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Appendix A Related works

With the development of remote sensing technology, the variety of remote sensing images is also in full bloom subsequently, such

as sar images, optical images, multispectral images, hyperspectral images and so on [1–3].

When the sensor sources of the two images are different, they are called heterogeneous images [5]. Different from the traditional

change detection of homologous remote sensing images, due to the huge differences between heterogeneous images caused by such

as the sensitivity to light, reflection properties of the objects, etc [6], the traditional change detection framework is not suitable for

such problems. Therefore, researchers are focusing on new methods for processing heterogeneous remote images.

For the problem of change detection for heterogeneous remote images, it is mean to align the images of two different domains,

and then compare the original data in the common domain to highlight the difference [7]. For additional tasks of image alignment,

Liu er al. [8] proposed a symmetric convolutional coupling network (SCCN), adopting a probability map to the differences between

two images. Liu er al. [9] proposed an unsupervised change detection (USCD), which applied cycle consistency to obtain image

mapping relation between heterogeneous images. Luigi er al. [10] proposed code-aligned autoencoders(CAAE), which utilized four

learning strategies of reconstruction, cycle consistency, weighted translation and code correlation to enforce alignment of the code

spaces. Therefore, more and more methods for processing heterogeneous remote images are under research, which can greatly

improve the utilization rate of remote sensing data.

Appendix B Experiments and results

Appendix B.1 Dataset

Four classical datasets of remote sensing images are tested in the experiments, which is shown in Fig. B1- B4. Each pair of them

has been radio-metrically corrected and coregistered to make them as more comparable as possible.

(a) (b) (c)

Figure B1 D1—Flood in California: (a)I1, (b)I2, (c) Reference map.

1) D1—Flood in California: The first dataset consists of a multispectral image and a sar image, which are size of 875 ∗ 500 ∗ 11

in Fig. B1(a) and 875∗500∗3 in Fig. B1(b) repectively. The original size is 3500∗2000 pixels, and they were resampled to 850∗500

pixels for less computation. The ground truth map was marked manually in Fig. B1(c) from [4].

2) D2—Lake Overflow in Italy: The second dataset consists of a near infrared image and an optical image, which are size of

412 ∗ 300 ∗ 1 in Fig. B2(a) and 412 ∗ 300 ∗ 3 in Fig. B2(b) repectively. They are both Landsat 5 images with channels being not

overlapping. Fig. B2(c) shows the ground truth map.
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(a) (b) (c)

Figure B2 D2—Lake Overflow in Italy: (a)I1, (b)I2, (c) Reference map.

(a) (b) (c)

Figure B3 D3—Farmland in Shuguang: (a)I1, (b)I2, (c) Reference map.

3) D3—Farmland in Shuguang: The third dataset consists of a sar image and an optical image, which are size of 549 ∗ 411 ∗ 1

in Fig. B3(a) and 549 ∗ 411 ∗ 3 in Fig. B3(b) repectively. It was taken by Radarsat-2 to record the changes of a piece of farmland

in Shuguang, Dongying, China. Fig. B3(c) is the ground truth image.

4) D4—Flood in Yellow River: The fourth dataset consists of a sar image and an optical image, which are size of 291 ∗ 343 ∗ 1

in Fig. B4(a) and 291 ∗ 343 ∗ 1 in Fig. B4(b) repectively. The former one was obtained from Google Earth and the latter one was

taken by Landsat-7. The ground truth map is shown in Fig. B4(c).

Appendix B.2 Experimental setup

1) Processing flow: The proposed framework uses a small number of labeled samples to complete the initial detection task,

and then captures the difference information of optimized features in a large number of unlabeled data. By filtering with high

confidence selection, large amount of new pseudo labeled data set can be obtained in multi-layer composite judgment and then

be added to the original true-labeled training set to form new training set. Finally, the final change detection result is iteratively

optimized to attain.

The iteration can be stopped when the change degree of the pseudo-labeled training sample is less than a fixed value. The

fixed value is set by artificial experience according to the experimental results. Specifically, the degree of change refers to the

number change of pseudo-labeled samples and the position repetition of the screened pixels. In the experiment, the number of

labels screened after one iteration is usually about 90%, and the pixel position repeats greatly with the second iteration, so the

network can basically complete the final output after one iteration

In addition, when the pixel position of the vote is consistent with the position of a true label, the label value of the true label

will be directly retained, regardless of whether the result of the pseudo label voting is consistent. When there is no true label of

one position, the pixel will vote for screening.

