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Abstract The effectiveness of modeling contextual information has been empirically shown in numer-

ous computer vision tasks. In this paper, we propose a simple yet efficient augmented fully convolutional

network (AugFCN) by aggregating content- and position-based object contexts for semantic segmentation.

Specifically, motivated because each deep feature map is a global, class-wise representation of the input,

we first propose an augmented nonlocal interaction (AugNI) to aggregate the global content-based contexts

through all feature map interactions. Compared to classical position-wise approaches, AugNI is more effi-

cient. Moreover, to eliminate permutation equivariance and maintain translation equivariance, a learnable,

relative position embedding branch is then supportably installed in AugNI to capture the global position-

based contexts. AugFCN is built on a fully convolutional network as the backbone by deploying AugNI before

the segmentation head network. Experimental results on two challenging benchmarks verify that AugFCN

can achieve a competitive 45.38% mIoU (standard mean intersection over union) and 81.9% mIoU on the

ADE20K val set and Cityscapes test set, respectively, with little computational overhead. Additionally, the

results of the joint implementation of AugNI and existing context modeling schemes show that AugFCN

leads to continuous segmentation improvements in state-of-the-art context modeling. We finally achieve a

top performance of 45.43% mIoU on the ADE20K val set and 83.0% mIoU on the Cityscapes test set.
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1 Introduction

Semantic segmentation (SS) aims to assign a unique class label to each pixel of a given image, which
is one of the most fundamental yet challenging topics in computer vision research. Over the years, SS
has been intensively studied and applied to a wide range of potential applications, e.g., computer-aided
diagnosis [1], autonomous driving [2], and augmented reality [3].

Recently, the progressive SS methods have mainly been based on fully convolutional networks (FCNs) [4].
However, because of the fixed, local receptive fields and short-range dependencies, the deep feature maps
of FCN-based methods can only aggregate the local object contexts, which are insufficient for some
complicated scenarios [5–9]. For this reason, extraordinary progress has been made in modeling global
contexts. In general, the existing schemes can be divided into category-I atrous convolution [10] or pool-
ing layer-based methods and category-II self-attention [11] or nonlocal interaction [12]-based methods.
Specifically, for the elementary category-I, global object contexts are passively captured by enlarging ef-
fective receptive fields. One approach is to use atrous convolutions [10] to replace downsampling layers in
the backbone network [13–15] such that the receptive fields can be enlarged while a high resolution of out-
put feature maps is maintained. The other approach is to stack pyramidal atrous convolutions or pooling
layers in the head network [5, 16–19], e.g., PPM in PSPNet [16], ASPP in DeepLab schemes [13, 18, 19],
and MPM in SPNet [5]. However, the category-I methods have the disadvantage of only capturing con-
texts within square regions. In particular, for some slender objects (e.g., “rail track”, “pole group”,
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Figure 1 (Color online) An illustration of context modeling schemes. (a) The position-wise context modeling approach, where

every feature grid is taken into consideration for calculating a global context mapping matrix. (b) Our proposed context modeling

scheme — augmented nonlocal interaction (AugNI), where object contexts are obtained by class-wise representation interactions.

In AugNI, the problem of large computational overhead of the position-wise context modeling approach can be alleviated. Just for

simplicity, we do not distinguish between content-based and position-based contexts in this figure. The white dashed frames in the

last column highlight the improved areas predicted by our model. Best viewed in color.

and “traffic sign” in Cityscapes [20] dataset), methods in the category-I reservoir may introduce ir-
relevant and even noisy surrounding information. The other obvious disadvantage is that modules based
on atrous convolutions and pooling layers are inherently sub-sampling-based methods, which may cause
detailed spatial information loss. For the progressive category-II, as illustrated in Figure 1(a), global
object contexts are actively aggregated through long-range dependencies by position-wise feature inter-
actions [8, 9, 21–27]. However, despite the elementary success in SS, because a global context mapping
must be computed for every feature position, self-attention and nonlocal operation virtually bring much
computational overhead in time and space [21, 23, 28]. Moreover, self-attention and nonlocal operation
have another noteworthy disadvantage of being only content-based methods [11, 12] without having rel-
ative position information, which makes them permutation equivariant [29–31] and thus ineffective on
highly structured data (e.g., music, images, and videos), as empirically shown in numerous studies [32–34].

At this point, context modeling for SS should be further developed. We start with a novel thought
that is also our key motivation. For context modeling, is establishing a global context mapping really
necessary for every feature position? To answer such a question, we start with an interpretation of the
deep feature maps involved in SS. Suppose we have a set of deep feature maps X ∈ R

h×w×c obtained
from a trained FCN, where h, w, and c denote the height, width, and channel dimension, respectively.
From the concept of “semantics” in vision tasks, each feature map xi ∈ R

h×w can be considered a global,
class-wise representation of the input image and does not correspond to any position-wise matter; i.e., all
feature positions within xi mainly respond to one category of objects [35–37]. Under this consideration,
if we could use the entire xi to model the global object contexts, as illustrated in Figure 1(b), then
establishing a global context mapping for every feature position can be avoided. Therefore, the problem
of the large computational overhead of the position-wise context modeling schemes (e.g., self-attention [11]
and nonlocal operation [12]) can be alleviated. Moreover, contexts obtained in such a concise way also
meet the definition of global object contexts, i.e., relations between different objects and between objects
and the background.

In this paper, as illustrated in Figure 2, we propose a simple yet efficient global context modeling
scheme, termed augmented nonlocal interaction (AugNI), to aggregate content- and position-based object
contexts. Specifically, motivated by each feature map being a global, class-wise image representation,
we first use AugNI to compute a semantic affinity matrix (SAM) through the standard dot-product
operation based on all feature maps, where each entry in the SAM represents similarities between one
class-wise representation and all other class-wise representations. Compared to the classical position-wise
context mapping methods in self-attention and nonlocal operation, the SAM has higher efficiency and less
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Figure 2 (Color online) An illustration of our proposed AugNI. The input is a set of deep feature maps X ∈ R
h×w×c, and output

Õ ∈ R
h×w×c has the same scale of the input but with more contextual information. The entire feature maps (i.e., Qfea, Kfea,

and Vfea) are used for modeling the global object contexts within AugNI, rather than establishing a global context mapping for

every feature position. Therefore, compared to the classical nonlocal operation [12], our AugNI has less computational overhead

and contains the beneficial relative position information, which makes AugNI suitable for images.

computational overhead (see Subsection 3.2). Then, we weighted the sum of each entry in the SAM for the
corresponding class-wise representation to aggregate the content based on global contexts. Furthermore,
to eliminate the permutation equivariance and maintain the translation equivariance of AugNI, a learnable
relative position embedding branch is paralleled and installed in the SAM to capture the global, position-
based object contexts. Finally, the AugNI output is the summation of an identity mapping branch from
the input and a set of processed feature maps containing sufficient contexts. AugNI has the same spirit
of self-attention and nonlocal operation, but it is more suited for SS tasks (see Subsection 4.3).

