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Abstract Recently, multispectral image (MSI) and hyperspectral image (HSI) fusion has been a popular

topic in high-resolution HSI acquisition. This fusion leads to a challenging underdetermined problem, which

image priors are used to regularize, aiming at improving fusion accuracy. To fully exploit HSI priors, this

paper proposes two kinds of priors, i.e., external priors and internal priors, to regularize the fusion problem.

An external prior represents the general image characteristics and is learned from abundant training data by

using a Gaussian denoising convolutional neural network (CNN) trained in the additional gray images. An

internal prior represents the unique characteristics of the HSI and MSI to be fused. To learn the external

prior, we first segment the MSI into several superpixels and then enforce a low-rank constraint for each

superpixel, which can well model local similarities in the HSI. In addition, to model a low-rank property in

the spectral mode, the high-resolution HSI is decomposed into a low-rank spectral basis and abundances.

Finally, we formulate the fusion as an external and internal prior-regularized optimization problem, which

is efficiently tackled through the alternating direction method of multipliers. Experiments on simulated and

real datasets demonstrate the superiority of the proposed method.
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resolution hyperspectral imaging
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1 Introduction

Hyperspectral imaging techniques can simultaneously collect hundreds of spectral bands corresponding
to different spectral wavelengths for a scene. Hyperspectral images (HSIs) with high spectral resolution
ensure an accurate identification of materials, and therefore they find broad application in remote sen-
sing [1–6], medical diagnosis [7], and face recognition [8]. However, because of the limitations of the imag-
ing sensors, an inevitable tradeoff emerges between the spectral and spatial resolutions [9–11]. Therefore,
an HSI of high spectral resolution can be obtained with low spatial resolution, which limits HSI appli-
cation. Meanwhile, multispectral images (MSIs) with fewer spectral bands can be obtained with higher
spatial resolution. Recently, MSI and HSI fusion has become an emerging technique to acquire high
spatial resolution HSI. HSI and MSI fusion mainly has two applications. On the one hand, it can im-
prove HSI spatial resolution, which can be used to design high-resolution HSI cameras. On the other
hand, this fusion improves HSI performance in many high-level computer vision tasks, such as anomaly
detection [12], object classification [13], and change detection [14].

MSI and HSI fusion is a challenging underdetermined problem. To tackle this problem, it can be for-
mulated as an image prior-regularized optimization problem based on the maximum posterior probability
(MAP) estimation rule. Therefore, image priors play a crucial role in improving fusion accuracy. We
categorize the various image priors into two types, i.e., internal and external priors. An external prior
represents the general image characteristics, while an internal prior represents the unique prior in the
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HSI and MSI to be fused. However, the existing methods often only exploit one type of prior, hindering
fusion performance.

To solve this problem, we propose a novel external and internal prior learning-based method (ExInL) for
MSI and HSI fusion. First, to exploit the low-rank property in the spectral mode, the high-resolution HSI
is decomposed into a low-rank spectral basis and abundances, and then the spectral basis is learned from
the HSI. Next, we formulate the estimation of abundances as an external and internal prior-regularized
optimization problem. To fully exploit the external prior, we incorporate a Gaussian denoising convo-
lutional neural network (CNN), trained in the additional gray images, into the optimization. To model
the internal prior, we first segment the MSI into several superpixels and then enforce the low-rank con-
straint for abundances in each superpixel, which fully exploits the local similarities of high-resolution HSI.
The optimization problem is tackled efficiently through the alternating direction method of multipliers
(ADMMs). The main contributions of this paper are summarized as follows.

(1) Based on the MAP, we formulate the HSI and MSI fusion as an internal and external prior-
regularized optimization problem, which can effectively model HSI image priors.

(2) We propose a novel method for HSI and MSI fusion, which models the external prior by learning a
Gaussian denoizer from the additional training data and learns the internal priors by imposing spatially
local low-rank priors in the MSI and HSI.

(3) The experimental results on two simulated datasets and one real dataset demonstrate the effective-
ness of the proposed method.

The remaining sections of this paper are organized as follows. Section 2 introduces the representative
MSI and HSI fusion approaches. We give a detailed introduction to the proposed ExInL approach in
Section 3. The experiments are presented in Section 4. The conclusion is given in Section 5.

2 Related work

In this section, the representative works in MSI and HSI fusion are reviewed. Ref. [15] gives a comprehen-
sive review of HSI and MSI fusion. On the basis of the characteristics of these methods, we classify the
fusion approaches into three types: pan-sharpening methods, model-based methods, and deep learning-
based methods.

