
SCIENCE CHINA
Information Sciences

April 2023, Vol. 66 140305:1–140305:14

https://doi.org/10.1007/s11432-022-3599-y

c© Science China Press 2023 info.scichina.com link.springer.com

. RESEARCH PAPER .
Special Topic: Artificial Intelligence Innovation in Remote Sensing

MFVNet: a deep adaptive fusion network with
multiple field-of-views for remote sensing image

semantic segmentation

Yansheng LI, Wei CHEN*, Xin HUANG, Zhi GAO, Siwei LI,

Tao HE & Yongjun ZHANG*

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China

Received 19 June 2022/Revised 25 August 2022/Accepted 14 October 2022/Published online 27 March 2023

Abstract In recent years, the remote sensing image (RSI) semantic segmentation attracts increasing re-

search interest due to its wide application. RSIs are difficult to be processed holistically on current GPU

cards on account of their large field-of-views (FOVs). However, the prevailing practices such as downsam-

pling and cropping will inevitably decrease the quality of semantic segmentation. To address this conflict,

this paper proposes a new deep adaptive fusion network with multiple FOVs (MFVNet), which is specially

designed for RSI semantic segmentation. Different from existing methods, MFVNet takes into consideration

the differences among multiple FOVs. By pyramid sampling the RSI, we first obtain images on different

scales with multiple FOVs. Images on the high scale with a large FOV can capture larger spatial contexts

and complete object contours, while images on the low scale with a small FOV can keep the higher spatial

resolution and more detailed information. Then scale-specific models are chosen to make the best predictions

for all scales. Next, the output feature maps and score maps are aligned through the scale alignment module

to overcome spatial misregistration among scales. Finally, the aligned score maps are fused with the help of

adaptive weight maps generated by the adaptive fusion module, producing the fused prediction. The per-

formance of MFVNet surpasses the previous state-of-the-art semantic segmentation models on three typical

RSI datasets, demonstrating the effectiveness of the proposed MFVNet.

Keywords semantic segmentation, remote sensing image (RSI), field-of-view (FOV), adaptive fusion, con-
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1 Introduction

With the advance in remote sensing technologies [1–5], the quantity of remote sensing images (RSIs) has
been thoroughly increased. Due to the wide applications such road extraction [6], wildfire detection [7],
building extraction [8], cloud detection [9], land-cover classification [10–12], and change detection [13,14].
RSI semantic segmentation has been attracting growing research interest in recent years.

One RSI generally has a large field-of-view (FOV), consisting of extensive geospatial objects (e.g.,
buildings, forests, and water) and abundant geospatial information [15]. When conducting RSI semantic
segmentation based on visual interpretation [16], humans tend to observe the whole RSI on different
scales and classify the pixels of geospatial objects by combining the local details and global structures,
to make good use of the geospatial information inside the RSI [15–18].

On the contrary, the large FOV of RSI brings big trouble to machines. Although the rapid development
of deep neural networks has made extraordinary progress in semantic segmentation [19–31], these machine-
vision-based methods fail to process one RSI holistically, limited by the GPU memories. The prevailing
practice to segment one RSI is either to downsample it to a smaller one or to separately segment the
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Figure 1 (Color online) The necessity of multiple FOVs. The upper row shows one RSI and three parts of it with different FOVs

which are getting smaller from left to right. The lower row is the ground truths and predictions. They are the ground truth of the

whole RSI, the ground truth of the part with a small FOV, the fused prediction with multiple FOVs, and the prediction with only

a small FOV. As can be seen, small FOV leads to incomplete and erroneous predictions (i.e., the last column). However, with the

help of multiple FOVs, the quality of segmentation is remarkably improved (i.e., the third column).

High scale

(large FOV)

Low scale

(small FOV)

(a) (b) (c)

Figure 2 (Color online) The problem of spatial misregistration. (a) Images; (b) predictions; (c) spatial misregistration between

scales. The lower part displays the image on the low scale, while the higher part displays the image on the high scale. The pink

dashes and blue dashes denote the center points of the predicted car on different scales. As can be seen, they are not aligned well

since resampling in the fusion process results in spatial misregistration.

partitioned patches and merge their results into a whole one. Downsampling keeps the FOV of one RSI but
definitely ruins the fine details and geospatial information inside one RSI. The cropped patches maintain
the image quality but obtain a pretty smaller FOV, which tends to deliver incomplete information and
may easily lead to incorrect semantic segmentation. These two trivial practices both have their own
imperfections.