To demonstrate its superiority, we deployed AugNI on a fully convolutional network as the backbone,
named augmented FCN (AugFCN), for SS tasks in an end-to-end training fashion. The experimental
results show that AugFCN with ResNet-101 [38] can achieve a competitive performance on two challenging
benchmarks of 45.38% on the ADE20K [39] val set and 81.9% on the Cityscapes [20] test set. In terms
of model efficiency, compared to the standard self-attention [11] and nonlocal operation [12], AugFCN
with ResNet-50 [38] can reduce at most 48.0 M parameters and 3.15 GFLOPs (see Subsection 4.3.2).
Moreover, we also validated the effectiveness of the joint implementation of AugFCN and the existing
context modeling schemes. The results show that AugFCN can lead to continuous improvements in state-
of-the-art context modeling methods. We finally achieve a top performance of 45.43% on the ADE20K
val set and 83.0% on the Cityscapes test set.

The main contributions of this work are summarized as follows.
• We proposed an effective yet efficient context modeling scheme that can aggregate the content- and

position-based object contexts.
• We demonstrated the effectiveness of AugFCN as well as the joint implementation of AugFCN and

the existing context modeling methods.
• We demonstrated the efficiency of AugFCN on the standard mean intersection over union (mIoU)

with less computational overhead than most existing context modeling methods.
• The experimental results showed that we finally achieved the top performance on two challenging

benchmarks, ADE20K and Cityscapes.

2 Related work

2.1 Semantic segmentation

Semantic segmentation is one of three fundamental tasks (i.e., image classification, object detection,
and semantic segmentation) in the computer vision domain, which has been extensively studied in the
recent past [40, 41]. FCN [4] is a classical approach that uses a fully convolutional network in modern
semantic segmentation systems with a deep artificial neural network (e.g., VGG [42], ResNet [38], and
DenseNet [43]) as its backbone. Most of the subsequent semantic segmentation models [5,8,9,13,17,21,44]
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stand on the shoulders of FCN. A pivotal challenge for semantic segmentation is the resolution reduction
of the deep output feature maps. To maintain a high-resolution for the output feature maps, the existing
methods either use an encoder-decoder architecture [45–49] to gradually fuse low-resolution deep feature
maps with high-resolution shallow ones, e.g., U-Net [48], Encoder-decoder [19], and the De-convolution
Network [49], or they use the traditional convolution architecture, where atrous convolutions [10] are used
in the backbone, e.g., DeepLab schemes [13, 18, 19], CFNet [9], and SPNet [5]. In our work, we also use
the fully convolutional architecture as the backbone. In particular, following [5, 9, 23], we use classical
ResNet [38] with atrous convolutions on block3 and block4 such that the resolution of the output feature
maps is 1/8 of the input.

2.2 Context modeling

The effectiveness and importance of capturing object contexts have been empirically shown over a wide
range of computer vision tasks [11,12,22,50,51], e.g., onfocus detection [52], object detection [53], and ob-
ject localization [54]. These methods enhance feature contexts by increasing the effective receptive fields.
For semantic segmentation, DeepLab schemes [13,18,19] and PSPNet [16] open a new era for modeling the
global object contexts through a multi-scale feature pyramid. For example, the pyramid pooling module
in PSPNet uses four global pooling layers with different downsampling rates to establish a segmentation
feature pyramid such that four scales of the object contexts can be captured. Afterward, the following
methods, e.g., Dense-ASPP [55], SPNet [5], and CGNet [56], continue to use this framework. This type of
context modeling method is advantageous because the computational overhead is relatively small, but the
captured contexts are limited to the square regions, which are unfriendly to some slender objects [5, 23].
Another mainstream approach to aggregating object contexts is to use the self-attention mechanism [11]
or nonlocal operation [12]. The representative methods are CFNet [9], ANNN [21], DANet [44], and CC-
Net [57]. However, context modeling methods of this type always suffer from the disadvantages of having
a large computational overhead and only considering content-based interactions [29,31,58], which are not
suitable for image data. In our work, we also focus on context modeling and propose an effective yet
efficient context modeling module to aggregate content- and position-based object contexts. Compared
to the previous context modeling methods, our method not only has a higher efficiency but also can
encode the relative position information. Extensive experimental results on two challenging benchmarks
demonstrated its effectiveness on images.

2.3 Attention learning

To make the neural network heed more important regions, the attention mechanism was designed and
has brought benefits to many natural language processing and computer vision tasks. SCA-CNN [59]
and SENet [60] are two inchoate methods for using the channel attention mechanism to enhance model
representation ability. Moreover, SKNet [61] and ResNeSt [62] propose more effective channel attention
mechanisms for computer vision tasks by splitting and combining feature maps. Nonlocal operation [12]
has a similar architecture as self-attention [11], but it is proposed for capturing the focused areas through
a large attention map. In the semantic segmentation domain, DANet [44], ANNN [21], and CFNet [9]
use the self-attention and nonlocal operation to aggregate the global object contexts through position-
wise long-range dependencies. To alleviate the problem of large computational overhead, CCNet [23] was
recently proposed to learn the long-range dependencies with feature positions in the same row and column.
In this work, our implementation is also inspired by the progressive attention learning mechanisms:
efficient attention [35] and Lambda networks [63]. Both of these learning mechanisms aim to improve
attention learning mechanism efficiency. However, in contrast to these two approaches, our proposed
method has different viewpoints, motivations, and application scenarios. By observing the existing deep
feature maps for SS, we treat each deep feature map as a global, class-wise representation and use the
entire feature map to aggregate the global object contexts. Therefore, our method has the advantage of
high efficiency. Furthermore, our method also considers the relative position information and contains a
learnable relative position embedding branch, which has been empirically shown to benefit the semantic
segmentation task.
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3 Our approach

In this section, we show implementation details of the proposed AugFCN for semantic segmentation
by aggregating content- and position-based object contexts. We first revisit the classical position-wise
nonlocal operation1) on images (in Subsection 3.1). Then, the proposed AugNI is introduced (in Sub-
section 3.2). Finally, we introduce AugFCN, which is built on the standard FCN with ResNet as the
backbone, by deploying AugNI on the head network (in Subsection 3.3).

3.1 Revisiting nonlocal interaction

For an input RGB image, we can obtain a set of deep feature maps X ∈ R
h×w×c through a trained FCN,

where h, w, and c denote the height, width, and channel dimension, respectively. The classical nonlocal
operation [12] can be used to actively capture the global object contexts through long-range dependencies
by position-wise feature interactions.

Specifically, the nonlocal operation first uses three linear functions, i.e., fq(·), fk(·), and fv(·), to map
feature maps X into query features Qfea = fq(X) = XWq, key features Kfea = fk(X) = XWk, and
value features Vfea = fv(X) = XWv, respectively. Wq,Wk ∈ R

c×ck , and Wv ∈ R
c×cv are three learnable

linear transformations. Without loss of generality, we assume that ck = cv < c. Then a global context
mapping matrix W ∈ R

hw×hw between Qfea and Kfea can be calculated using the following procedure:

W = softmax
(
(XWq)(XWk)

T
)
, (1)

where each item wpq in W denotes the similarity between the p-th query feature qp
fea ∈ R

1×c and the q-th
key feature k

q
fea ∈ R

1×c. Because every feature position of Qfea and Kfea participates in calculating W ,
we refer to this method as the position-wise interaction (the same thing happens in self-attention [11]).
Softmax(·) is used for feature normalization along each row. On the basis of this similarity, the global
object contexts Y can be obtained through a weighted sum operation with value features Vfea as follows:

Y = W (XWv). (2)

Finally, the output O of the nonlocal operation is an element-wise summation between the input feature
maps X and the processed feature maps with global object contexts Y :

O = X + Y Wo, (3)

where Wo ∈ R
cv×c denotes a 1× 1 convolution layer, which is used to increase the channel dimension of

Y into c.