2.1 Pan-sharpening methods

Pan-sharpening methods [16–20] are originally designed for merging a high-resolution panchromatic
(PAN) image with a low-resolution MSI. Representative pan-sharpening approaches include component
substitution approaches and multi-resolution analysis approaches. Because MSI and HSI fusion has a
similar form to pan-sharpening, some studies adapt pan-sharpening approaches to MSI and HSI fusion.
For example, Ref. [21] first partitions the spectral bands of HSI as several groups according to the cor-
respondence between the spectral bands of HSI and MSI and then uses pan-sharpening methods to fuse
each spectral band of MSI with counterpart bands in HSI. Moreover, a high-resolution image is generated
by linear regression, and then each band of the HSI is fused with the generated image [22]. MSI and HSI
fusion methods derived from pan-sharpening often have a low computational burden. However, a fused
HSI often has substantial spectral distortions.

2.2 Model-based methods

The model-based fusion approaches assume that HSIs and MSIs can be considered the spatially and
spectrally degraded versions of fused HSIs [23], respectively. On the basis of this assumption, methods in
this category establish the degradation model for HSIs and MSIs, where the degradation process depends
on the spectral response function and point spread function of the sensors. These methods combine an
imaging model with handcrafted priors to address the fusion problem. For example, Dong et al. [24]
decomposed the desired high-resolution HSI as a spectral basis and abundances and estimate the spectral
basis and abundances based on an imaging model and a nonlocal sparse regularization. To exploit the
local and nonlocal similarities of an HSI, Han et al. [25] presented a nonlocal similarity-constrained
sparse representation approach to obtain the spectral basis and abundances. Except for spare priors,
some studies also exploited a low-rank prior to estimate a high-resolution HSI. For example, Simoẽs
et al. [26] first obtained a low-dimensional spectral basis by using vertex component analysis [27] and
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then obtained the abundances by using a spatially smooth prior. Zhou et al. [28] argued that a high-
resolution HSI has strong local self-similarities and used a locally low-rank prior to regularize the fusion
procedure. Liu et al. [29] proposed a truncated matrix factorization method for MSI and HSI fusion,
which exploits the superpixel-level low-rank properties of an HSI. Furthermore, a global and local low-
rank-regularized method [30] is proposed for the fusion. Ren et al. [31] considered the spectral variability
of subclass objects and formulate the fusion problem as a local prior-regularized optimization problem. In
contrast to the matrix factorization, many studies apply the tensor decomposition technique to accurately
represent a high-resolution HSI and solve the fusion problem, which includes Tucker decomposition,
Canonical polyadic, tensor train decomposition, tenor singular value decomposition (SVD), and tensor
ring decomposition. On the basis of Tucker decomposition, Dian et al. [32, 33] presented a sparse tensor
factorization method for the fusion, which decomposes the desired high-resolution HSI as a core tensor
and factor matrices of three modes and estimates them with a tensor sparse prior. Furthermore, Chang
et al. [34] presented a weighted low-rank tensor recovery model for the fusion, which imposes different
sparsity regularization weights on different elements of the core tensor. Xu et al. [35] presented a nonlocal
CP decomposition approach to fusing an MSI and HSI, which fully exploits the nonlocal spatial-spectral
similarities of the HSI. To exploit the spatial low-rank of the HSI, Liu et al. [36] proposed a low tensor
trace norm regularization-based method. He et al. [37,38] proposed the tensor ring decomposition-based
methods, which can effectively learn the low-rank property of an HSI.