2) Network parameters: The proposed framework is composited of two autoencoders(AE). Each AE is a fully convolution

neural networks, composed of four encoding layers: Conv(3 ∗ 3 ∗ 20) − ReLU − Coup(1 ∗ 1 ∗ 20) − ReLU − Coup(1 ∗ 1 ∗ 20) −
ReLU − Coup(1 ∗ 1 ∗ 1) − Sigmoid. At the same time, the decoder has the opposite structure. The learning rate is 10e-4, batch

size is 1000, epoch set is 100, weight decay is 0.9, and optimizer is based on Adam algorithm. The experiments are performed on

Intel(R) Core(TM) i7-4790 CPU @3.60GHz 3.60 GHz with 16 GB of RAM. Tensorflow 1.4 framework with Python 3.6.10 is as the

programing language.

Appendix B.3 Evaluation metrics

Several metrics are used to evaluate the performance of the proposed framework, whose calculation methods are shown as follows.

The values are obtained by comparison between the change detection result map and the ground truth map, where 0 represents an

unchanged pixel and 1 represents a changed pixel.

1) TP: True positives(changed pixels that are correctly detected).

2) TN: True negatives(unchanged pixels that are correctly detected).

3) FP: False positives(unchanged pixels that are wrongly detected as changed one).

4) FN: False negatives(changed pixels that are wrongly detected as unchanged one).

5) OA: (TP+TN)/(TP+TN+FP+FN); the ratio between correctly detected pixels and the total amount of pixels.

(a) (b) (c)

Figure B4 D4—Flood in Yellow River: (a)I1, (b)I2, (c) Reference map.



Sci China Inf Sci 3

6) PRE: [(TP+FP)(TN+FN)+(FN+TN)(FP+TN)]/(TP+TN+FP+FN)2̂; the probability of random agreement.

7) Kappa: (OA-PRE)/(1-PRE); the consistency of two classifiers.

8) F1: TP/[TP+1/2(FP+FN)]; balanced evaluation of accuracy and recall.

9) AUC: The performance with values from 0 (opposite detection) to 1 (optimal detection).

Last, the metrics of FP, FN, OA, Kappa, F1 and AUC will be shown in the exhibition compared with unsupevised methods of

SCCN [8], ACE-Net [?] and X-Net [?], supervised methods of RFR [?], classification network based on Resnet [?] and classification

network based on multilayer perceptron (MLP) [14] and semi-supervised method of Semi-GAN [15]. Besides, in experiments, we

purposely compared the classification performance of the pure supervised methods and the semi-supervised methods under the

same 60% label quantity. And the experiment of 0.1% label quantity is used to prove that, due to the scarcity of true labels in

the remote sensing field, the compared unsupervised models are able to get rid of the label dependency of remote sensing images.

And though the proposed model is a semi-supervised network, it only needs 0.1% labeled training samples. So the cost of labeled

samples is similar to the unsupervised one. Specially, the experimental result of 0.1% label amount is the result of the minimum

label amount that combines the algorithm cost and the experimental performance. The other experimental setup of the comparison

algorithms is consistent with Luigi er al. proposed in [?]. But the training epoches of ACE-Net and X-Net were set to 60 due to

the limitation from the test platform.

Appendix B.4 Experimental results

1) D1—Flood in California:

For California dataset, the change detection results are shown in Fig. B5 and test metrics are displayed in Table. B1. From

the comparison between unsupervised methods and supervised methods, it is obvious that unsupervised methods such as SCCN,

ACE-Net and X-Net do not have the guidance of true-labeled samples, so a large number of red undetected areas appear in the

changed areas. Other methods with labels have a large number of green false detected change areas in the upper part of each

change map in the Fig. B5. However, by using the information of unlabeled samples, it can be seen in Fig. B5(i) and (j) that the

false detected phenomenon has been weakened. On the whole, at the nearly cost of unsupervised models,the proposed framework

achieves the performance of 0.914 in OA and 0.505 in Kappa which is shown in Table. B1. And under the unified 60% label usage,

the semi-supervised method is obviously superior to the pure supervised method, and the proposed method achieves the best results

of OA under the initial network startup with a larger number of labels. For the time cost, the cost of supervised machine learning

methods is the least, because they do not include a lot of training time for unlabeled data. In addition to them, the time complexity

of the proposed method with 0.1% label amount is the lowest, which proves that our framework is a concise network. However, as

the number of labels increases, the time cost of the framework will also increase dramatically. It can be seen that the time cost of

proposed method with 60% labels is almost twice that of the one with 0.1% labels, which is more obvious in the large data set D1

data set, for they contain more classification feedback of labeled data.