Multi-head nonlocal. Instead of mapping feature maps X into a uniform space, it has been empir-
ically shown that a more effective approach is to project X into d head subspaces and then concatenate
the global object contexts obtained in each head as the final object contexts [9,11,29,64]. This procedure
can be expressed as follows:

Omn = fc(O1,O2, . . . ,Od)Wmn, (4)

where Omn is the final output of the multi-head nonlocal interaction. fc(·) denotes the feature map
concatenation operation along the channel dimension, and Wmn ∈ R

c×c denotes a learnable linear trans-
formation for feature fusion.

Although nonlocal operations and self-attention have achieved satisfactory success in semantic segmen-
tation [8,9,21,24], they suffer from the apparent disadvantage of a large computational overhead in time
and space. For example, the computational complexity of generating a single context mapping matrix W

(i.e., a single-head nonlocal operation) is O(h2w2). This phenomenon will be worse if the resolution of X
is extremely high (e.g., using atrous convolutions [10] in the backbone network) or if we use a multi-head
nonlocal operation whose computational complexity is as high as O(dh2w2). Another noteworthy disad-
vantage is the nonlocal operation and self-attention being only content-based interactions, which are not
favorable for highly structured image data [23, 29, 31].

1) Because self-attention and nonlocal operation on images are deployed identically, we only introduce the nonlocal operation [12]

for simplicity.
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3.2 AugNI

In this work, as illustrated in Figure 2, we propose an effective yet efficient context modeling scheme for
semantic segmentation, named AugNI, to aggregate content- and position-based object contexts. AugNI
inputs a set of deep feature maps X and outputs a set of enhanced feature maps Õ, which have the same
scale as X but with more contextual and relative position information.

Motivation. From the common concept of “semantics” in the computer vision domain [65, 66], each
feature map xi (derived from a group of deep feature maps X) can be considered a global, class-wise
feature representation of the input image and does not correspond to any position-wise matter; i.e., all
feature positions within xi mainly respond to only one category of objects. In particular, this phenomenon
becomes more pronounced as the depth of the feature map increases [35–37,67]. For example, for the X

of an image with a person riding a bicycle, one feature map may correspond to the “person”, one may
correspond to the “bicycle”, and another one may correspond to the “background”. In addition, recall
that the general meaning of object contexts for semantic segmentation is the relation between different
categories of objects and between foreground objects and the background. Therefore, we can use the
entire feature map (i.e., each class-wise image representation) to calculate object contexts rather than
feature positions, as in the nonlocal operation [12] and self-attention [11]. On the basis of this motivation,
the problem of large computational overhead can be alleviated. Below, we introduce our method in detail.

Base AugNI. AugNI mainly comprises two components: the global content-based and global position-
based object contexts. To satisfy the definition of “similarity” and simplify the calculation procedure,
AugNI first normalizes the key features Kfea into K̃fea through a standard softmax function along each
column. Then, an SAM W̃ ∈ R

ck×cv can be obtained using

W̃ = (K̃fea +E)TVfea = K̃T
fea(XWv)

︸ ︷︷ ︸

content SAM

+ET(XWv)
︸ ︷︷ ︸

position SAM

, (5)

where E ∈ R
h×w×ck denotes a learnable embedding tensor, which is used to encode the relative position

information of each class-wise representation. K̃T
fea(XWv) and ET(XWv) denote the content-based and

position-based SAMs, respectively. Each entry w̃ij in the content-based SAM follows the same definition
as inefficient attention [35] and nonlocal operation [12], which denotes the similarity between the i-th
feature map ki

fea ∈ R
hw×1 inKfea (corresponding to a class-wise representation) and the other j-th feature

map v
j
fea ∈ R

hw×1 in Vfea (corresponding to the other class-wise representations). Conversely, each entry
w̃ij in the position-based SAM denotes the relative position embedding between the i-th learnable position

embedding vector ei ∈ R
hw×1 in E and the other j-th feature map v

j
fea in Vfea. Element-wise summation

between the content-based SAM and position-based SAM forms the final SAM output, which contains
the content- and relative position-based information. On the basis of this information, our global object
contexts can be calculated via

Ỹ = Q̃feaW̃ = Q̃fea

(

K̃T
fea(XWv)

)

︸ ︷︷ ︸

content contexts

+ Q̃fea

(
ET(XWv)

)

︸ ︷︷ ︸

position contexts

, (6)

where Q̃fea is the normalized query features Qfea through a standard softmax function along each row
(for the same reason in calculating K̃fea). Finally, following [11,12], we can obtain the output of AugNI:

Õ = X + Ỹ Wo. (7)

Multi-query AugNI. Inspired by the multi-head [11, 12] mechanism in nonlocal interaction, we
intuitively map X into m head subspaces for AugNI. Among each subspace, the model can learn different
aspects of feature representations [11, 29]. Following [63], we refer to AugNI under this mechanism as
multi-query AugNI. The final object contexts Õmn can be obtained through a feature map concatenation
of output in each head along the channel dimension:

Õmn = fc(Õ1, Õ2, . . . , Õm)Wma, (8)

where Wma ∈ R
c×c denotes a learnable linear transformation for multi-query feature fusion.

Compared to the classical nonlocal operation [12], our AugNI contains beneficial relative position
information [29,63]. AugNI also has another advantage of less computational overhead. For example, the



Zhang D, et al. Sci China Inf Sci April 2023 Vol. 66 142105:7

Input

AugNI

Auxiliary image classification Output

U
p
sa

m
p
le

GAP

Fully convolutional network GAP Global average pooling Conv 1×1 convolution Feature concatenation

8 ×

U
p
sa

m
p
le

Conv

OX
~

Block1
Block2

Block3

Block4

Figure 3 (Color online) An overview of our proposed AugFCN for semantic segmentation. ResNet [38] is used as the backbone,

where atrous convolutions are deployed on both block3 and block4 to maintain a high resolution of the output features maps.

An image first passes through the atrous ResNet-based FCN; then a set of deep feature maps X can be extracted. After that,

our proposed AugNI is implemented for capturing both content- and position-based global object contexts. Besides, two auxiliary

branches for multilabel image classification are respectively added into both stage3 and stage4 of the baskbone to improve the

model semantics ability. Meanwhile, another auxiliary branch based on a global average pooling layer and a 1× 1 convolution layer

followed by an upsampling layer is used to capture the global features as in [9]. Finally, the output Õ of AugNI and the obtained

global features are concatenated along the channel dimension for segmentation map predictions after upsampling.

computational complexity of the nonlocal operation isO(dh2w2) because this operation must compute the
similarity between each pair of feature grids, while the computational complexity of AugNI is only O(mc2v)
because only the similarity between each pair of feature channel is needed. Despite aggregating the global
object contexts differently, AugNI and nonlocal operations have a common key property, i.e., the attention
intensity summation for each class-wise representation and all other class-wise representations is 1, which
represents the normalized feature distribution. Moreover, our AugNI and the channel attention module in
DANet [44] mainly differ in the following two points. (1) The motivation is completely different. AugNI
is based on a novel interpretation of deep feature maps that aims to capture object contexts, while the
channel attention module is based on interdependencies between channel maps and aims to improve the
feature representation of specific semantics. (2) AugNI involves the relative position information, unlike
the channel attention module.