2.3 Deep learning-based methods

Deep CNNs have advantages in learning image features and have achieved considerable progress in image
processing. Many efforts have been made to apply CNNs to MSI and HSI fusion. Methods in this
category are supervised, which first learn the mapping function from the MSI and HSI to the high-
resolution HSI from available training data. A CNN with various structures has been proposed for MSI
and HSI fusion. For example, Fu et al. [39] proposed a deep detail network for the fusion, which uses
grouped multiscale dilated convolutions to effectively preserve contextual features. Ref. [40] presented a
mature Gaussian-Laplacian pyramid network for the fusion, which comprises several Laplacian pyramid
dense modules. To extract the spatial and spectral features, Hu et al. [41] used the attention and
pixelShuffle modules to construct an efficient network, which obtains outstanding performance. Wang
et al. [42] proposed a variational probabilistic autoencoder-based CNN for the fusion, which exploits the
local spectral structures and spatial correlation. To tackle the blind MSI and HSI fusion problem, Wang
et al. [43,44] iteratively and alternatively optimized an imaging model and the fusion procedure by using
an iterative refinement unit. Ref. [45] first initialized a high-resolution HSI based on an imaging model
and then learnt the residual features between the desired HSI and unused HSI. Zheng et al. [46] proposed
an edge-conditioned feature transform network to exploit an edge map prior. To fully exploit imaging
models, Dong et al. [47] presented an imaging model-guided CNN to fuse an HSI and MSI. Furthermore,
a deep unfolding CNN was proposed by Xie et al. [48, 49] for the fusion, which combines deep proximal
gradient descent with a deep CNN. Yang et al. [50] exploited a CNN with two paths to obtain the spatial
features and spectral features. To solve the problem of insufficient training data, Ref. [51] used the CNN
denoizer for the HSI sharpening and combined imaging models with image priors learned by the CNN,
which can flexibly cope with data of different types. To exploit the imaging model in the CNN, Ref. [52]
proposed a variational regularization network, which uses gradient descent to obey the imaging model
and attention scheme to learn an HSI prior. Given that an HSI and MSI are often not well aligned, Zheng
et al. [53] proposed a spectral unmixing and image deformation correction network to jointly align and
fuse an HSI and MSI.

3 Proposed method

3.1 Imaging model

Let X ∈ R
S×n (n = w × h), Y ∈ R

s×N (N = W × H), and Z ∈ R
S×N represent an HSI, MSI, and

high-resolution HSI, respectively, where (w, h) and (W,H) are the spatial dimensions of the HSI and
MSI, respectively. Here, each row and column of the matrices denotes a band and a pixel of the image,
respectively. An imaging model describes the inherent relationship among the desired high-resolution HSI,
HSI, and MSI. Fusion imaging models have been studied and introduced in many previous studies [53–55].
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These studies assume that an HSI and MSI are spatially and spectrally downsampled versions of a high-
resolution HSI, which are expressed as

X = ZBD +Nx,

Y = RZ +Ny,
(1)

where B ∈ RN×N denotes a spatially blurring matrix and is often assumed to be identical in all spectral
bands. The function of the matrix B can be seen as conducting circular convolution with convolutional
kernel K ∈ RN×N , where K ∈ RN×N is a diagonal matrix and preserves elements of the convolutional
kernel in its diagonal line. Therefore, B ∈ RN×N can be decomposed as

B = FΣFH, (2)

where F denotes a 2-dimensional discrete Fourier transform, and FH denotes its conjugate transpose.
The convolution kernel depends on the point spread function of the sensor. D ∈ RN×n denotes a spatially

downsampling matrix, which conducts uniform downsampling with stride d =
√

N
n
, and satisfies

DHD = I, (3)

where I is the identity matrix. The matrix R is a spectrally downsampling matrix, which is up to the
spectral response function of the imaging sensor. Nx and Ny denote the additive noise in the HSI and
MSI, respectively.

Zhuang et al. [56,57] used the low-rank property of an HSI in the spectral domain for HSI reconstruction,
which has shown state-of-the-art performance. In this way, a high-resolution HSI can be written as

Z = SA, (4)

where S ∈ RS×L and A ∈ RL×N are the subspace and abundances, respectively. On the basis of the
subspace representation, the imaging model (8) can be rewritten as

X = SABD +Nx,

Y = RSA+Ny.
(5)

3.2 Subspace estimation

According to the subspace representation, MSI and HSI fusion is formulated as an estimate of S and
A. A low-resolution HSI preserves the most spectral information, and therefore high- and low-resolution
HSIs are assumed to share the same spectral subspace. In this way, we estimate the spectral subspace
from the low-resolution HSI. We first conduct SVD on the low-resolution HSI, that is

X = UΣ̂V T. (6)

Here, U and V are semi-unitary, and a diagonal matrix Σ̂ contains the singular values, which are
arranged in non-increasing order. The large singular values represent the key information of the HSI, and
therefore we reserve the L largest singular values and ignore the rest. In this way, the subspace S can be
computed as

S = U(:, 1 : L). (7)

3.3 External and internal prior learning for the fusion

Because the observed HSI and MSI are the downsampled versions of the underlying high-resolution
HSI, MSI and HSI fusion is a severally underdetermined problem. To tackle this challenging problem,
various priors have been proposed to regularize it, such as sparse priors [24], low-rank priors [55], spatial
smoothness [26], nonlocal similarities [25], and image priors learned by a deep CNN [51]. Image priors
reflect HSI characteristics and play an important role in MSI and HSI fusion. In general, priors can
be categorized as internal and external priors. The internal priors are derived from the images to be
fused, which differ between image types. The internal priors model the unique characteristics of the
HSI and MSI to be fused. The external priors model the general priors for images, which are common
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in the images and are often learned from the additional training data by a deep CNN. However, the
existing approaches often only use one type of prior to solve the fusion problem, which hinders fusion
performance improvement. To address this issue, we propose a novel method that can simultaneously
exploit the external and internal HSI priors. After acquiring the subspace S, the abundances A should be
estimated to acquire the high-resolution HSI. On the basis of the MAP, the estimate of the abundances
can be formulated as

