ, x)A0 (ϑ, x) = WT
l0 (ϑ, x)C0 (ϑ, x)− FlT

T
o0 (ϑ, x) . (54)
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In addition, substituting (15), (18b) and (31) into (14) gives

0 = To
T (ϑ, x)E (ϑ, x)Vo (ϑ, x)

=
[

TT
o0 (ϑ, x) TT

o1 (ϑ, x)
]

[

In 0

0 A2 (ϑ, x)

][

V (ϑ, x)

V (ϑ, x)Fr

]

= TT
o1 (ϑ, x)A2 (ϑ, x)V (ϑ, x)Fr + TT

o0 (ϑ, x) V (ϑ, x) . (55)

Finally, combining (46), (52), (54) and (55), it follows that

TTBWr = TT
(

A2V F 2
r +A1V Fr +A0V

)

= TTA2V F 2
r + TTA1V Fr + TTA0V

= TTA2V F 2
r +

(

WT
l1C1 + TT

o0 − FlT
TA2

)

V Fr +
(

WT
l0C0 − FlT

T
o0

)

V

= TT
o1A2V F 2

r +WT
l1C1V Fr + TT

o0V Fr − FlT
T
o1A2V Fr +WT

l0C0V − FlT
T
o0V

=
(

TT
o1A2V Fr + TT

o0V
)

Fr − Fl

(

TT
o1A2V Fr + TT

o0V
)

+
[

WT
l0 WT

l1

]

[

C0 0

0 C1

] [

V

V Fr

]

= WT
l CVo. (56)

4.2 Case of Fl and Fr being diagonal

In many practical scenarios, F is usually taken as a diagonal form and it follows that

Fl = diag (s1, s2, . . . , s2n−m) , (57)

Fr = diag (s1, s2, . . . , sm) , (58)

where s1, s2, . . . , s2n ∈ C− are a group of self-conjugate complex poles. Thus, the solution of the second-
order generalized Sylvester equation (45) is expressed as

{

T = [ t1 t2 · · · t2n−m ],

ti = H (ϑ, x, si) zl,i, i = 1, 2, . . . , 2n−m,
(59)

and






















Wl =

[

Wl0

Wl1

]

=

[

ωl0,1 ωl0,2 · · · ωl0,2n−m

ωl1,1 ωl1,2 · · · ωl1,2n−m

]

,

ωl0,i = L0 (ϑ, x, si) zl,i, i = 1, 2, . . . , 2n−m,

ωl1,i = L1 (ϑ, x, si) zl,i, i = 1, 2, . . . , 2n−m.

(60)

Similarly, the solution of the second-order generalized Sylvester equation (46) gives

{

V = [ v2n−m+1 v2n−m+2 · · · v2n ],

v2n−m+j = N (ϑ, x, sj) zr,j, j = 1, 2, . . . ,m,
(61)

and
{

Wr = [ ωr,2n−m+1 ωr,2n−m+2 · · · ωr,2n−m
],

ωr,2n−m+j = D (ϑ, x, sj) zr,j , j = 1, 2, . . . ,m,
(62)

where zl,i ∈ Rm, i = 1, 2, . . . , 2n−m and zr,j ∈ Rr, j = 1, 2, . . . ,m.
With the above preparation, the general solution to Problem 1 in terms of the diagonal matrix F is

presented.

Theorem 2. Let N (ϑ, x, s) and D (ϑ, x, s) be a couple of right coprime polynomial matrices given by
(24), and H (ϑ, x, s) and L (ϑ, x, s) be a couple of right coprime polynomial matrices given by (26). Then
all the solutions to Problem 1 with diagonal matrix F can be stressed as follows.
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(1) Problem 1 has a solution if and only if there exist two parameter vectors zl,i ∈ Rm, i = 1, 2, . . . , 2n−
m and zr,j ∈ Rr, j = 1, 2, . . . ,m satisfying

siz
T
l,iH

T (ϑ, x, si)A2 (ϑ, x)N (ϑ, x, sj) zr,j

+ zTl,iH
T (ϑ, x, si)A1 (ϑ, x)N (ϑ, x, sj) zr,j

− zTl,iL
T
1 (ϑ, x, si)C1 (ϑ, x)N (ϑ, x, sj) zr,j

+ zTl,iH
T (ϑ, x, si)A2 (ϑ, x)N (ϑ, x, sj) zr,js2n−m+j = 0,

i = 1, 2, . . . , 2n−m; j = 1, 2, . . . ,m. (63)

(2) Under the premise of the above solution, the partial left and right eigenvector matrices To and Vo

are expressed as

Toi =













AT
2 (ϑ, x)H (ϑ, x, si) zl,isi

+AT
1 (ϑ, x)H (ϑ, x, si) zl,i

−CT
1 (ϑ, x)L1 (ϑ, x, si) zl,i

H (ϑ, x, si) zl,i













, i = 1, 2, . . . , 2n−m, (64)

and

Voj =

[

N (ϑ, x, sj) zr,j

N (ϑ, x, sj) zr,jsj

]

, j = 1, 2, . . . ,m. (65)

In addition, the gain matrices for the output feedback controller are parameterized as either (33) or (34).