As depicted in the fourth column of Figure 1, due to the lack of complete structure of geospatial
objects, it is hard for both humans and machines to recognize the building in the lower left corner when
only the RSI with a small FOV is given. The pixels of that building look similar to the ground (i.e.,
impervious surfaces) and may lead to confusion without the context (i.e., structural information) [32].
The naive fusion of multiple FOVs is one straight-forward solution to this. However, the use of multiple
FOVs results in new problems. As can be seen in Figure 2, the predictions of multiple FOVs are not
aligned well because of the spatial misregistration caused by resampling in the fusion process, which is
needed to be considered before the fusion of multiple FOVs.

Therefore, we propose a deep adaptive fusion network with multiple FOVs (MFVNet) in this paper,
to make full use of the large FOV of the RSI. By cropping the RSI with different pyramid sampling
rates, images with multiple FOVs are obtained and resampled to the same size. Consequently, the image
with a small FOV (i.e., low scale) preserves precise locations and contours while the image with a large
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FOV (i.e., high scale) provides complete contexts and structural information. As embodied in the third
column of Figure 1, the combination of them can enhance the robustness of semantic segmentation. Since
images with multiple FOVs are different in their actual spatial resolutions, the geospatial information is
expressed in different scales and a single model is unable to process all of them well. Thus, we perform
the scale-specific model (SSM) searching on each scale to choose the best model for a specific scale. The
images on different scales are separately fed to the corresponding SSMs, which produce scale-specific
feature maps and score maps. After that, the feature maps and score maps from high scales are aligned
to the low scale by the scale alignment modules (SAMs) to tackle the spatial misregistration between
scales as illustrated in Figure 2. Moreover, it is easy to find that images from high scales specialize in
capturing continuous geospatial objects and complete outlines, whereas images from low scales are good
at keeping precise boundaries and detailed information. Intuitively, it is preferable to perform adaptive
fusion instead of naive average or maximum fusion among these scales to combine their advantages.
Therefore, the feature maps from all scales are concatenated and used to compute the scale-specific
weight maps. Finally, the score maps on different scales are fused adaptively with the help of weight
maps in the adaptive fusion modules (AFMs), which generate the final prediction result. Then we carry
out detailed studies and analyses on the proposed MFVNet in the experiment part. The effectiveness
of MFVNet is verified on three typical RSI datasets including GID [33], GF1WHU [34], and Potsdam.
MFVNet achieves considerable performance gains compared with all previous state-of-the-art semantic
segmentation models [21,22,24,26,35,36] and methods designed for RSI semantic segmentation [32,37–39].

Recently, some methods attempt to jointly and complementarily utilize local and global contexts
to handle the semantic regions with large variations in RSIs, the ideas of which are similar to our
proposed MFVNet. GLNet [39] takes the downsampled entire image and its cropped local patches as
respective inputs and fuses feature maps from two branches, capturing both the high-resolution fine
structures from zoomed-in local patches and the contextual dependency from the downsampled input.
FCTL [32] introduces a locality-aware contextual correlation-based segmentation model to process local
image patches and presents a contextual semantics refinement network that is enabling to reduce the
boundary artifacts and refine mask contours during the process of creating the final mask. Here is the
main difference between our MFVNet and these methods: they attempt to utilize multiple FOVs but
do not take into consideration the differences and spatial misregistration among multiple FOVs, so the
advantages of multiple FOVs are not well utilized. While MFVNet uses SSM for model choosing, SAM
for spatial alignment, and AFM for adaptive fusion, which better exploits the multiple FOVs in RSI
semantic segmentation. Codes and pre-trained models will be made publicly available online along with
this paper (https://github.com/weichenrs/MFVNet). To summarize, the main contributions of this paper
are three-fold.

(1) This paper proposes a novel deep adaptive fusion network with multiple FOVs called MFVNet to
make full use of the large FOV of the RSI. MFVNet can take all existing and future semantic segmentation
models as its backbones (i.e., SSMs). Besides, it can be trained in an end-to-end way even with its
complicated architecture.

(2) This paper proposes SAM to solve the spatial misalignment among different scales in RSI for the
first time. And AFM is proposed to fuse the predictions on different scales adaptively, which combines
the strengths of different scales.

(3) Extensive experiments and analyses on three typical RSI datasets indicate the efficacy of MFVNet.
The proposed MFVNet is compared with previous state-of-the-art semantic segmentation models and
methods specially designed for RSI semantic segmentation. Our proposed MFVNet achieves state-of-the-
art results on those datasets.