3.3 AugFCN

On the basis of our proposed AugNI, we further present AugFCN for semantic segmentation in an
end-to-end training manner. The overall architecture is illustrated in Figure 3. First, an RGB image
is passed through a standard, fully convolutional network (e.g., ResNet [38] and HRNet [68]) as the
backbone network. Following [5,23,68], to maintain a high resolution of the output feature maps, atrous
convolutions are used on block3 and block4 of the backbone such that the resolution of the output feature
maps is 1/8-th of the input image. Then, a group of deep feature maps X can be generated. Next, we
apply a 3 × 3 convolutional layer to reduce the channel dimension of X into 1024. Then, the proposed
AugNI is implemented. As in [9, 22, 23], the channel dimension within AugNI (i.e., ck and cv) is set to
256 for class-wise feature map interactions.

In addition to the main branch described above, following [5, 9, 16], we add two auxiliary branches for
multilabel image classification in stage3 and stage4 of the backbone (i.e., the “auxiliary image classifica-
tion” branch in Figure 3) to further enrich the feature semantic information. Specifically, the auxiliary
classification branch comprises a global average pooling layer for projecting the feature maps into a vector,
a 1× 1 convolutional layer followed by a ReLU layer for resizing the vector length into 256 and activating
this vector, and another 1 × 1 convolutional layer for resizing the vector length into the class size of
the used dataset. Meanwhile, following [9], we implement another auxiliary branch, which is based on a
global average pooling layer and a 1× 1 convolutional layer followed by an upsampling layer, in stage4 to
capture the global image features. Finally, the output feature maps Õ of AugNI and the obtained global
features are concatenated along the channel dimension for semantic segmentation map predictions after
being upsampled, where a 3 × 3 convolutional layer with a batch normalization layer, a ReLU layer, a
spatial dropout layer with the drop rate of 0.3, and another 3 × 3 convolutional layer are added at the
end of the concatenated feature maps and before the upsampling layer.
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4 Experiments

In what follows, we first introduce two benchmarks and the evaluation metrics (see Subsection 4.1).
Then, we show the experimental implementations in detail (see Subsection 4.2). Next, we give the
comprehensive ablation studies and result comparisons with state-of-the-art methods on the ADE20K
val set (see Subsection 4.3). Finally, we make more result comparisons with state-of-the-art methods on
the Cityscapes test set (see Subsection 4.4).

4.1 Benchmarks and evaluation metrics

To demonstrate the superiority of our AugFCN, experiments are performed on two challenging semantic
segmentation benchmarks: ADE20K [39] and Cityscapes [20].

• ADE20K [39] is a recently proposed and most challenging semantic segmentation benchmark that
contains up to 150 classes of common scenes. This benchmark includes 20k, 2k, and 3k images for the
training set, val set, and test set, respectively.

• Cityscapes [20] is a representative, high-resolution (1024×2048) street scene benchmark of 19 classes
that has 2975, 500, and 1525 pixel-level annotated images for the training set, val set, and test set,
respectively. To make a fair comparison, we only used the finely annotated training images as in [5, 23].

Evaluation metrics. In this work, following the existing segmentation methods [9, 13, 22, 45, 46, 67],
we use mIoU and pixel accuracy (Pixel Acc) as the primary metrics. Furthermore, to compare efficiency,
the parameters (Params) and GFLOPs are also considered.

4.2 Implementation details

Platform. We implemented all experiments in this paper including ablation studies on EncNet [69]
Toolkit2) under the PyTorch [70] framework with 8 NVIDIA TITAN Xp GPUs.

Backbone. Following [5, 9, 23], we used classical ResNet [38] with atrous convolutions [10] as our
backbone, which was pretrained on the ImageNet [71] dataset, as in most of the previous studies [19,44,69].
ResNet-50 and ResNet-101 were used for ablation studies and result comparisons with state-of-the-art
methods, respectively. Moreover, to make a fair comparison with the existing methods on Cityscapes [20],
we also used the strong HRNetV2-48 [68] network as the backbone.

Baseline. The standard FCN [4] model with atrous ResNet [10,38] was selected as our base network.
Additionally, to make a fair comparison, we also added the global average pooling layer, as in [9], to
capture the global image features. We validated the effectiveness of AugFCN on it. Furthermore, we also
demonstrated the superiority of our AugNI method over the existing context modeling methods on the
baseline FCN.

Comparison methods. To demonstrate its superiority, we compare AugNI with the existing context
modeling schemes: PPM [16], ASPP [13], MPM [5], RCC [23], and APNB [21]. Implementing these
methods adopts the default settings of their studies. The details are introduced as follows.

• PPM [16]. A four-level, one feature pyramid is first obtained through the global max pooling layer
with an output spatial size of 1× 1, 2× 2, 3× 3, and 6× 6. Then, a 3× 3 convolution is deployed on each
layer. Finally, the output features are obtained through feature upsampling and concatenation layers.

• ASPP [13]. ASPP first builds a four-level, one feature pyramid through a 1× 1 convolutional layer
and three 3 × 3 atrous convolutional layers [10] under the dilation rate of [6, 12, 18]. Then, the feature
maps of this feature pyramid are concatenated along the channel dimension as the output feature maps.

• MPM [5]. MPM comprises a lightweight pyramid pooling module (with an output spatial size of
12× 12 and 20× 20) and a strip pooling module. The feature maps of the lightweight pyramid pooling
module are first upsampled into the same spatial size as the input and then concatenated with the feature
maps of the strip pooling module. Finally, a 3× 3 convolutional layer is added after the fusion operation.

• RCC [23]. A 2-loop version of RCC attention is adopted in our experiments, where three 1 × 1
convolutional layers are used to generate Q, K, and V feature maps.

• APNB [21]. For APNB, the output spatial size of the pooling layer is set to [1, 3, 6, 8].
Training settings. In the training phase, the batch size was set to 8 for Cityscapes and 16 for

ADE20K. Following [5,9,69], the standard cross-entropy loss was used for model optimization, where the
loss weight of the auxiliary image classification branch was set to 0.2 and the main segmentation branch

2) https://github.com/zhanghang1989/PyTorch-Encoding.
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Table 1 Effectiveness of each component in AugFCN on the val set of ADE20K [39]. “AugNI-c/-p” denotes the content-/position-

based AugNI. “AC” denotes the auxiliary multilabel image classification branch. AugFCN is built on ResNet [38] as the backbone

by deploying AugNI on the head network and has two auxiliary classification losses.