A = argmax
A

P (A|X,Y ) = argmax
A

P (X,Y |A)P (A)

P (X,Y )

= argmin
A

− log{P (X,Y |A)} − log{P (A)}. (8)

In (8), the log-likelihood term − log{P (X,Y |A)} depicts the imaging model between A, X, and Y . On
the basis of the imaging model (5), − log{P (X,Y |A)} is equivalent to

− log{P (X,Y |A)} =
1

2σ2
x

‖SABD −X‖2F +
1

2σ2
y

‖RSA− Y ‖2F, (9)

where σ2
x and σ2

y denote the variance of white Gaussian noise in the observation model of the HSI and
MSI, respectively. The term − log{P (A)} in (8) denotes the prior information of A. Here, we use the
internal and external prior information to regularize the estimate of A, and therefore we write the prior
information term as

− log{P (A)} = λ1φ1(A) + λ2φ2(A), (10)

where λ1 and λ2 denote the regularization parameters, and φ1(·) and φ2(·) denote the internal and
external priors of A, respectively. By combing the imaging model and priors, the estimate of A is
written as

min
A

||X − SABD||2F + ||Y −RSA||2F + λ1φ1(A) + λ2φ2(A). (11)

The optimization (11) effectively combines the external and internal priors for MSI and HSI fusion.

The optimization problem (11) is difficult to solve directly because of the existence of regularization.
We adopt the ADMMs [58] to address this problem iteratively. The idea of the ADMMs is to decompose
the original problem into iteratively solving several treatable subproblems. By introducing new variables
Â andA, the optimization (11) is transferred into minimizing the following augmented Lagrange function:

L(A, Â,A, Ĝ,G) = ||X − SABD||2F + ||Y −RSA||2F + λ1φ1(Â) + λ2φ2(A)

+ µ

∥∥∥∥∥A− Â+
Ĝ

2µ

∥∥∥∥∥

2

F

+ µ

∥∥∥∥A−A+
G

2µ

∥∥∥∥
2

F

. (12)

The function (12) can be minimized by iteratively addressing the following subproblems:

A = argmin
A

L(A, Â,A, Ĝ,G),

Â = argmin
Â

L(A, Â,A, Ĝ,G),

A = argmin
A

L(A, Â,A, Ĝ,G).

(13)

3.3.1 Optimization of A

The optimization of A can be written as

A = argmin
A

L(A, Â,A, Ĝ,G)

= argmin
A

||X − SABD||2F + ||Y −RSA||2F + µ

∥∥∥∥∥A− Â+
Ĝ

2µ

∥∥∥∥∥

2

F

+ µ

∥∥∥∥A−A+
G

2µ

∥∥∥∥
2

F

. (14)
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The optimization (14) is strongly convex and thus has a unique solution. Therefore, we take the derivative
w.r.t. A as zero and obtain the following equation:

H1A+AH2 = H3, (15)

where H1, H2, and H3 satisfie

H1 = (RS)TRS + 2µI,

H2 = (BD)(BD)T,

H3 = (RS)TY + STX(BD)T + µ

(
Â−

Ĝ

2µ
+A−

G

2µ

)
.

(16)

Eq. (15) is a Sylvester equation, which can be addressed by the conjugate gradient descent method.
Following previous studies [55, 59], we obtain a closed-form solution by exploiting the properties of the
convolution blur and downsampling matrix. From (16), we know that H1 is positive and symmetric, and
therefore it can be diagonalized by eigenvalue decomposition, i.e.,

H1 = QΛQ−1. (17)

where diagonal matrix Λ is written as

Λ =




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λL



. (18)

By left multiplying by Q−1 and right multiplying (15) by the DFT matrix F for (15), we obtain the
following equation:

ΛQ−1AF +Q−1AFΣFHDDHFΣH = Q−1H3F , (19)

By substituting (24) into (19), we obtain the following equation:

ΛÃ+ ÃKKH = C, (20)

where Ã = Q−1AF , K = ΣFHD, and C = Q−1H3F . Eq. (20) can be considered a new Sylvester
equation for Ã. Ã and C are written as Ã = [ã1, . . . , ãL]