The rest of this paper is organized as follows. Section 2 reviews the related work of this study. Section 3
systematically introduces the proposed MFVNet. Section 4 reports the datasets used in this study and
the experimental results. The conclusion and discussion are summarized in Section 5.

2 Related work

Since the concept of multiple FOVs has not been discussed before, here we relate some relevant studies
with similar ideas about it in the following.

https://github.com/weichenrs/MFVNet
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2.1 Long-range contextual dependency in one single field-of-view

Common deep neural networks designed for semantic segmentation explicitly exploit multi-scale fusion of
features. To surpass the limit of the local receptive field by convolution layer and to capture the contextual
information at multiple scales, multi-scale feature fusion is mainly explored in natural image semantic
segmentation [22,24,26,40]. Dilated convolutions are used to aggregate multi-scale contextual information
without losing resolution or analyzing rescaled images [40]. ASPP [22] applies several parallel atrous
convolutions with different rates, while PSPNet [24] performs pooling operations at different grid scales.
HRNet [26] maintains high-resolution representations by connecting high-to-low resolution convolutions
in parallel and repeatedly conducting multi-scale fusions across parallel convolutions, which produces not
only strong but also spatially precise high-resolution representations. Although these methods exploit
the multi-scale feature fusion, only limited context information inside the image with a small FOV can
be used.

Along with the tremendous success of self-attention-based Transformers [41,42] in the natural language
processing domain, self-attention is adapted to the computer vision domain [35,36,43–46] to capture the
global spatial context (i.e., long-range context). DANet [35] introduces a self-attention mechanism to
capture feature dependencies in the spatial and channel dimensions, respectively. OCNet [43] presents
an object context that aims at only gathering the pixels that belong to the same category as a given
pixel as its context. CCNet [36] harvests the contextual information of all the pixels on its crisscross
path. By taking a further recurrent operation, each pixel can finally capture the full-image dependencies
from all pixels. Recently, with the proposal of Vision Transformer [47], the computer vision domain has
been witnessing the breakthrough on Transformers [27, 48, 49], which shows huge potential in semantic
segmentation for capturing the long-range contextual dependency. Similarly, the contexts explored by
these methods are also limited to the input image with a small FOV, which restricts the performance
from further improvements.

2.2 Global-local contextual dependency among multiple field-of-views

Recently, preliminary explorations about global-local contextual dependency on images have been con-
ducted, which is similar to multiple FOVs [32, 37–39, 50]. A two-stage multi-scale training strategy is
utilized in a semantic embedding network in [37], which is designed to fuse complementary information
learned from multiple levels to make predictions. WiCNet [38] uses an extra context branch to explic-
itly model the context information in a larger image area, where the information communication between
context branches is built through a context Transformer. Nevertheless, these methods have not addressed
the spatial registration problem in the fusion process, and the fusion strategies of some are inflexible,
which need further consideration.

Recent studies [32,39,50] take into consideration the outside contexts for adaptive fusion. GLNet [39]
proposes to incorporate the local and global information via a two-stream network that separately pro-
cesses the downsampled global image and cropped local patches, as well as a feature-sharing module
that shares the concatenated local and global features in both streams. CascadePSP [50] uses a global
step to refine the entire image and provides sufficient image contexts for the subsequent local step to
perform full-resolution high-quality refinement. FCTL [32] leverages the locality-aware contextual corre-
lation and the adaptive feature fusion scheme, which associates and combines local-context information
to strengthen local segmentation. And a contextual semantics refinement network is used to leverage
the relevance of local segmentation and context mask to avoid boundary-vanishing artifacts and refine
the local semantic mask. Generally, these methods do not take into consideration the differences among
multiple field-of-views. Furthermore, they have not addressed the spatial registration problem in the
fusion process, and the fusion strategies of some are inflexible, which is required to be further explored.