Proof. The matrices in (59)–(62) can be directly obtained with the diagonal form of matrices Fl in (57)
and Fr in (58). The results are easy to prove and similar with Theorem 1. For ease of presentation, this
process is dropped here.

4.3 General procedure

Based on the above parametric solution with the condition of Fl and Fr being arbitrary or diagonal, a
general procedure for the proposed PESA approach can be presented as follows.

Step 1. Specify Fl and Fr according to the closed-loop stability and performance requirements which
is similar to the desired partitioned closed-loop eigenvalue matrix.

Step 2. Obtain the solution of two pairs of right coprime factorization N (ϑ, x, s), D (ϑ, x, s) and
H (ϑ, x, s), L (ϑ, x, s) by (24) and (26), respectively.

Step 3. Obtain the solution of To and Vo by (30) and (31) with the case of Fl and Fr being arbitrary
or by (64) and (65) with the case of Fl and Fr being diagonal.

Step 4. Solve the constraint (14) by (27) or (63) to obtain a set of numerical Zr and Zl. Compute the
output feedback gain matrices through the formula (33) or (34).

5 Examples

5.1 Numerical example

A numerical example in the form of (1a)–(1c) is presented here to verify the proposed PESA approach:

A2 (ϑ, z, ż) = B (ϑ, z, ż) = C0 (ϑ, z, ż) = I2,

A1 (ϑ, z, ż) =

[

0 −2

2 0

]

, A0 (ϑ, z, ż) =

[

1 z2

−1− z1 2z2 − ϑ

]

, C1 (ϑ, z, ż) =
[

1 0
]

,

where ϑ = sin t.
The time-varying right coprime factorization (24) and (26) can be deduced with the above system

matrices as














N (ϑ, s) = I2,

D (ϑ, s) =

[

s2+1 −2s+ z2

2s− z1 − 1 s2 + 2z2 − ϑ

]

,
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and






































H (ϑ, s) =

[

1 0 0

0 1 0

]

,

L (ϑ, s) =

[

L0 (ϑ, s)

L1 (ϑ, s)

]

=









s2 + 1 2s− z1 − 1 −s

−2s+ z2 s2 + 2z2 − ϑ 0

0 0 1









.

Let

zr =

[

zr,11 zr,12 zr,13

zr,21 zr,22 zr,23

]

, zl =









zl,1

zl,2

zl,3









,

Fr = diag (sr1, sr2, sr3) , Fl = sl1,

where sri = −i, i = 1, 2, 3 and sl1 = −4. Then the condition (14) can be expressed as









zr,11(2zl,2 − zl,3 + sl1zl,1)− zr,21(2zl,1 − sl1zl,2) + sr1zl,1zr,11 + sr1zl,2zr,21

zr,12(2zl,2 − zl,3 + sl1zl,1)− zr,22(2zl,1 − sl1zl,2) + sr2zl,1zr,12 + sr2zl,2zr,22

zr,13(2zl,2 − zl,3 + sl1zl,1)− zr,23(2zl,1 − sl1zl,2) + sr3zl,1zr,13 + sr3zl,2zr,23









= 0,

which has the following solutions:






zl,2 =
2

sl1
zl,1,

zl,3 = 2zl,2 + sl1zl,1 − 1,

and










































zr,11 = −sr1zl,2,

zr,21 = 1 + sr1zl,1,

zr,12 = −sr2zl,2,

zr,22 = 1 + sr2zl,1,

zr,13 = −sr3zl,2,

zr,23 = 1 + sr3zl,1.

If the entire set of the left and right generalized eigenvectors scheme is utilized, this constraint needs
to solve 16 equations while the proposed PESA scheme only needs to solve the above 3 equations.
Particularly, if we choose zl,1 = 1 and a specific solution of the above equation can be obtained.

Thus, it follows that

T =

[

1

− 1
2

]

, To =













−1

0

1

− 1
2













, V =

[

− 1
2 −1 − 3

2

0 −1 −2

]

, V0 =













− 1
2 −1 − 3

2

0 −1 −2
1
2 2 9

2

0 2 6













,

Wr =

[

−1 −z2 − 9 −2z2 − 27
z1
2 + 3

2 ϑ+ z1 − 2z2 + 1 2ϑ+ 3z1
2 − 4z2 −

15
2

]

, Wl =









z1+11
2
ϑ
2

−4









.