T and C = [c1, . . . , cL]
T, respectively, where ci

and ãi denote the i-th row of C and Ã, respectively. In this way, we estimate Ã in a row-by-row manner,
i.e.,

λiãi + ãiKKH = ci, for i = 1, . . . , L. (21)

We can obtain
ãi = ci(λiIn +KKH)−1, for i = 1, . . . , L. (22)

By using the matrix inverse formula (I +AB)−1 = I −A(I +BA)−1B, ãi is equivalent to

ãi = λ−1
i ci − λ−1

i ciK(λiIn +KHK)−1KH. (23)

Lemma 1 (Wei et al. [60]). According to the properties of D, the equation is obtained

FHD =
1

d
(1d2 ⊗ In), (24)

where In ∈ Rn×n is the identity matrix, and 1d2 ∈ Rd2

is a vector of ones.

By using Lemma 1, we can obtain KKH, which is also a diagonal matrix and can be computed as

KHK =
∑d2

i=1 Σ
2
i , where Σi is the submatrix of Σ. The diagonal matrix Σ can be represented as

Σ =




Σ1 0 · · · 0

0 Σ2 · · · 0
...

...
. . .

...

0 0 · · · Σd2



, (25)
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where Σi ∈ Cn×n. In this way, the computational complexity of (λiIn +KHK)−1 is reduced from O(n3)
to O(n). Therefore, we have

ãi = λ−1
i ci − λ−1

i ciK


λiIn +

d2∑

i=1

Σ2
i




−1

KH. (26)

After obtaining Ã, A is estimated as
A = QÃFH. (27)

3.3.2 Optimization of Â (inter prior learning)

The optimization of Â can be written as

Â = argmin
Â

L(A, Â,A, Ĝ,G)

= argmin
Â

µ

∥∥∥∥∥A− Â+
Ĝ

2µ

∥∥∥∥∥

2

F

+ λ1φ1(Â). (28)

Eq. (28) models the internal prior of A. The internal prior represents the characteristics of the HSI
and MSI to be fused, which differ from those of other types of images. We propose a local low-rank
representation to learn the local low-rank prior. A scene often contains similar materials in a local area,
which results in local similarities in the HSI. Because an MSI preserves the main spatial information of
a high-resolution HSI, we learn the local spatial similarities from the MSI. Specifically, we first use the
superpixel method [61] to divide the MSI into several superpixels Zi, i = 1, . . . , T based on the similarities
of the adjacent pixels, where Zi denotes the i-th superpixel, and T is the number of superpixels. On the
basis of the learned spatial structures in the MSI, the abundances are also divided into several superpixels
Ai, i = 1, . . . , T . The elements in each superpixel are very similar to each other, which leads to the low-
rank prior. Therefore, we use the local low-rank regularization to learn the internal prior. On the basis
of the proposed internal prior, Eq. (28) can be written as

Â = argmin
Â

µ

∥∥∥∥∥A− Â+
Ĝ

2µ

∥∥∥∥∥

2

F

+ λ1

T∑

i=1

||Ai||∗, (29)

where || · ||∗ represents the nuclear norm, which is defined as the sum of singular values and is a convex
relation for the matrix rank. Since different superpixels do not have overlaps, the optimization (29) can
be solved for each superpixel, that is,

Âi = argmin
Âi

µ

∥∥∥∥∥A
i − Âi +

Ĝi

2µ

∥∥∥∥∥

2

F

+ λ1||A
i||∗, (30)

which has the following closed-form solution:

Âi = U

(
Σ−

λ1

2µ

)

+

V T, (31)

where UΣV T is the SVD of Ai + Ĝ
i

2µ and (·)+ is the positive part. After acquiring each superpixel, Â
is obtained by merging all superpixels.

3.3.3 Optimization of Â (external prior learning)

The optimization of Â can be written as

A = argmin
A

L(A, Â,A, Ĝ,G)

= argmin
A

µ

∥∥∥∥A−A+
G

2µ

∥∥∥∥
2

F

+ λ2φ2(A). (32)
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Eq. (33) models the external prior of A. The external prior denotes the generalized prior of the HSI,
which is learned from the additional training data. The optimization (33) can be considered a denoising

problem, which aims to remove the white additive Gaussian noise of variation σ2 = λ2

2µ from A + G

2µ .