(d) (e)

(f)

(b) (c)(a)

(j)(i)(g) (h)

Figure B5 Change detection results of D1—Flood in California achieved by (a) SCCN, (b) ACE-Net, (c) X-Net, (d) RFR, (e)

Resnet, (f) MLP, (g) Semi-GAN(60%), (h) proposed(60%), (i) Semi-GAN(0.1%) and (j) proposed(0.1%). (TP: white; TN: black;

FP: green; FN: red)

2) D2—Lake Overflow in Italy:

For Italy dataset, the change detection results are shown in Fig. B6 and test metrics are displayed in Table. B2. The phenomenon

of missing detection and false detection is the most obvious in the Italy dataset of all results. For example, in unsupervised methods,

SCCN has a large number of undetected changed areas in Fig. B6(a), while ACE-Net and X-net has fewer undetected changed

areas, but then a large number of green false detected areas appear in the lower left corner area, which is shown in Fig. B6(b)

and (c). This means that unsupervised methods are difficult to balance changed and unchanged identification information. In
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Table B1 Experimental results of D1—Flood in California

D1 Methods FP FN OA Kappa F1 AUC Time cost

Unsuper-
vised

SCCN 60163 15201 0.828 0.162 0.237 0.700 925.7

ACE-Net 34767 9795 0.898 0.385 0.434 0.875 6918.3

X-Net 31837 10207 0.904 0.395 0.443 0.879 3419.4

Super-
vised(60%)

RFR 61399 6573 0.845 0.311 0.374 0.871 299.3

Resnet 53529 2124 0.873 0.418 0.471 0.916 387.2

MLP 50796 2491 0.878 0.426 0.478 0.918 179.5

Semi-
supervised(60%)

Semi-GAN 7146 9624 0.961 0.652 0.672 0.812 3654.1

Proposed 5356 10873 0.963 0.645 0.664 0.791 2951.4

Semi-
supervised(0.1%)

Semi-GAN 47102 3949 0.883 0.421 0.472 0.869 865.9

Proposed 33248 4339 0.914 0.505 0.546 0.879 592.6

contrast, the proposed framework makes good use of unsupervised information and the coarse-and-fine features to fuse and filter a

large number of noise points with 0.1% label quantity. So it achieves excellent change detection results. At the same time, with

60% label quantity, Semi-GAN and the proposed framework almost perfectly detect the changes in the Italy dataset, leading the

Table. B2.

(d) (e)

(f)

(b) (c)(a)

(j)(i)(g) (h)

Figure B6 Change detection results of D2—Lake Overflow in Italy achieved by (a) SCCN, (b) ACE-Net, (c) X-Net, (d) RFR, (e)

Resnet, (f) MLP, (g) Semi-GAN(60%), (h) proposed(60%), (i) Semi-GAN(0.1%) and (j) proposed(0.1%). (TP: white; TN: black;

FP: green; FN: red)

3) D3—Farmland in Shuguang:

For Shuguang dataset, the change detection results are shown in Fig. B7 and test metrics are displayed in Table. B3. The

detection difficulty of shuguang dataset is that I1 and I2 have different surface types in the changed area on the upper left corner,

which is shown in Fig. B3(a) and (b). This leads to either a horizontal test result close to I2 in Fig. B7(a) or an obvious vertical

test result close to I1 in Fig. B7(b) and (c). In addition, because the imaging mechanisms of the two heterogeneous images in

Shuguang dataset are different, the uppermost road area is often over-detected into a changed area, which is particularly obvious

in the labeled supervised methods such as Fig. B7(e), (f), (i) and (j). This over-fitting phenomenon occurs because the model

excessively learns the characteristics of changed samples. However, when the number of labeled samples is increased, Semi-GAN

and the proposed method can achieve a better balance between changed features and unchanged features. In general, the proposed

method achieves the best results at 60% label amount, and achieves the best detection performance at 0.1% label amount near the

condition of no label.