3 Method

In this section, we will systematically introduce the proposed MFVNet. An overview of the architecture
of MFVNet is presented in Figure 3. First, the original RSIs are cropped with different pyramid sampling
rates and resampled to the same size. In detail, the original RSIs are down-sampled according to different
sampling rates, which will be discussed in the implementation detail in Subsection 4.2. The sampling
rates indicate the scales (i.e., FOVs). Then a fixed-size sliding window is used to crop the sampled RSIs
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Figure 3 (Color online) The overall architecture of the proposed MFVNet. The accessible spatial contexts are enlarged by

pyramid sampling the original RSIs, forming images on different scales with multiple FOVs. SSM searching is performed on each

scale to choose the best model for the specific scale. The images are then fed to the corresponding SSMs and scale-specific feature

maps and score maps are produced. They are aligned via the SAMs and fused adaptively with AFMs, which generates the final

prediction result.

from all scales. It is noted that when dealing with the image patches on the fringe of the original whole
image, since there is no more information outside the original image, we will expand the original image by
flipping it along the fringe. After that, the image patches are obtained by cropping the expanded image.
As the down-sampling rates are different, the windows from all scales have the same size but contain
different spatial context information. Where the scale is higher, the FOV is larger. In this way, images
with multiple FOVs can be obtained. Afterward, these images will go through several special-designed
modules in the MFVNet to generate the final fused prediction.

3.1 Scale-specific model searching

Since the architecture designs of deep neural network models vary a lot, their focuses and abilities for
extracting information are quite different. Theoretically and practically, a model usually fails to perform
well on all scales and all datasets. Thus, we conduct the scale-specific model searching. For images on
scale i, they are used to train several semantic segmentation models contained in the model pool. After
training, these models are evaluated on the corresponding scale i. Then the SSM will be selected according
to the performances of these models. The SSM searching process can be approximately depicted as

θiss = argmin(Lce(σ
i

ss(I
i),M i)), σi

ss ∈ model pool, (1)

where Ii and M i denote the image and label on scale i, respectively; σi
ss denotes the candidate semantic

segmentation model; Lce denotes the cross-entropy loss; and θiss denotes the selected SSM of scale i. For
middle scale and high scale, the original RSIs are down-sampled with the rate of 1.5 and 2. Then they
are cropped into 512×512 tiles with automatically computed strides according to the image sizes. Three
scales are used considering the trade-off between efficacy and efficiency. The necessity of SSM will be
discussed in Subsection 4.2. Then the SSMs of all scales are used to compute the feature maps and score
maps as

F i, P i = θiss(I
i), (2)

where F i and P i denote the feature maps and score maps of image Ii on scale i, respectively. Note that
F i and P i from larger scales are center-cropped and up-sampled according to the valid region of Ii, as
shown in Figure 3.

3.2 Scale alignment module

SSM searching in this subsection tends to select different models for each scale. Due to the resampling
inside the network models and the original spatial resolution difference among scales, we are inevitably
faced with spatial misregistration as depicted in Figure 2, which has not been considered well by most
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Figure 4 (Color online) The architecture of SAM. It is used to align both middle scale and high scale to low scale. Feature maps

are first fed to a convolution function to align the channel dimension. Then they are concatenated and fed through a Conv-BN-ReLU

block and a convolution function to obtain the warping matrixes, which helps to align the feature maps and score maps.

existing methods. Inspired by [51], we propose the SAM to align the feature maps and score maps on
different scales. It first uses the feature maps on different scales to compute the warping matrixes as

X i

sa, Y
i

sa = δisa(F
1, F i), (3)

where F 1 and F i denote the feature maps on scale 1 and scale i, respectively; δisa is the scale alignment
function, X i

sa,Y
i
sa are the warping matrixes with regard to the coordinates X and Y .

The detailed architecture of the scale alignment function is illustrated in Figure 4. The alignment is
conducted between scale 1 and each larger scale independently. For the scale i, F 1 and F i are indepen-
dently fed to a 1×1 convolution to align the channel dimension. Then they are concatenated together
and fed through a Conv-BN-ReLU block and a 3×3 convolution to obtain the warping matrixes.

After that, the warping matrixes are fed to the warping function for aligning the feature maps and
score maps from larger scales to scale 1 as

F i

a , P
i

a = η((X i

sa, Y
i

sa), F
i, P i), (4)

where F i and P i are the feature maps and score maps on scale i, respectively; η denotes the warping
function, F i

a and P i
a are the aligned feature maps and score maps on scale i, respectively.

It is noted that low-level features are used to align high-level features in [51], where all used features are
from the input image. But in our proposed SAM, feature maps from higher scales are used to compute
the warping matrixes together with feature maps from low scales, and the warping matrixes are used to
align the feature maps and score maps from larger scales to the scale 1, which is different from [51].