Setting AugNI-c AugNI-p AC mIoU (%) Pixel Acc (%)

Baseline [4] ✗ ✗ ✗ 37.63 77.60

AugFCN ✓ ✗ ✗ 42.30 ↑4.67 79.41 ↑1.81

AugFCN ✓ ✓ ✗ 43.45 ↑5.82 79.87 ↑2.27

AugFCN ✓ ✓ ✓ 43.81↑6.18 80.39↑2.79

was set to 0.8. The “poly” learning rate policy was used with the stochastic gradient descent strategy,
where the initial learning rate was multiplied by 1− ( iter

max iter )
power with power = 0.9. The base learning

rate was set to 0.01 for Cityscapes and ADE20K. Following [5, 23], we set the max training epochs to
120 for ADE20K and 180 for Cityscapes. The momentum was set to 0.9, and the weight decay was set
to 0.0001. In particular, we also replaced the standard batch normalization with synchronized batch
normalization [9] across GPU training, as in [5, 16, 23].

Data augmentation. We followed the same strategy as in [5, 21, 23], and the random scaling was
first used on the training set in the range of 0.5–2.0. Then, these training images were randomly cropped
to a fixed size of 480 × 480 for ADE20K and 768 × 768 for Cityscapes. In addition, random horizontal
flips and random brightness jittering were also used.

4.3 Experiments on ADE20K

4.3.1 Ablation studies

Our ablation studies aim to (a) demonstrate the effectiveness of each component in AugFCN, including
position-based AugNI, content-based AugNI, and the auxiliary classification branch; (b) verify whether
more position embedding can further improve the model performance; (c) seek out the proper number
for multi-query AugNI; (d) make comparisons with the existing context modeling methods; and (e) verify
the effectiveness of combining AugNI with other context modeling methods.

(a) Effectiveness of each component in AugFCN. We first decompose the implementation of
AugFCN (i.e., AugNI implemented on the classical FCN [4] with two auxiliary multilabel image clas-
sification losses) into a content-based component, a position-based component, and an auxiliary image
classification component. In Table 1, we list the results for the val set of ADE20K [39] by implementing
different components on the baseline model. We observe that each component benefits the model per-
formance. Specifically, implementing the content-based AugNI achieves 42.30% mIoU and 79.41% Pixel
Acc, which surpasses the baseline FCN model by 4.67% mIoU and 1.81% Pixel Acc, respectively. This
result verifies the effectiveness and importance of the context modeling mechanism in semantic segmen-
tation. Next, we further add our proposed position-based component to the content-based component.
The results show that AugNI boosts the model performance by 1.15% mIoU and 0.46% Pixel Acc, which
highlights the importance of relative position embedding. In terms of performance, a relative position
embedding branch is also conducive to the semantic segmentation model. Finally, with the help of two
auxiliary multilabel image classification losses, we can achieve 43.81% mIoU and 80.39% Pixel Acc, which
boosts the performance gain by 6.18% mIoU and 2.79% Pixel Acc, respectively, compared to the baseline
model.

Qualitative result comparisons of each component with the baseline FCN [4] are visualized in Figure 4.
We show segmentation masks on the val set of ADE20K [39] by implementing different components of
AugNI on an FCN. We observe that, compared to the baseline, when the content-based AugNI is de-
ployed on an FCN, our AugFCN achieves more accurate segmentation results for some small and distant
objects and object parts, e.g., the “roof”, the “mountaintop”, and the “crown”. This finding validates
not only the importance of contextual information for semantic segmentation but also the effectiveness
of the class-wise feature map interactions in capturing the contextual information. Moreover, when the
content- and position-based AugNI are simultaneously deployed on an FCN, our AugFCN works better on
some big objects and can generate a more complete mask, e.g., the “alcazar”, the “sidewalk”, and the
“tree”. This result confirms the effectiveness of the relative position encoding information in semantic
segmentation. When the image classification loss function is added, the imperfection problem in segmen-
tation masks is further reduced, which demonstrates that the classification loss can improve the semantic
feature information. AugFCN achieves the best segmentation results when these three components (i.e.,
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(a) (b) (c) (d) (e)

Figure 4 (Color online) Qualitative result comparisons with the baseline model [4] on ResNet-50 [38]. Samples are from the val

set of ADE20K [39]. “+” denotes implementing the corresponding schemes on the baseline. “AugNI-c/-p” denotes the content-

based/position-based AugNI, respectively. “AugNI-all” means implementing all components (i.e., AugNI-c, AugNI-p, and the

auxiliary multilabel image classification branch) on the baseline model. The white dashed frames highlight the improved areas

predicted by AugFCN. (a) Image; (b) Baseline; (c) +AugNI-c; (d) +AugNI-c & AugNI-p; (e) +AugNI-all.

Table 2 Effectiveness of more position embeddings and the number (m) of multi-query AugNI for AugFCN on the val set of

ADE20K [39]. Without an explicit emphasis, the head number is set to 1. “AugNI-2d” denotes implementing the two-dimensional

position embedding [29] on AugNI instead of our proposed one.

Setting AugNI-p AugNI-2d mIoU (%) Pixel Acc (%)

Baseline [4] ✗ ✗ 37.63 77.60

AugFCN ✓ ✗ 43.81 ↑6.18 80.39 ↑2.79

AugFCN ✗ ✓ 43.79 ↑6.16 80.32 ↑2.72

AugFCN ✓ ✓ 43.73 ↑6.10 80.38 ↑2.78

AugFCN (m = 2) ✓ ✗ 43.92 ↑6.29 80.60 ↑3.00

AugFCN (m = 4) ✓ ✗ 44.05 ↑6.42 80.78 ↑3.18

AugFCN (m = 8) ✓ ✗ 44.11 ↑6.48 80.81 ↑3.21

AugFCN (m = 16) ✓ ✗ 44.22 ↑6.59 80.85 ↑3.26

AugNI-c, AugNI-p, and the auxiliary multilabel image classification branch) are deployed simultaneously.
The above results confirm the effectiveness of our AugNI.

(b) Will more position embedding be more effective? As stated in Subsection 3.2, one of our key
motivations is the lack of relative position information in the existing context modeling methods [23,31],
which is not favorable for the highly structured image data. In this subsection, we try to determine
whether more relative position embedding will be more effective on semantic segmentation. In particular,
the previous, prevalent two-dimensional relative position embedding [29] is used as a comparison method.
The experimental results on the val set of ADE20K [39] are shown in the upper part of Table 2. We first
compare our proposed position embedding and the two-dimensional position embedding [29] on AugNI,
i.e., AugNI-p vs. AugNI-2d. We observe that both relative position embedding methods improve the
baseline model performance and almost have the same performance gain, i.e., 43.81% vs. 43.79% on mIoU
and 80.39% vs. 80.32% on Pixel Acc. Although AugNI-p slightly outperforms AugNI-2d, we suspect that
this victory may be caused by model fluctuation rather than model effectiveness. Furthermore, when
AugNI-p and AugNI-2d are simultaneously deployed on AugNI, we observe a lower model performance
than previous ones. The reason may be that one relative position embedding method helps the model
to obtain enough relative position information, but additional position embedding brings redundant in-
formation, which harms semantic segmentation. This result also suggests that we do not need complex
structures to design the relative position encoding module and that a learnable relative position embed-
ding module has strong encoding ability. On the basis of this suggestion, in the following experiments,
we will use our proposed position embedding in AugNI.