Therefore, we adopt FFDNet [62], a flexible and fast CNN for image denoising, to solve (33). FFDNet
has three types of modules: a 3×3 convolution layer (Conv), batch normalization [63], and rectified linear
units [64]. Furthermore, a tunable noise level and noisy images are simultaneously input into the network,
and therefore FFDNet can adaptively handle noisy images of different noise levels without retraining.
Each row of A preserves the spatial structures of the high-resolution HSI, and each row of abundances is
independent because of the subspace representation. In this way, we estimate each row of A by applying

FFDNet to each row of H = A+ G

2µ , i.e.,

Ai = argmin
Ai

µ

∥∥∥∥Ai −Ai +
Gi

2µ

∥∥∥∥
2

F

+ λ2φ2(Ai)

= F

(
Hi,

λ2

2µ
; Θ

)
, i =, 1, 2, . . . , L, (33)

where Θ denotes the parameters of FFDNet, and Hi, Ai, Gi, and Ai denote the i-th row of H , A, G,
and A, respectively. The FFDNet method is trained for gray images, and the images are scaled to [0, 1].
Therefore, we should also first scale each row of H to [0, 1] by linear transform. Correspondingly, the
noise variance should be changed as ciσ

2. Finally, the denoising results are transformed back. In this
way, we estimate V in (33) as

Ĥi = ciHi + bi,

V̂i = F

(
Hi,

ciλ2

2µ
; Θ

)
,

Vi =
V̂ (i, :)− bi

ci
,

(34)

where ci =
1

max(Hi)−min(Hi)
and bi = −ci × min(Hi).

3.3.4 Optimization of Ĝ and G

The Lagrangian multipliers Ĝ and G are updated through

Ĝ = Ĝ1 + 2µ(A− Â),

G = G2 + 2µ(A−A).
(35)

3.3.5 Update for µ

Because the noise level in each iteration is σ2 = λ
2µ , the parameter µ plays an important role in FFDNet

denoising. The image tends to be closer to the clean image with increasing iterations. Hence, the
noise level σ2 should decrease with increasing iterations. In this way, we increase the value of µ in the
iteration by

µ = γµ, (36)

where γ > 1. In this way, we can decrease the noise level.

4 Experiments

To verify the effectiveness of the proposed network, we test the compared approaches on two simulated
datasets and one real dataset.
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4.1 Dataset and data simulation

4.1.1 Pavia university dataset

The Pavia University dataset [65] was obtained by the ROSIS sensor during a flight campaign over Pavia
University, Italy. The HSI has 115 spectral bands and 610 × 340 pixels, and only 93 bands are used by
removing the bands of low signal-to-noise ratio (SNR). The HSI has a spatial resolution of 1.5 m. The
low-resolution HSI is simulated by using a Gaussian filter (size of 7× 7 and stand variation 3) and then
downsampling the image with a factor of 4. The MSI is obtained by the IKONOS-like spectral response.
We add the i.i.d. noise of 30 and 25 dB to the MSI and HSI, respectively. For HSI imaging, an increase
in the number of spectral bands often results in a decrease in the SNR. Therefore, we add the serve noise
to the HSI in the simulation.

4.1.2 Indian pines dataset

The Indian Pines dataset was acquired by NASA’s airborne visible and infrared imaging spectrometer [66].
The HSI has a size of 128 × 128 × 224 and 224 spectral bands and covers a wavelength range of 400–
2500 nm. The number of spectral bands is reduced to 200 by removing bands 104–108, 150–163, and 220
of the image because of the extremely low SNR in these bands. A low-resolution HSI of size 32×32×200
is produced by applying a 7 × 7 Gaussian blur (standard deviation of 3) and then by downsampling
the blurred image with a ratio of 4. The MSI with six bands is simulated by a Landsat7-like spectral
response. We add the i.i.d. noise of 30 and 25 dB to the MSI and HSI, respectively.

4.1.3 Gaofen 5

We also conduct experiments on a real dataset. The HSI is carried by the Chinese satellite Gaofen (GF)
5, which has a spatial resolution of 30 m. The HSI has 330 bands and a spectral range of 390–2513 nm.
To match the MSI, only 150 spectral bands are used, corresponding to a spectral range of 390–1000 nm.
The MSI is carried by the Chinese satellite GF 1, which has a spatial resolution of 16 m. The MSI has
four bands and a spectral range of 400–1000 nm. The HSI and MSI are of size 600 × 600 × 150 and
300× 300× 4, respectively.