3.3 Adaptive fusion module

When SSM searching has chosen the best model for each scale in our MFVNet, it is recommended to
conduct decision fusion rather than feature fusion in order to avoid repeated computation. Benefiting
from larger FOV, the high scale specializes in predicting large geospatial objects with complete outlines
maintained, yet the low scale is good at capturing detailed information due to its high spatial resolution.
Thus, the predicted score maps need to be fused adaptively. After the scale registration by the SAM, the
aligned feature maps are concatenated and then used to compute the scale-specific weight maps as

F all
a = concat(F 1

a , F
2
a , . . . , F

i

a), (5)

wi = φi

af(F
all
a ), (6)

where F 1
a , F

2
a , F

i
a denote the aligned feature maps on scale 1, 2, i, respectively; φi

af is the adaptive fusion
function for scale i; wi is the scale-specific weight map for scale i.

The detailed architecture of the adaptive fusion function is illustrated in Figure 5. The concatenated
feature maps are fed to two Conv-BN-ReLU blocks. Afterward, three 1×1 convolutions are used to
compute the scale-specific weight maps for each scale separately.
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Concatenated

Figure 5 (Color online) The architecture of AFM. The feature maps are concatenated and fed to two Conv-BN-ReLU blocks.

Then, three convolution functions are used to compute the scale-specific weight maps for each scale separately. Finally, the score

maps on different scales are fused adaptively with the scale-specific weight maps to generate the final prediction result.

Finally, the score maps on different scales are fused adaptively with the help of scale-specific weight
maps, which generate the final prediction result as

P fuse =
S
∑

i=1

(wi
× P i

a), (7)

where P i
a denotes the aligned score maps on scale i, P fuse denotes the adaptively fused score maps, and

S denotes the index of scales.

3.4 Loss function

For adequately utilizing the multiple FOVs in the RSIs, we build the framework of the adaptive fusion
network with SSM, SAM, and AFM, which formulates the whole loss function as

L = Lce(P
fuse,M1)

= Lce

(

S
∑

i=1

(φi

af(F
all
a )× η(δisa(F

1, F i), P i)),M1

)

,
(8)

where P fuse denotes the adaptively fused score maps produced by (7), M1 is the ground truth of image
I1, Lce stands for the cross-entropy loss function.

It is noted that the proposed MFVNet can be end-to-end trained after the SSM searching process.
Moreover, MFVNet can take all existing and future networks for semantic segmentation as its backbones
for all scales with no regard to their architectures, which shows good generalization ability. The overall
performance of MFVNet is based on the basic performances of SSMs from all scales and the cooperation
of them. A more powerful SSM will definitely enhance the performance of MFVNet.

4 Experiments

In this section, we conduct experiments on three typical RSI semantic segmentation datasets, including
GID [33], GF1WHU [34], and Potsdam, which are specially selected to demonstrate the effectiveness of
the proposed MFVNet. The datasets and metrics used in the experiments are introduced first. Then we
illustrate the necessity and effectiveness of SSM searching. After that, we ablate the important design
modules (i.e., SSM, SAM, and AFM) of the proposed MFVNet. Finally, MFVNet is compared with
previous state-of-the-art semantic segmentation methods and specially designed methods on three RSI
semantic segmentation datasets.

4.1 Data descriptions

Three typical RSI datasets, including GID [33], GF1WHU [34], and Potsdam are utilized in this study.
The GID dataset [33] contains 150 RSIs with the size of 6800×7200. Five major categories are anno-

tated: built-up, farmland, forest, meadow, and water. Areas not belonging to the above five categories
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and clutter regions are labeled as background. We randomly choose 90 images for training, 30 images for
validation, and 30 images for testing.

The GF1WHU dataset [34] is composed of 108 RSIs with an average size of about 16000×17000. It
annotates three categories: cloud, cloud shadow, and clear-sky. We choose 84 images for training, 12
images for validation, and 12 images for testing randomly.

The Potsdam dataset1) is composed of 38 RSIs with the size of 6000×6000. Six classes are labeled,
including impervious surfaces (i.e., Imp. sur.), car, tree, Low vegetation (i.e., Low veg.), building, and
clutter. Twenty-four images are randomly chosen for training, 7 images for validation, and 7 images for
testing.