(c) How many queries? On the basis of the base AugNI and inspired by the multi-head in self-
attention [11], we also propose multi-query AugNI in Subsection 3.2. In this subsection, we will explore
the proper query number (i.e., “m” in Table 2) for multi-query AugNI. We set m to 2, 4, 8, and 16.
Additionally, to maintain the channel dimension within AugNI (i.e., ck and cv) as 256, an additional 1×1
convolution is used to adjust the channel dimension if needed. The results on the val set of ADE20K [39]
are shown in the lower part of Table 2. Without an explicit emphasis, m is set to 1. We observe that with
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Table 3 Effectiveness of AugFCN and result comparisons with the existing context modeling methods on the val set of

ADE20K [39]. “+” denotes implementing the corresponding schemes on FCN [4]. Methods separated by dotted-lines belong

to different camps.

Setting mIoU (%) Pixel Acc (%)

Baseline [4] 37.63 77.60

FCN [4] + PPM [16] 41.50 ↑3.87 80.17 ↑2.57

FCN [4] + ASPP [13] 42.00 ↑4.37 80.23 ↑2.63

FCN [4] + MPM [5] 44.03 ↑6.40 80.65 ↑3.05

FCN [4] + ACF Module [9] 43.67 ↑6.04 79.90 ↑2.30

FCN [4] + RCC Attention [23] 43.85 ↑6.22 80.54 ↑2.94

FCN [4] + APNB [21] 43.70 ↑6.07 80.38 ↑2.78

AugFCN 44.05 ↑6.42 80.78 ↑3.18

increasing m, the performance gain is gradually increased. For example, when m is doubled compared
to the standard AugNI, we obtain an extra performance gain of 0.13% mIoU and 0.18% Pixel Acc on
AugFCN. When m = 4, we obtain 44.05% mIoU and 80.78% Pixel Acc. Particularly, when m = 16,
we obtain the highest model performance, i.e., 44.22% mIoU and 80.85% Pixel Acc, which surpasses
the baseline FCN model by 6.69% mIoU and 3.26% Pixel Acc, respectively. This result suggests that
although the divide-and-conquer strategy can help the model learn a stronger representation, too many
groupings will not play a big role. Next, considering the model complexity and performance gain, we use
a setting of m = 4.

(d) Effectiveness of AugNI. To demonstrate the superiority of AugNI in effectiveness, we compare
the experimental results of implementing different context modeling methods on an FCN [4]. In this
paper, the prevalent context modeling methods used for comparisons are as follows: PPM [16], ASPP [13],
MPM [5], ACF module [9], RCC module [23], and APNB [21]. For a fair comparison, we have added
an auxiliary, multilabel image classification loss on the backbone, as in [5, 13, 23]. The experimental
results on the val set of ADE20K [39] are shown in Table 3. We observe that compared to the baseline,
the models in which the context modeling module is added improve the recognition accuracy. Among
them, our proposed AugNI has the maximum performance gain of 6.42% mIoU and 3.18% Pixel Acc.
Comparatively, PPM has the minimum performance gain of 3.87% mIoU and 2.57% Pixel Acc. The latest
MPM achieves performance gains close to AugNI at 6.04% on mIoU and 3.05% on Pixel Acc. In addition
to the directly observable conclusion, we also found an interesting phenomenon that the active context
modeling methods through long-term dependencies (i.e., MPM, ACF module, RCC module, APNB, and
our AugNI) achieve better results on average than the passive methods that aggregate object contexts by
increasing the receptive fields (i.e., PPM and ASPP). This phenomenon further confirms the importance
of global object contexts in semantic segmentation.

(e) Effectiveness of AugNI and other context modelings. In addition to only adding a context
modeling module on an FCN [4], the existing methods (e.g., SPNet [5] and OCNet [24]) empirically con-
firmed the effectiveness of combining different context modeling methods. Therefore, in this subsection,
we explore the possibility of combining AugNI with other context modeling methods, i.e., PPM [16],
ASPP [13], MPM [5], APNB [21], ACF module [9], and RCC attention [23]. Specifically, we separately
verify the effect of feature map concatenation (i.e., ⊕ in Table 4) between AugNI and other context mod-
eling methods and deploy AugNI on each layer of feature maps (i.e., ⊙ in Table 4) within other context
modeling methods. Because the computational process of the ACF and RCC modules does not involve
different levels of feature maps, we only do feature concatenation on these two methods. Experimental
results on the val set of ADE20K [39] are shown in Table 4. We observe that the help of AugNI, ASPP,
the ACF module, and the RCC module can further improve model performance. In particular, deploying
AugNI on ASPP boosts the maximum performance gains by 7.30% mIoU and 3.54% Pixel Acc. Con-
versely, we also observed performance degradation on PPM, MPM, and APNB. A common property of
these methods is that they contain pooling operations. Hence, we suspect that the performance degra-
dation on PPM, MPM, and APNB may be due to excessive downsampling operations, which destroy the
detailed spatial information.

4.3.2 Complexity analysis

In this subsection, we compare model efficiencies by implementing different context modeling methods
on the baseline FCN [4], where PPM [16], ASPP [13], and MPM [5] are the representative multi-scale
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Table 4 Effectiveness of a joint implementation of our AugNI and other context modeling methods on FCN [4] on the val set

of ADE20K [39]. “+” denotes implementing the corresponding schemes on FCN. “⊕” denotes concatenating feature maps of our

AugNI and the corresponding context modeling schemes. “⊙” denotes implementing our AugNI on each layer of feature maps

within the corresponding context modeling schemes. Methods separated by dotted-lines belong to different camps.

Setting mIoU (%) Pixel Acc (%)

Baseline [4] 37.63 77.60

FCN [4] + AugNI (AugFCN) 44.05 80.78

FCN [4] + PPM [16] ⊕ AugNI 41.86 ↑4.23 80.32 ↑2.72

FCN [4] + PPM [16] ⊙ AugNI 42.07 ↑4.44 80.16 ↑2.56

FCN [4] + ASPP [13] ⊕ AugNI 44.87 ↑7.24 81.00 ↑3.40

FCN [4] + ASPP [13] ⊙ AugNI 44.93 ↑7.30 81.14 ↑3.54

FCN [4] + MPM [5] ⊕ AugNI 43.53 ↑5.90 80.81 ↑3.21

FCN [4] + MPM [5] ⊙ AugNI 43.32 ↑5.69 80.73 ↑3.13

FCN [4] + APNB [21] ⊕ AugNI 43.72 ↑6.05 80.62 ↑3.02

FCN [4] + APNB [21] ⊙ AugNI 43.68 ↑6.01 80.69 ↑3.09

FCN [4] + ACF Module [9] ⊕ AugNI 44.73 ↑6.80 80.91 ↑3.31

FCN [4] + RCC Attention [23] ⊕ AugNI 44.66 ↑6.83 80.90 ↑3.30

Table 5 Efficiency analysis on the val set of ADE20K [39]. “+” denotes implementing the corresponding schemes on FCN [4].

Methods separated by dotted-lines belong to different camps.