4.2 Compared approaches and settings

We compare the proposed method with seven recent state-of-the-art methods for HSI super-resolution,
comprising the Gram-Schmidt adaptive (GSA) [67]1), HySure [26]2), CNMF [68]3), coupled sparse tensor
factorization (CSTF) [33]4), global-local low-rank promoting algorithm (GLORIA) [30]5), factor smoothed
tensor ring decomposition (FSTRD) [38], and CNN fusion method (CNN-Fus) [51]6). Among the com-
pared methods, the CSTF, GLORIA, and FSTRD exploit the internal priors, and CNN-Fus exploits the
external priors. For the CSTF, we rewrite the initialization procedure of two spatial dictionaries by using
the SVD, which makes the algorithm converge faster without deteriorating the fusion performance. We
set L = 10, T = 200, λ1 = 1.5 × 10−3, and λ2 = 1 × 10−3 for the proposed method. The parameters of
the other approaches are carefully tuned for optimal performance.

4.3 Quality metrics

To evaluate the quality of high-resolution HSIs obtained by HSI approaches, five quality metrics are
used in our study, comprising the peak SNR (PSNR), structural similarity index (SSIM) [69], relative
dimensionless global error in synthesis (ERGAS) [70], universal image quality index (UIQI) [71], spectral
angle mapper (SAM), and running time in seconds. Larger values of PSNR and UIQI mean higher quality
metrics, and smaller values of ERGAS and SAM mean higher quality metrics. The running time is used
to evaluate the computational efficiency of the compared methods. All elements of the image are scaled
to [0, 255] when the quality metrics are calculated.

1) https://openremotesensing.net/knowledgebase/hyperspectral-and-multispectral-data-fusion/.

2) https://github.com/alfaiate/HySure.

3) http://naotoyokoya.com/Download.html.

4) https://github.com/renweidian/CSTF.

5) https://github.com/REIYANG/GLORIA.

6) https://github.com/renweidian/CNN-FUS.

https://openremotesensing.net/knowledgebase/hyperspectral-and-multispectral-data-fusion/
https://github.com/alfaiate/HySure
http://naotoyokoya.com/Download.html
https://github.com/renweidian/CSTF
https://github.com/REIYANG/GLORIA
https://github.com/renweidian/CNN-FUS
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Table 1 Quantitative indices of the test approaches on Pavia University dataset [65]

Method
Pavia University dataset

PSNR SAM SSIM UIQI ERGAS Running time (s)

Reference +∞ 0 1 1 0 0

GSA [67] 35.950 5.479 0.935 0.944 2.941 1.746

CNMF [68] 39.633 3.716 0.957 0.967 2.111 164.848

Hysure [26] 40.935 3.302 0.965 0.973 1.876 129.930

CSTF [33] 38.357 4.590 0.941 0.957 2.451 117.345

GLORIA [30] 40.898 3.354 0.965 0.973 1.912 183.414

FSTRD [38] 40.206 3.527 0.961 0.971 2.016 490.207

CNN-Fus [51] 41.434 3.158 0.969 0.975 1.857 8.466

ExInL (our method) 41.810 2.952 0.971 0.977 1.753 29.532

Table 2 Quantitative indices of the test approaches on the Indian Pines dataset [72]

Method
Indian Pines dataset

PSNR SAM SSIM UIQI ERGAS Running time (s)

Reference +∞ 0 1 1 0 0

GSA [67] 33.646 3.898 0.815 0.539 3.104 2.378

CNMF [68] 36.458 2.882 0.861 0.654 1.818 19.327

Hysure [26] 38.380 2.479 0.894 0.720 1.426 13.59

CSTF [33] 35.070 3.428 0.814 0.602 2.260 9.686

GLORIA [30] 39.895 2.245 0.932 0.777 1.192 33.596

FSTRD [38] 40.087 2.322 0.928 0.777 1.185 34.565

CNN-Fus [51] 38.620 2.645 0.896 0.732 1.412 2.288

ExInL (our method) 42.091 2.013 0.946 0.829 0.967 3.081

4.4 Experiments on simulated data fusion

Table 1 [26, 30, 33, 38, 51, 65, 67, 68] lists the quality metrics of the compared approaches on the Pavia
University dataset. The optimal results are highlighted in bold. Table 1 shows that the proposed ExInL
consistently achieves the optimal results on all quality metrics, verifying the superiority of the proposed
method. In addition, CNN-Fus, which exploits the external priors, obtains suboptimal results. For
computational efficiency, the GSA method has high computational efficiency because it does not need to
solve a complex optimization problem. Figure 1 displays the false-color images constituted by the 60th,
25th, and 4th bands and the corresponding error images of fused Pavia University images through test
approaches. Compared with the low-resolution HSI, all compared approaches can provide sharp spatial
details, which demonstrate the effectiveness of the HSI and MSI fusion. The error images show that
the GSA method has a relatively large error, and the proposed ExInL method and CNN-Fus have fewer
errors than other approaches.