4.2 Implementation details

We re-implement previous state-of-the-art semantic segmentation methods [21,22,24,26,35,36] and meth-
ods specially designed for RSI semantic segmentation [32, 37–39]. It is noted that all models are trained
following the hyper-parameters listed in their studies. Empirically, all the models are trained for 200
epochs on the GID and the Potsdam datasets, 50 epochs on the GF1WHU dataset, except for our
MFVNet which is trained for 20 epochs, with their largest batch size on a single RTX3090 GPU card.
We use the original structure in [21] for UNet, HRNet V2-W48 for HRNet and PSPNet with ResNet-101
backbone [52] for PSPNet. It is noted that the numbers of channels of their first and last convolutional
layers are changed according to the input RS images (i.e., 4 channels) and the number of object categories.
The data are augmented by random horizontal flipping, random vertical flipping, and random rotation
of 90◦. For some methods [37, 38] that do not release the source codes, our re-implementations may be
a little different from the original versions because of the missing detail in the studies. We also conduct
limited modifications on the models without violating the original designs to pursue the best results
possible. Some methods [32, 39] are not designed for the datasets we used, so that their performances
may not be as promising as those listed in their studies although we endeavor to achieve the best results
possible.

We use the mean intersection over union (mIoU) as the main metric. Considering the class imbalance
problems in datasets, we also display the frequency-weighted intersection over union (FWIoU) and the
mean F1 scores of all classes (mF1).

4.3 Ablation study

As the images with multiple FOVs are generated via pyramid sampling, these images on different scales
have disparate spatial contexts and resolutions. Empirically, we find that the best semantic segmentation
model varies on different scales. And that is why we conduct the scale-specific model searching as in
Subsection 3.2 on all scales. The model pool contains three prevalent semantic segmentation models
(i.e., UNet [21], HRNet [26], and PSPNet [24]) considering their complementary abilities in capturing
information.

Table 1 gives the results of SSM on the Potsdam dataset. It can be seen from the table that models
vary a lot on the performances of different scales. It also verifies that the fixed architecture will definitely
hurt the performance. The best models for low scale, middle scale, and high scale are PSPNet, UNet, and
HRNet on the GID dataset; HRNet, HRNet, and UNet on the GF1WHU dataset; and PSPNet, PSPNet,
and UNet on the Potsdam dataset. So it is data-driven.

To evaluate how each module in the proposed MFVNet influences the semantic segmentation perfor-
mance, Table 2 demonstrates the quantitative ablation study results on the Potsdam dataset. For the
baseline method, we use HRNet [26] trained on the low scale. When SSM is not used, we use HRNet for
the training on all three scales since it performs better than the other two in the model pool. The use
of multiple FOVs brings a performance gain of 0.6%. SSM leads to another performance gain of 0.4%.
Moreover, AFM and SAM can both bring a performance gain of 1.1% and the best results can be acquired
by the combination of the two. In general, with the help of SSM, AFM, and SAM, the mIoU score is
improved by more than 2%, achieving state-of-the-art performance. The visualization of the ablation
study is depicted in Figure 6.

1) https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-potsdam.

https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-potsdam.
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Table 1 Results of SSM on the Potsdam dataset

Scale Method Imp. sur. Car Tree Low veg. Building Clutter mIoU FWIoU mF1

UNet [21] 82.2 82.9 73.9 72.1 88.6 31.7 71.9 78.6 81.9

Low HRNet [26] 83.0 81.3 72.7 72.5 90.0 36.2 72.6 79.2 82.7

PSPNet [24] 84.0 80.5 74.7 73.4 90.5 36.9 73.3 80.2 83.2

UNet [21] 82.3 81.5 72.6 71.2 88.6 33.1 71.6 78.3 81.8

Middle HRNet [26] 81.4 81.0 68.6 69.6 88.6 35.1 70.7 77.5 81.0

PSPNet [24] 83.6 79.4 73.6 73.0 90.1 37.1 72.8 79.7 82.9

UNet [21] 80.9 80.5 71.5 69.5 88.3 31.4 70.4 77.2 80.9

High HRNet [26] 80.4 79.7 67.6 67.8 88.5 28.3 68.7 75.9 79.5

PSPNet [24] 79.6 72.4 68.1 68.1 88.2 30.1 67.7 75.6 79.1

Table 2 Performance contribution of each module in MFVNet on the Potsdam dataset

Method Multiple FOV SSM SAM AFM mIoU FWIoU mF1

Baseline 72.6 79.2 82.7

Baseline+MFOV X 73.2 80.0 83.1

Baseline+MFOV+SSM X X 73.6 80.8 83.6

Baseline+MFOV+SSM+SAM X X X 74.7 81.3 84.3

Baseline+MFOV+SSM+SAM+AFM (our MFVNet) X X X X 74.8 81.5 84.3

(our MFVNet)

Figure 6 (Color online) Visualization of ablation study.