Setting Params GFLOPs

Baseline [4] 27.7 M 77.60

FCN [4] + PPM [16] ↑ 21.0 M ↑ 2.07

FCN [4] + ASPP [13] ↑ 9.8 M ↑ 1.05

FCN [4] + MPM [5] ↑ 11.9 M ↑ 2.02

FCN [4] + ACF Module [9] ↑ 58.1 M ↑ 5.27

FCN [4] + RCC Attention [23] ↑ 10.6 M ↑ 2.38

FCN [4] + APNB [21] ↑ 15.9 M ↑ 4.08

FCN [4] + AugNI ↑ 10.1 M ↑ 2.12

context modeling methods, and APNB [21], the ACF module [9], RCC attention [23], and our AugNI are
feature interaction-based methods. The model Params and GFLOPs are used as evaluation metrics. The
experimental results on the val set of ADE20K [39] are shown in Table 5. We observe that compared to
the baseline FCN [4], models with a context modeling module increase the computational cost and model
GFLOPs. Among these methods, the most efficient is ASPP [13], which only brings model Params of 9.8
M and GFLOPs of 1.05. Conversely, the ACF module has the highest computational cost at 58.1 M and
GFLOPs at 5.27. The reason is that the ACF module is based on self-attention [11] and nonlocal [12]
interaction, which requires a large computational overhead. Moreover, our AugNI has model Params of
10.1 M and GFLOPs of 2.12, which is more efficient than the recent MPM [5], APNB [21], and RCC [23]
attention, which are known for their high efficiency in semantic segmentation. In particular, compared to
the expensive ACF module [9], AugFCN can reduce up to 48.0 M model parameters and 3.15 GFLOPs,
which is extremely significant.

4.3.3 More experiments

In addition to applying tricks (e.g., data augmentation and auxiliary training branch) in the training stage,
using testing tricks also benefits model performance. In this subsection, we show different experimental
settings in the inference stage, including multi-scale (Multi-Scale) and left-right flip (LR-Flip) testing.
Experimental results on the val set of ADE20K [39] are shown in Table 6. We observe that Multi-Scale
and LR-Flip are conducive to performance improvements. Specifically, using Multi-Scale testing brings a
performance gain of 0.58% mIoU and 0.37% Pixel Acc. On the basis of this result, further implementing
LR-Flip testing can continuously boost the performance by 0.43% on mIoU and 0.15% on Pixel Acc.
When using the stronger ResNet-101 [38] as the backbone, we obtain up to 45.38% on mIoU and 81.65%
on Pixel Acc, which surpass the baseline model by 1.33% mIoU and 0.87% Pixel Acc, respectively.
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Table 6 More experimental analysis of our AugFCN with different testing tricks and backbones on the val set of ADE20K [39].

Method Multi-Scale LR-Flip mIoU (%) Pixel Acc (%)

AugFCN-50 ✗ ✗ 44.05 80.78

AugFCN-50 ✓ ✗ 44.63 ↑0.58 81.15 ↑0.37

AugFCN-50 ✓ ✓ 45.06 ↑1.01 81.30 ↑0.52

AugFCN-101 ✓ ✓ 45.38 ↑1.33 81.65 ↑0.87

Table 7 Result comparisons with the state-of-the-art methods on the val set of ADE20K [39]. “AugFCN+” denotes deploying

AugNI on each layer of feature maps in ASPP [13] module. “–” denotes that there is no reported result in its study. The top three

performances are marked as bold, italic, and underline, respectively.

Method Publication Backbone mIoU (%) Pixel Acc (%)

Baseline (FCN) [4] CVPR 2015 ResNet-50 34.38 74.57

RefineNet [72] CVPR 2017 ResNet-101 40.20 –

RefineNet [72] CVPR 2017 ResNet-152 40.70 –

EncNet [69] CVPR 2018 ResNet-50 41.11 79.73

GCU [73] NeurIPS 2018 ResNet-50 42.60 79.51

UperNet [74] ECCV 2018 ResNet-101 42.66 81.01

CFNet [9] CVPR 2019 ResNet-50 42.87 –

ACNet [27] ICCV 2019 ResNet-50 43.01 81.01

PSPNet [16] CVPR 2017 ResNet-101 43.29 81.39

DSSPN [75] CVPR 2018 ResNet-101 43.68 81.13

PSANet [76] ECCV 2018 ResNet-101 43.77 81.51

SAC [77] ICCV 2017 ResNet-101 44.30 81.86

SGR [78] NeurIPS 2018 ResNet-101 44.32 81.43

EncNet [69] CVPR 2018 ResNet-101 44.65 81 .69

GCU [73] NeurIPS 2018 ResNet-101 44.81 81.19

CFNet [9] CVPR 2019 ResNet-101 44.89 –

PSPNet [16] CVPR 2017 ResNet-269 44.94 81 .69

DANet [44] CVPR 2019 ResNet-101 45.22 –

CCNet [23] ICCV 2019 ResNet-101 45.22 –

APNB [21] ICCV 2019 ResNet-101 45.24 –

APCNet [17] CVPR 2019 ResNet-101 45.38 –

OCNet [24] IJCV 2021 ResNet-101 45 .40 –

AugFCN None ResNet-50 45.06 81.30

AugFCN None ResNet-101 45.38 81.65

AugFCN+ None ResNet-101 45.43 81 .69

4.3.4 Comparisons with the state-of-the-arts

In this subsection, we compare AugFCN with the state-of-the-art methods3) on the val set of ADE20K [39].
Experimental results are given in Table 7 [72–78]. We observe that under ResNet-50, AugFCN achieves
a new state-of-the-art performance of 45.06% mIoU and 81.30% Pixel Acc, which surpasses the previous
best ACNet [27] by 2.05% on mIoU and 0.29% on Pixel Acc, respectively. When based on a stronger
backbone network, ResNet-101, our AugFCN invariably achieves very competitive results of 45.38% mIoU
and 81.65% Pixel Acc. Although AugFCN is slightly outperformed by the state-of-the-art OCNet [24]
with ResNet-101 (i.e., 45.38% vs. 45.40% mIoU), the object context module of OCNet is intrinsically
based on self-attention [11]. Therefore, AugFCN has a plainer computational overhead. Additionally,
with the aid of ASPP [13] (i.e., AugFCN+: implementing AugNI on each level of the feature maps of
ASPP), we finally obtain a new state-of-the-art performance on the val set of ADE20K of 45.43% mIoU
and 81.69% Pixel Acc.

Visualization result comparisons on the val set of ADE20K [39] of AugFCN and the baseline [4] are
shown in Figure 5. We show the visualized results by deploying AugNI on different backbone networks,
i.e., ResNet-50 (i.e., AugFCN-50), ResNet-101 (i.e., AugFCN-101), and ResNet-101 with ASPP [13]
(i.e., AugFCN-101+). Compared to the baseline model, we observe that AugFCN can correct mistakes
in object (or some object parts) category predictions, e.g., the “tree”, the “sofa”, and the “desk”.

3) As the advanced transformer-based methods have completely different implementation mechanisms and computational costs

than the CNN-based methods, to make a fair comparison, we only make result comparisons with the CNN-based methods.
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(a) (b) (c) (d) (e)

Figure 5 (Color online) Qualitative results on the val set of ADE20K [39]. The baseline model is the standard FCN [4] with

atrous ResNet [10]. The white dashed frames highlight the improved areas predicted by our AugFCN. (a) Image; (b) Baseline;

(c) AugFCN-50; (d) AugFCN-101; (e) AugFCN-101+.
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Figure 6 (Color online) Qualitative result comparisons with the state-of-the-art methods on the val sets of ADE20K [39] and

Cityscapes [20]. OCNet [24] and APCNet [17] are two state-of-the-art methods on ADE20K dataset, both based on ResNet-101 [38].