4) D4—Flood in Yellow River:

For Yellow River dataset, the change detection results are shown in Fig. B8 and test metrics are displayed in Table. B4. It can be

seen from Fig. B8(a), (b) and (c) that the YellowRiver dataset is prone to global noise in the image, because I1 image in Fig. B4(a)

has many hollow scattered points due to lighting and other reasons, while I2 as an optical image in Fig. B4(b) is more smooth.

Therefore, there is serious interference when comparing the two. In addition, due to the subtle texture differences on the optical

image I2, there are wrong-detected place in triangular areas on the left half and river areas on the right half in Fig. B8(e), (i) and

(j). So how to convert and eliminate the difference between heterogeneous images is the key to change detection of heterogeneous

images. And even if 60% of the labels are used, Semi-GAN is still difficult to reduce the influence of fine horizontal lines in the

upper part of the optical image I2. However, the proposed framework finally achieves the best change detection results through

the fusion of multiple change maps, which is shown in Table. B4, the highest OA of 0.981 and Kappa of 0.691.
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Table B2 Experimental results of D2—Lake Overflow in Italy

D2 Methods FP FN OA Kappa F1 AUC Time cost

Unsuper-
vised

SCCN 3947 4456 0.932 0.394 0.430 0.844 397.3

ACE-Net 9543 2294 0.904 0.427 0.474 0.894 6374.3

X-Net 7861 2826 0.914 0.429 0.473 0.872 3327.8

Super-
vised(60%)

RFR 13980 2776 0.864 0.306 0.367 0.866 16.5

Resnet 8085 689 0.929 0.578 0.613 0.959 112.2

MLP 5529 652 0.950 0.667 0.693 0.971 54.1

Semi-
supervised(60%)

Semi-GAN 796 1641 0.980 0.820 0.831 0.889 447.6

Proposed 812 1523 0.981 0.829 0.839 0.897 393.1

Semi-
supervised(0.1%)

Semi-GAN 871 3210 0.967 0.667 0.684 0.786 247.6

Proposed 2491 1367 0.969 0.748 0.764 0.900 197.1

(d) (e)

(f)

(b) (c)(a)

(j)(i)(g) (h)

Figure B7 Change detection results of D3—Farmland in Shuguang achieved by (a) SCCN, (b) ACE-Net, (c) X-Net, (d) RFR, (e)

Resnet, (f) MLP, (g) Semi-GAN(60%), (h) proposed(60%), (i) Semi-GAN(0.1%) and (j) proposed(0.1%). (TP: white; TN: black;

FP: green; FN: red)

Table B3 Experimental results of D3—Farmland in Shuguang

D3 Methods FP FN OA Kappa F1 AUC Time cost

Unsuper-
vised

SCCN 195 17452 0.922 0.327 0.351 0.788 684.1

ACE-Net 3706 5773 0.958 0.753 0.776 0.967 6455.2

X-Net 6096 7050 0.942 0.666 0.698 0.953 3093.4

Super-
vised(60%)

RFR 16234 4727 0.907 0.575 0.626 0.940 49.4

Resnet 19485 1369 0.908 0.618 0.667 0.949 189.3

MLP 21577 801 0.901 0.606 0.657 0.945 84.9

Semi-
supervised(60%)

Semi-GAN 2499 5211 0.966 0.796 0.815 0.877 565.9

Proposed 2493 4224 0.970 0.826 0.843 0.900 517.5

Semi-
supervised(0.1%)

Semi-GAN 17952 2566 0.908 0.608 0.657 0.898 375.9

Proposed 9814 2852 0.944 0.723 0.754 0.912 308.4
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(d) (e)

(f)

(b) (c)(a)

(j)(g) (i)(h)

Figure B8 Change detection results of D4—Flood in Yellow River achieved by (a) SCCN, (b) ACE-Net, (c) X-Net, (d) RFR, (e)

Resnet, (f) MLP, (g) Semi-GAN(60%), (h) proposed(60%), (i) Semi-GAN(0.1%) and (j) proposed(0.1%). (TP: white; TN: black;

FP: green; FN: red)

Table B4 Experimental results of D4—Flood in Yellow River

D4 Methods FP FN OA Kappa F1 AUC Time cost

Unsuper-
vised

SCCN 6958 2363 0.907 0.107 0.147 0.737 194.6

ACE-Net 8628 1464 0.899 0.214 0.252 0.838 5911.6

X-Net 5945 1393 0.927 0.294 0.326 0.868 3113.0

Super-
vised(60%)