4.4 Comparison with existing methods

In this subsection, we evaluate the performance of the proposed framework against recent state-of-the-art
methods. All methods reported here are re-implemented with the hyper-parameters listed in the studies
to ensure fair comparisons, including previous state-of-the-art semantic segmentation models [21, 22, 24,
26, 35, 36] and methods designed for RSI semantic segmentation [32, 37–39].

The quantitative results are presented in Tables 3–5, our proposed MFVNet leads to a significant gain
over existing methods. It can be observed that the mIoU scores of the proposed MFVNet are about 0.6%,
1.8%, and 1.3% higher than those of the state-of-the-art methods for the GID, GF1WFV, and Potsdam
datasets, respectively.

Furthermore, most of the existing methods (e.g., PSPNet [24], DANet [35]) fail to work well on all
three RSI datasets, while our MFVNet performs well on these three datasets since MFVNet can exploit
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Table 3 Comparison with existing methods on the GID dataset

Method Build-up Farmland Forest Meadow Water mIoU FWIoU mF1

UNet [21] 94.4 97.1 90.6 90.1 97.3 93.9 95.9 96.8

PSPNet [24] 94.2 96.6 95.1 92.3 97.1 95.0 96.0 97.4

Deeplabv3+ [22] 92.4 96.3 94.3 92.7 97.2 94.6 95.6 97.2

HRNet [26] 93.7 96.7 93.2 93.5 97.4 94.9 96.0 97.4

DANet [35] 93.3 96.6 88.8 85.9 97.3 92.4 95.1 96.0

CCNet [36] 92.2 95.7 90.8 87.9 94.3 92.2 94.2 95.9

TS-MTA [37] 94.1 96.4 92.7 88.3 96.3 93.8 95.1 96.8

WiCNet [38] 93.3 96.5 94.2 93.3 97.0 94.9 95.8 97.3

GLNet [39] 83.9 92.2 69.1 88.0 93.3 85.3 90.0 91.8

FCTL [32] 91.5 96.1 89.0 87.4 96.6 92.1 94.6 95.9

MFVNet (ours) 95.1 97.4 93.8 93.7 97.9 95.6 96.7 97.7

Table 4 Comparison with existing methods on the GF1WHU dataset

Method Cloud Shadow Clear mIoU FWIoU mF1

UNet [21] 91.2 56.8 86.2 78.1 87.2 87.0

PSPNet [24] 91.2 53.8 86.0 77.0 87.2 87.0

Deeplabv3+ [22] 86.9 52.9 92.3 77.4 87.8 86.0

HRNet [26] 92.5 56.8 87.3 78.9 88.3 87.2

DANet [35] 85.7 53.0 91.3 76.7 86.8 85.7

CCNet [36] 85.2 53.1 90.5 76.3 86.2 85.5

TS-MTA [37] 90.8 51.3 92.6 78.3 89.8 86.4

WiCNet [38] 90.6 52.5 92.0 78.4 89.5 86.6

GLNet [39] 94.1 39.9 86.1 73.4 90.9 82.2

FCTL [32] 91.7 27.6 89.6 69.6 88.7 77.8

MFVNet (ours) 92.5 58.5 91.1 80.7 90.2 88.4

Table 5 Comparison with existing methods on the Potsdam dataset

Method Imp. sur. Car Tree Low veg. Building Clutter mIoU FWIoU mF1

UNet [21] 82.2 82.9 73.9 72.1 88.6 31.7 71.9 78.6 82.3

PSPNet [24] 84.0 80.5 74.7 73.4 90.5 36.9 73.3 80.2 83.2

Deeplabv3+ [22] 83.4 80.1 74.2 73.1 90.6 37.4 73.1 79.9 83.2

HRNet [26] 83.0 81.3 72.7 72.5 90.0 36.2 72.6 79.2 82.7

DANet [35] 84.1 80.5 75.1 73.7 90.7 38.2 73.7 80.5 83.6

CCNet [36] 83.6 81.2 74.4 72.5 90.2 32.3 72.4 79.6 82.3

TS-MTA [37] 83.5 82.0 73.8 72.3 91.3 38.2 73.5 80.0 83.4

WiCNet [38] 82.4 80.6 74.1 72.3 89.9 36.8 72.7 79.3 82.8

GLNet [39] 68.7 54.5 67.3 60.5 81.3 21.9 59.0 66.6 72.2

FCTL [32] 72.0 52.2 66.3 61.8 81.0 28.5 60.3 69.3 73.7

MFVNet (ours) 85.2 82.2 76.0 74.9 91.4 39.2 74.8 81.5 84.3

the multiple FOVs contained in the RSIs and combine the strengths of different scales by adaptive fusion,
which owns good generalization ability. It is noted that GLNet [39] and FCTL [32] are supposed to handle
the RSI semantic segmentation with a large FOV, but they perform not very well on these three datasets
with a much longer time consuming than other methods. The reasons may require further exploration.