Then the gain matrices can be derived:

K0 =

[

−8 z2 − 3

−z1 − 11 2z2 − ϑ− 6

]

, K1 =

[

−10

−8

]

,
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and the corresponding closed-loop system is expressed as

z̈ +Acl
1 ż +Acl

0 z = 0,

where

Acl
1 =

[

10 −2

10 0

]

, Acl
0 =

[

9 3

10 6

]

.

In addition, the closed-loop eigenvalues in the form of (7b) can be checked as

eig

([

0 I2

−Acl
0 −Acl

1

])

= diag(−4,−3,−2,−1).

5.2 An example in spacecraft rendezvous problem

In this subsection, the proposed approach is applied for the control of the spacecraft rendezvous problem,
and a simpler linear equation for the chaser’s relative motion can be derived with a very close chaser and
the target spacecraft [22, 41, 42].









ẍ

ÿ

z̈









=









2kϑ̇
3

2x+ 2ϑ̇ẏ + ϑ̇2x+ ϑ̈y

−kϑ̇
3

2 y − 2ϑ̇ẋ+ ϑ̇2y − ϑ̈x

−kϑ̇
3

2 z









+









ux

uy

uz









, (66)

where x, y and z represent the radial, along-track and out-of-plane components of the position vector
of the chaser satellite, ϑ is the true anomaly, and k is a constant value. In fact, the z subsystem is
independent with x and y subsystems, so this example only considers the x and y subsystems to avoid
complicated process which may distract the reader from the main focus of the proposed PESA approach.

[

ẍ

ÿ

]

=

[

2kϑ̇
3

2x+ 2ϑ̇ẏ + ϑ̇2x+ ϑ̈y

−kϑ̇
3

2 y − 2ϑ̇ẋ+ ϑ̇2y − ϑ̈x

]

+

[

ux

uy

]

. (67)

The angular velocity ϑ̇ and acceleration of target spacecraft ϑ̈ in (67) are represented by

ϑ̇ =

√

µ (1 + e cosϑ)

r3t
(68)

and

ϑ̈ =
−2µe sinϑ

r3t
, (69)

respectively, e = 0.73074 is the eccentricity, and µ = 3.986× 1014 m3/s2 is the gravitational parameter.
The constant k in (67) is chosen as 2.267× 10−2 /s1/2, and all the model parameters are frequently used
in [22,41,42]. Moreover, rt in (69) is the vector from the center of gravity to the target spacecraft which
is described as

rt =
a
(

1− e2
)

1 + e cosϑ
, (70)

where a = 2.4616× 107 m.
The initial values of ϑ̇ and ϑ̈ are both 0.8, and the related relative position and relative velocity are

initialized as x(0) = y(0) = 50 m, ẋ(0) = 3 m/s and ẏ(0) = −3 m/s. With the above model (67) and
related parameters in it, we design our parametric control scheme.

Let
z = [ x y ]T.

The x and y subsystem models in the condition of (1a)–(1c) are expressed as

A2 (ϑ, ż, z) = B (ϑ, ż, z) = I2,
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A1 (ϑ, q̇, q) =

[

0 −2ϑ̇

2ϑ̇ 0

]

, A0 (ϑ, q̇, q) =

[

−2kϑ̇
3

2 − ϑ̇2 −ϑ̈

ϑ̈ kϑ̇
3

2 − ϑ̇2

]

,

C1 (ϑ, ż, z) =
[

1 0
]

, C0 (ϑ, ż, z) = I2.

The time-varying right coprime factorization (24) and (26) can be deduced with the above system
matrices as















N (ϑ, s) = I2,

D (ϑ, s) =

[

s2 − ϑ̇2 − 2kϑ̇
3

2 −2ϑ̇s− ϑ̈

2ϑ̇s+ ϑ̈ s2 − ϑ̇2 + kϑ̇
3

2

]

,

and






































H (ϑ, s) =

[

1 0 0

0 1 0

]

,

L (ϑ, s) =

[

L0 (ϑ, s)

L1 (ϑ, s)

]

=









s2 − ϑ̇2 − 2kϑ̇
3

2 2ϑ̇s+ ϑ̈ −s

−2ϑ̇s− ϑ̈ s2 − ϑ̇2 + kϑ̇
3

2 0

0 0 1









.