OCNet with ResNet-101 (i.e., OCNet w/ ResNet) and with HRNetV2-48 [68] (i.e., OCNet w/ HRNetv2) are two state-of-the-art

methods on Cityscapes dataset. The white dashed frames highlight the improved areas predicted by our AugFCN.

These results indicate that effective context information can calibrate the model’s false prediction of
object category. Furthermore, the large object completeness and small object boundary accuracy can
be more accurately predicted, e.g., the “house”, the “sidewalk”, and the “clock” on the wall. These
visualizations empirically verify the effectiveness and importance of contextual information in semantic
segmentation tasks. In addition, the last two column visualization results on ResNet-101 and ASPP
show that our method can continuously bring further improvements on stronger backbones. In the upper
part of Figure 6, we also make qualitative result comparisons between AugFCN and the state-of-the-
art OCNet [24] and APCNet [17] on the val set of ADE20K. We observe that AugFCN can predict
more accurate segmentation masks in some ambiguous regions, e.g., the “stair”, the “head”, and the
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Table 8 Result comparisons with the state-of-the-art methods on the test set of Cityscapes [20]. “AugFCN+” denotes that

deploying AugNI on each layer of feature maps in ASPP [13] module. The top three performances are marked as bold, italic, and

underline, respectively.

Methods Publication Backbone mIoU (%)

DeepLab-v2 [13] TPAMI 2017 ResNet-101 70.4

DSSPN [75] CVPR 2018 ResNet-101 77.8

SAC [77] ICCV 2017 ResNet-101 78.1

DepthSeg [79] CVPR 2018 ResNet-101 78.2

PSPNet [16] CVPR 2017 ResNet-101 78.4

ResNet-38 [80] PR 2019 WiderResNet-38 78.4

PSANet [76] ECCV 2018 ResNet-101 78.6

BiSegNet [81] ECCV 2018 ResNet-101 78.9

AAF [82] ECCV 2018 ResNet-101 79.1

DFN [83] CVPR 2018 ResNet-101 79.3

CFNet [9] CVPR 2019 ResNet-101 79.6

PSANet [76] ECCV 2018 ResNet-101 80.1

DenseASPP [55] CVPR 2018 DenseNet-161 80.6

SVCNet [84] CVPR 2019 ResNet-101 81.0

SPGNet [85] ICCV 2019 2×ResNet-50 81.1

APNB [21] ICCV 2019 ResNet-101 81.3

BFP [86] ICCV 2019 ResNet-101 81.4

CCNet [23] ICCV 2019 ResNet-101 81.4

DANet [44] ICCV 2019 ResNet-101 81.5

HRNet [68] TPAMI 2020 HRNetV2-48 81.6

OCNet [24] IJCV 2021 ResNet-101 81.9

OCNet [24] IJCV 2021 HRNetV2-48 82 .5

AugFCN None ResNet-50 81.4

AugFCN None ResNet-101 81.9

AugFCN+ None ResNet-101 82.3

AugFCN+ None HRNetV2-48 83.0

“helicopter”. Because OCNet and APCNet are based on advanced content-based context modeling, we
suspect that AugFCN achieves better results than these two methods because it contains more relative
position information.

4.4 Experiments on Cityscapes

Quantitative result comparisons with the state-of-the-art methods on the test set of Cityscapes [20] are
given in Table 8 [79–86]. We observe that AugFCN with ResNet-50 achieves a new state-of-the-art result
of 81.4% mIoU, which greatly surpasses even some previous methods with ResNet-101 as the backbone,
e.g., PSANet [76] and CFNet [9].

AugFCN with ResNet-101 can achieve up to 81.9% mIoU, which even surpasses the competitive HR-
Net [8] with the strong HRNetV2-48 as the backbone by 0.3% mIoU. Under the same backbone network of
ResNet-101, AugFCN+ surpasses the state-of-the-art OCNet [24] by 0.4% mIoU (i.e., 82.3% vs. 81.9%).
When we use the strong HRNetV2-48 [68] as the backbone, our AugFCN+ achieves a new state-of-the-art
performance of 83.0% mIoU, which surpasses OCNet by a large margin of 0.5% mIoU. The above exper-
imental results not only verify the superiority of our AugFCN but also show that our proposed context
interaction module has a strong learning ability and can bring consistent performance improvement on a
strong backbone network.

Qualitative results on Cityscapes [20] are given in Figure 7. The visualized examples are from the val
set of Cityscapes. We show the results on the baseline model, AugFCN-50, AugFCN-101, and AugFCN-
101+. Compared to the baseline results, we obtain results similar to those in Subsection 4.3.4., e.g., the
“ground”, the “sidewalk”, and areas of the “bonnet” are better predicted. Furthermore, in the lower
part of Figure 6, we also make qualitative result comparisons between AugFCN and the state-of-the-art
OCNet [24] on ResNet-101 [38] and HRNetV2-48 on the val set of Cityscapes. We observe that although
AugFCN is worse than OCNet in the overall quantitative result, AugFCN achieves better qualitative
visualization results on some marginal objects and small objects, e.g., the “tree”, the “bicycle”, and
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(a) (b) (c) (d) (e)

Figure 7 (Color online) Qualitative results on the val set of Cityscapes [20]. The baseline model is the standard FCN [4] with

atrous ResNet [10]. The white dashed frames highlight the improved areas predicted by our AugFCN. (a) Image; (b) Baseline;

(c) AugFCN-50; (d) AugFCN-101; (e) AugFCN-101+.

the “trash”. Thus, the effectiveness of our proposed AugFCN is empirically verified.

5 Conclusion and future work

In this paper, we proposed a novel context modeling scheme, termed AugNI, by exploring the content-
and position-based object contexts. AugNI stands in the same line as the existing context modeling
methods with feature interactions but has less computational overhead. On the basis of AugNI, we further
proposed AugFCN for semantic segmentation. The experimental results on two challenging benchmarks,
including ADE20K and Cityscapes, show that AugFCN achieves very competitive performance compared
to the state-of-the-art context modeling methods. Furthermore, when we combine AugFCN with other
context modeling schemes, the experimental results show that AugFCN continuously brings performance
improvements to the state-of-the-art context modeling schemes.

AugFCN is based on AugNI, which is designed as the class-wise feature interaction pattern. Inevitably,
background information is present in each activated feature map (due to the practical object correlation
between foreground objects and the background). Therefore, the class-wise feature interaction is some-
what redundant. In the future, we will continue to study more efficient and specialized context modeling
methods, such as aggregating contexts for different categories of objects or using external attributes (e.g.,
position, shape, and proportion in the image) to establish object contexts. In addition, we will try to
apply AugNI to other computer vision tasks, e.g., object detection, person re-identification, and image
generation. AugNI is essentially a feature interaction method, so we can also study the application of
AugNI to the current popular transformer-based recognition systems to further boost model performance
using a vision transformer.
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