Some qualitative results are presented in Figures 7–9, which also demonstrate that our proposed
MFVNet is superior to the baseline method (i.e., HRNet [26]) in a large margin. The baseline method
fails to predict precisely on some locations such as the cloudy area in Figure 8 and the building area in
Figure 9. However, our proposed MFVNet can overcome the limited information with the help of multiple
FOVs. MFVNet combines the advantage of all scales and fuses them adaptively for better results.

With the aid of SSM, SAM, and AFM, our proposed MFVNet makes good use of multiple FOVs
in remote sensing images. As shown in the given results in the paper, it can obviously improve the
overall performance. More specifically, the model on the lower scale can only see limited and incomplete
information, whereas the model on the higher scale tends to enlarge the accessible spatial contexts but
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Figure 7 (Color online) Visualization results on the GID dataset. Pink boxes demonstrate the effectiveness of MFVNet.

Figure 8 (Color online) Visualization results on the GF1WHU dataset. Pink boxes demonstrate the effectiveness of MFVNet.

Figure 9 (Color online) Visualization results on the Potsdam dataset. Pink boxes demonstrate the effectiveness of MFVNet.
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inevitably brings the potential noises (e.g., the ignored small objects) to the whole MFVNet. Even
though our proposed MFVNet aims to adaptively fuse the models with multiple FOVs and pursue the
best overall performances, it is quite challenging for a unified model to achieve the top in all categories due
to the scale variation of geospatial objects in the mission of remote sensing image semantic segmentation.
For instance, the special designs of the U-shape and the skip-connection in UNet are beneficial to the
segmentation of small objects (e.g., the car category in the Potsdam dataset), while the performance
on large objects is extremely degenerated. In general, our proposed MFVNet inherits the advantage of
UNet on small objects and handles large objects well meanwhile. It is for a similar reason that MFVNet
achieves suboptimal performance on some large objects (e.g., the forest category in the GID dataset).
After all, given the best overall performance, the performance decline of our MFVNet in some categories
(e.g., the car category in the Potsdam dataset or the forest category in the GID dataset) compared with
the different optimal networks is acceptable.

5 Conclusion and discussion

In this paper, we propose a deep adaptive fusion network to make full use of multiple FOVs in the RSIs.
We enlarge the accessible spatial contexts by pyramid sampling the original RSIs, which form images
with multiple FOVs due to the different pyramid sampling rates. Based on the differences among scales,
we perform SSM searching for each scale, to choose the best model for a specific scale. The images on
different scales are independently fed to the corresponding SSMs and produce scale-specific feature maps
and score maps, which need to be aligned first because of spatial misregistration caused by resampling.
Hence, the feature maps and score maps from high scales are aligned to low scales by the SAMs. Then
these feature maps are concatenated and used to compute the scale-specific weight maps. Finally, the
score maps on different scales are fused adaptively with the help of weight maps in the AFMs, which
generates the final prediction result.

Although the proposed MFVNet can obtain promising results, the SSM searching which is used to select
the best model for each scale costs much time currently, since we have to train each of the candidate models
for all scales thoroughly to compare their performances fairly. Furthermore, the model pool for choosing
only contains three models (i.e., UNet [21], HRNet [26], and PSPNet [24]) because of the time costs.
We hope the development of network architecture searching [53, 54] will help to overcome this problem.
And, only simple cross-entropy loss is studied in this paper, we believe that additional constraints on
the SAM and AFM will further enhance the performances of spatial registration and the adaptive fusion,
which can help to produce a better-fused prediction. It is noted that we do not conduct time-consuming
hyper-parameter (e.g., learning rate) tuning in this work, yet we focus on the architecture design and
fusion problems. We believe that hyper-parameter tuning can be solved with automatic hyper-parameter
searching [55] for further performance improvements, which will also be studied in our future work.
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