Choose

zr =

[

zr,11 zr,12 zr,13

zr,21 zr,22 zr,23

]

, zl =









zl,1

zl,2

zl,3









,

and let
Fr = diag (sr1, sr2, sr3) , Fl = sl1,

where sri = −i, i = 0.1, 0.2, 0.3 and sl1 = −0.4. Then the condition (14) can be expressed as











zr,11(2ϑ̇zl,2 − zl,3 + sl1zl,1)− zr,21(2ϑ̇zl,1 − sl1zl,2) + sr1zl,1zr,11 + sr1zl,2zr,21

zr,12(2ϑ̇zl,2 − zl,3 + sl1zl,1)− zr,22(2ϑ̇zl,1 − sl1zl,2) + sr2zl,1zr,12 + sr2zl,2zr,22

zr,13(2ϑ̇zl,2 − zl,3 + sl1zl,1)− zr,23(2ϑ̇zl,1 − sl1zl,2) + sr3zl,1zr,13 + sr3zl,2zr,23











= 0,

which has the following solution:






zl,2 =
1

sl1
2ϑ̇zl,1,

zl,3 = 2ϑ̇zl,2 + sl1zl,1 − 3,

and






































zr,11 = −sr1zl,2,

zr,21 = 3 + sr1zl,1,

zr,12 = −sr2zl,2,

zr,22 = 3 + sr2zl,1,

zr,13 = −sr3zl,2,

zr,23 = 3 + sr3zl,1.

Particularly, if we choose zl,1 = 1 and a specific solution of the above equation could be obtained.
Thus, it follows that

T =

[

1

−5ϑ̇

]

, To =













3

0

1

−5ϑ̇













, V =

[

− ϑ̇
2 −ϑ̇ − 3ϑ̇

2
29
10

14
5

27
10

]

, V0 =













− ϑ̇
2 −ϑ̇ − 3ϑ̇

2
29
10

14
5

27
10

ϑ̇
20

ϑ̇
5

9ϑ̇
20

− 29
100 − 14

25 − 81
100













,
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Figure 1 (Color online) Simulation result of relative position x, relative velocity ẋ, and control signals ux.
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Figure 2 (Color online) Simulation result of relative position y, relative velocity ẏ, and control signals uy .

Wr =

[

29ϑ̇
50

− 29ϑ̈
10

+ ϑ̇
2
(2kϑ̇

3

2 + ϑ̇2 − 1

100
) − 14ϑ̈

5
+ 28ϑ̇

25
+ ϑ̇(2kϑ̇

3

2 + ϑ̇2 − 1

25
) − 27ϑ̈

10
+ 81ϑ̇

50
+ 3ϑ̇

2
(2kϑ̇

3

2 + ϑ̇2 − 9

100
)

29

10
kϑ̇

3

2 − ϑ̇
2
(ϑ̈ − ϑ̇

5
) − 29ϑ̇2

10
+ 29

1000

14

5
kϑ̇

3

2 − ϑ̇(ϑ̈ − 2

5
ϑ̇) − 14

5
ϑ̇2 + 14

125

27

10
kϑ̇

3

2 − 3ϑ̇
2
(ϑ̈ − 3

5
ϑ̇) − 27ϑ̇2

10
+ 243

1000

]

,

and

Wl =









−5ϑ̇
(

ϑ̈− 4ϑ̇
5

)

− 2kϑ̇
3

2 − 5ϑ̇2 − 6
5

4
5 ϑ̇− ϑ̈− ϑ̇

5

(

kϑ̇
3

2 − ϑ̇2 + 4
25

)

−10ϑ̇2 − 17
5









.

Then the gain matrices can be derived:

K1 =

[

−1

2ϑ̇− 12
25ϑ̇

]

, K0 =

[

−2kϑ̇
3

2 − ϑ̇2 − 327
250 −ϑ̈− ϑ̇

100

ϑ̈− 27
1250ϑ̇

kϑ̇
3

2 − ϑ̇2 − 1
500

]

.

In addition, the closed-loop eigenvalues in the form of (7b) can be checked as diag(−0.4,−0.3,−0.2,−0.1).
Thus, the simulation results of the relative position x, relative velocity ẋ, and control signals ux are

shown in Figure 1, while the relative position y, the relative velocity ẏ, and control signals uy are shown
in Figure 2. It can be observed that both relative positions and velocities quickly converge to zero, which
proves the effectiveness of the proposed PESA approach.

6 Conclusion

Herein, a parametric design PESA approach is proposed for stabilizing a type of quasi-linear second-
order systems by output feedback control. The PESA approach is established by partitioning the desired
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eigenvalue matrix into two parts to separate associated right and left eigenvectors into a subset of the
generalized eigenvectors simultaneously. Then, a parametric controller is established by solving a pair of
second-order generalized Sylvester matrix equations, and a certain form with the desired eigenstructure
can be derived using the established quasi-linear output feedback controller. Thus, the proposed subset
of generalized eigenvectors is numerically economical and easy to use. A simulation example in general
spacecraft rendezvous is provided to verify the numerical economy and high efficiency of the proposed
approach. The limitation of the proposed control approach is that the nonlinear systems are assumed to
be expressed as a quasi-linear form. Besides, it is not applicable to all kinds of nonlinear systems. The
proposed method offers design freedom, which can be further utilized to achieve additional performance
and possible extensions for future research to high-order quasi-linear systems.
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