RFR 8527 674 0.908 0.318 0.351 0.917 14.9

Resnet 9080 328 0.906 0.343 0.376 0.947 87.5

MLP 24269 162 0.755 0.149 0.197 0.867 34.2

Semi-
supervised(60%)

Semi-GAN 1758 613 0.976 0.670 0.682 0.894 413.7

Proposed 806 1027 0.981 0.691 0.700 0.834 350.2

Semi-
supervised(0.1%)

Semi-GAN 8647 636 0.906 0.318 0.352 0.854 220.7

Proposed 5891 465 0.936 0.433 0.459 0.896 181.1
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Appendix B.5 Ablation Study

In this subsection, two strategies of the framework will be verified: one is the strategy of coarse-and-fine feature fusion (be expressed

as proposed-1 in experimental display). The results of each classification layer will be compared with the result of all layers after

fusion to prove the effectiveness of the cooperative judgment of coarse-and-fine features. Another one is the strategy of iterative

pseudo label updating. The comparison between the initial network result and the iterative network result will prove the reliability

of the pseudo label, which is conducive to improving the learning ability of identification information in network (be expressed as

proposed-2 in experimental display).

CM_1 CM_2 CM_3 CM_4
CM_fusion

（proposed-1）

OA = 0.911
Kappa = 0.495

CM_fusion

（proposed-1）

CM_final

（proposed-2）

CM_final

（proposed-2）

OA = 0.914
Kappa = 0.505

OA = 0.960
Kappa = 0.702

OA = 0.969
Kappa = 0.748

OA = 0.939
Kappa = 0.711

OA = 0.944
Kappa = 0.723

OA = 0.933
Kappa = 0.424

OA = 0.936
Kappa = 0.433

Figure B9 Display of results in ablation experiments. CM i represents the result of each classification layer. CM fusion is the

result of all layers after fusion (proposed-1). And CM final is the result after iterative pseudo label updating (proposed-2), which

is compared with CM fusion in the initial network result.

1) Proposed-1 (coarse-and-fine feature fusion): It can be seen from the red circle in the left part of Fig. B9 that

CM fusion can filter out some noise interference and improve the performance of change detection after fusion. This is particularly

evident in the Italy dataset. For example, in CM 3, there is a serious over-fitting phenomenon, which causes all the hollowed out

areas in the middle to be wrongly detected as changed areas. And this interference can be well eliminated by fusing with other

change maps. In addition, the noised results in the upper left corner of Italy dataset also achieved a good suppression effect after

fusion. The main reason is that the number of true labels is too small, which leads to over-learning of the characteristics of the

changed areas in the coarse-and-fine feature extracting. Therefore, the fusion results not only retain the detection of changed areas,

but also eliminate part of the error information through different over-fitting detection of multiple change maps.

2) Proposed-2 (iterative pseudo label updating): In the right part of Fig. B9, it shows the change detection results of the

first iteration and the final iteration, respectively CM fusion and CM final. It can be seen that after iteration, the performance

of change detection has improved to a certain extent, which is shown in the rise of OA and Kappa index. It is worth mentioning

that such iteration can be repeated continuously to optimize the accuracy of the pseudo label pool. However, the experiments

prove that after one iteration, the diffusion of the pseudo label pool is basically satisfied, and the iteration will stop. As can be

seen from the proposed framework in experiments with 60% true-labeled samples, the semi-supervised method is far superior to

the pure supervised method through the utilization of unlabeled samples.

3) Network convergence analysis: For network convergence, the experiment is carried on D2 dataset. Since the epochs of

network training is 100, the results are displayed in the form of every 5 epochs. It can be seen from Fig. B10 that the loss of the

network converges very quickly and finally remains in a stable state. And since the feedback training of the network has not been

completed for the first 30 epochs, the output value of the change map is 0, which is not of reference significance. So the accuracy

is set to 0. Finally, with the convergence of the network, the accuracy rate also reaches a gradually rising and stable state.

Appendix B.6 Limitation Analysis

In general, the proposed semi-supervised framework can make good use of the effective information of unlabeled samples to complete

the screening of pseudo label samples, and then expand the pseudo label pool to optimize the process of network learning. However,

the number of true-labeled samples required for the initial iteration will affect the overall performance of the framework to some

extent. When the error change detection results are filtered into the pseudo label pool, it will lead to the classic error accumulation

effect in the semi-supervised research field. Therefore, how to screen the available identifying information more reliably will become

the key to our work in the future.
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