Table 2 [26,30,33,38,51,67,68,72] reports the average quality metrics of the compared approaches on
the Indian Pines dataset. Table 2 shows that the proposed method obtains significantly better results
than the other compared approaches on all quality metrics. The main reason is that the Indian Pines
dataset has strong local similarities, which are effectively exploited by the proposed method. GLORIA
and FSTRD provide suboptimal results. For computational efficiency, the GSA method and CNN-Fus
need less running time than the other compared approaches. The false-color images constituted by the
33rd, 19th, and 5th bands and the corresponding error images of fused Pavia University images through
the test approaches are shown in Figure 2. Figure 2 shows that the proposed ExInL has considerably
fewer errors than the other compared approaches. GLORIA and FSTRD also outperform the other
approaches.

4.5 Experiments on real data fusion

To further verify the performance of the proposed method, we test the compared methods on real data
fusion. We estimate the spatial and spectral responses through the proposed method and use them in
the compared fusion methods. For real data validation, there is no ground truth for calculating quality
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Figure 1 (Color online) False-color images constituted by the 60th, 25th, and 4th bands and the corresponding error images of

fused Pavia University images using the test approaches. (a) Low-resolution HSI; (b) ground truth; (c) GSA [67]; (d) CNMF [68];

(e) Hysure [26]; (f) CSTF [33]; (g) GLORIA [30]; (h) FSTRD [38]; (i) CNN-Fus [51]; (j) ExInL.

metrics, and therefore the visual comparison is essential to measure the compared approaches. Figure
3 shows the false-color images constituted by the 61st, 38th, and 14th bands of fused GF 5 and GF 1 by
test approaches, and a meaningful region is marked and magnified for visual comparison. The magnified
region shows that the results of GSA and CNMF lose some important details. The proposed method and
GLORIA perform the best in reconstructing the high-resolution details, which provides evidence of the
superiority of our method.
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Figure 2 (Color online) False-color images constituted by the 33rd, 19th, and 5th bands and the corresponding error images of

the fused Indian Pines dataset using the test approaches. (a) Low-resolution HSI; (b) ground truth; (c) GSA [67]; (d) CNMF [68];

(e) Hysure [26]; (f) CSTF [33]; (g) GLORIA [30]; (h) FSTRD [38]; (i) CNN-Fus [51]; (j) ExInL.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3 (Color online) False-color images constituted by the 61st, 38th, and 14th bands of GF 5 and GF 1 fusion using the

test approaches. (a) High-resolution MSI; (b) low-resolution HSI; (c) GSA [67]; (d) CNMF [68]; (e) Hysure [26]; (f) CSTF [33];

(g) GLORIA [30]; (h) FSTRD [38]; (i) CNN-Fus [51]; (j) ExInL.
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Table 3 Ablation analysis for the proposed method

Method
Pavia University Indian Pines

PSNR SAM SSIM UIQI ERGAS PSNR SAM SSIM UIQI ERGAS

Reference +∞ 0 1 1 0 +∞ SAM(0) SSIM(1) UIQI(1) ERGAS(0)

None 36.482 6.402 0.894 0.929 3.287 31.413 6.436 0.639 0.452 3.413

External 41.393 3.152 0.969 0.975 1.869 38.491 2.709 0.891 0.728 1.436

Internal 40.218 3.638 0.956 0.968 2.001 40.679 2.217 0.930 0.793 1.110

Internal+External 41.810 2.952 0.971 0.977 1.753 42.091 2.013 0.946 0.829 0.967

4.6 Ablation analysis

As mentioned above, the proposed method exploits the external and internal priors to solve the fusion
problem. In this subsection, we illustrate the effectiveness of the external and internal priors. To verify
their effectiveness, we conduct the experiments only with external priors, only with internal priors, and
without both priors, while keeping other settings the same. Table 3 reports the quality metrics of the
proposed method only with external priors, only with internal priors, without both priors (denoted by
none), and with both priors. Table 3 shows that the proposed method obtains poor results without both
priors and achieves superior results with both priors, which demonstrates the effectiveness of the external
and internal priors.

5 Conclusion

In this paper, we present a novel multispectral and hyperspectral image fusion method based on external
and internal prior learning. Specifically, we learn the external learning from the additional training data
by using a convolutional neural network. Moreover, the external prior is learned from the high-resolution
MSI by exploiting the local low-rank property. Finally, we incorporate the learned external and internal
priors into a unified optimization framework. Experiments on simulated and real datasets demonstrate
the effectiveness of the proposed method.
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