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Appendix A Self-localization System

Technical details on the multiple sensor information fusion odometry calculation, as well as loop closure processing in

self-localization are presented and analyzed comprehensively in this Appendix.

Appendix A.1 Fusion Odometry and Loop Closure

Odometry is the fundamental component of a self-localization system, where measurements of stereo camera, IMU and

Lidar are fused using a local optimizer to facilitate a high-accuracy and robust fusion odometry. We follow OKVIS [1] to

obtain visual-inertial odometry, which includes IMU pre-integration, visual feature matching and tracking, local non-linear

optimization, and marginalization. The VIO calculation in OKVIS is formulated as a joint optimization of a cost function

J(x) consisting both reprojection errors er and temporal error from the IMU es as follows:

J(x) =
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where k and j represent the index of image frame and landmark, respectively. The set of landmarks observed in kth image

frame is denoted by zk. W j,k
r is the information matrix of the landmark measurements, and W k

s is the information matrix

of kth IMU error.

The state estimation of VIO is provided as a motion prediction for laser scan-to-map registration to calculate fusion

odometry, since ICP algorithm can quickly converge with an accurate initial value. Denote optimized fusion odometry at

time-step k + 1 as Lk+1 and the initial estimation of Lk+1 as L∗k+1, we have:

L∗k+1 = LkT
L
t , (A2)

where Lk is the optimized fusion odometry at time-step k, and TLt is motion prediction provided by VIO. In laser scan-

to-map matching, the residual rE of an edge feature point and residual rU of a surface point in the current scan can be

written as,
fE(EL(c,i),L

∗
k+1) = rE ,

fU (UL(c,i),L
∗
k+1) = rU ,

(A3)

where EL
(c,i)

and UL
(c,i)

are the 3D position of the ith dewarped feature point in the body coordinate frame. Levenberg-

Marquardt optimizer is used to solve this non-linear optimization problem for calculating Lk+1, formed by stacking the

cost functions for all feature points.

It is worth noting that the advantage of fusion odometry is that state estimation can still be calculated when one kind of

sensor fails. The diagram of the fusion odometry data processing pipeline is shown in Fig. A1. When the number of tracked

visual features is lower than a threshold, the laser scan registration will be initialized based on IMU motion prediction

instead of VIO shown as the blue line. Similarly, if there are not enough geometric features in the environment, the VIO

outputs will be passed directly to the back-end shown as the green line.

Loop closure and proximity detection are critical to any self-localization system as errors accumulate over long-term

operations. Once a loop closure or proximity detection is triggered, a 6-DOF pose graph based optimization is used to

correct global pose. DBoW2 [2] and ORB [3] features are used for visual loop closure detection. Tf-IDF [4] method is
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Figure A1 Diagram of fusion odometry data processing pipeline.

used to update a Bayes filter estimating the loop closure probability. However, visual loop closure detection is limited by

the camera’s FOV, we thus introduce laser-based proximity detection [5] to assist visual loop closure detection. To reduce

redundant constraints and improve the efficiency of loop detection, we set the priority of the visual DBoW2 method higher

than laser proximity detection, that is, if the visual loop closure is detected between the current frame and the keyframe in

the database, laser proximity detection will no longer be performed.

During the flight, the number of keyframes in the database could increase rapidly, which would have a significant impact on

real-time performance and accuracy of loop closure and proximity detection. RTAB-Map’s memory management approach

[6] runs on top of graph management modules to limit the number of keyframes to be detected in the database, which

ensures long-term online SLAM can be achieved in large-scale environments. Although DBoW2 uses feature descriptions to

distinguish similar locations as much as possible, it still has a small probability of false detection when the current location is

too similar to the revisited location. To avoid the impact of this situation on the global pose map, a threshold is introduced

to the validation of loop closure or proximity detection. If a link’s transformation in the graph after non-linear optimization

has changed more than this threshold, all links added by this keyframe are rejected, keeping the optimized graph as the

previous graph. When there is a reasonable loop closure or proximity detection triggered, a link between the current frame

and the corresponding keyframe is added to the pose graph, then iSAM2 implementation in GTSAM library [7] is used to

minimize errors in the global pose graph, so as to decrease the accumulated drift of fusion odometry. The diagram of the

proposed self-localization system is shown in Fig. A2.

Figure A2 Diagram of multiple sensor information fusion self-localization system.

Appendix B Path planner

In Appendix B, the details of the proposed autonomous navigation algorithm are illustrated.

Provided the limited on-board computational resources, it is challenging for a path planner to guarantee both feasible

solutions and real-time performance in complex and unknown environments. Therefore, it is almost impossible to plan a
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globally optimal path in the unknown large-scale environments, while only a global path could be found by incrementally

searching for a locally optimal path based on the local navigation histogram. The proposed path planner is extended based

on VFH* [8] and 3DVFH+ [9], which removes the global navigation map construction process and only use local navigation

histogram to minimize the planning time and impact of absolute self-localization accuracy. Moreover, A* heuristic search

is used to search for a locally optimal path based on a local navigation histogram. By iterating the above path planning

process, a feasible globally sub-optimal path could be generated in real-time.

Most of the following definitions and mathematical terms are related to the VFH+ [9] and A* [10]:

• Map Ωnav : A local navigation histogram includes the azimuth, elevation, and distance of the obstacles with respect to

the UAV’s current position pcur.

• Free space Sfree: A set of free grids, i.e. the grids that satisfy ‘Ωnav(row, col)1 = 1 and Ωnav(row, col)2 > dsafe’ or

‘Ωnav(row, col)1 = 0’ are defined as free, where dsafe is the radius of UAV’s safety envelope.

• Occupied space Soccupied: A set of grids occupied by obstacles, i.e. the grids that satisfy Ωnav(row, col)1 = 1 and Ωnav(row, col)2 6
dsafe.

• Unknown space Sunknown: A set of grids outside the field of Ωnav , that is Sunknown = S\(Sfree ∪ Soccupied).

• Node n: A node n includes the 3D position coordinate, the parent node, and the objective function value. In A* search

algorithm, these nodes are connected to one another (its parent node) by the edges.

• Edge e: An edge is the branch/link connecting two nodes (a node and its parent node) with a fixed step-size α.

• Tree T : Both nodes and edges form a search tree T , T = (N,E), where N = {n1, · · · , ni}, E = {e1, · · · , ej}.

• OpenList : A set stores the nodes of T that are not evaluated.

• CloseList : A set stores the nodes of T that are evaluated.

After the local navigation histogram being updated, the VFH+ planner considers all unoccupied grids as candidate

nodes. Then, the VFH+ planner evaluates all candidate nodes according to the cost function C and selects the nodes

with lower cost in order. With respect to pcur, two aspects c
pg
pcan and c

psel
pcan are mainly considered including how close

the candidate node pcan is to the goal position pg and motion smoothness between the candidate node and the previously

selected node psel. Therefore, the cost function C is determined as the weighted sum of the goal and smoothness costs as

follows:

C = wg · c
pg
pcan + ws · cpselpcan , (B1)

where wg and ws are the weight factors corresponding to c
pg
pcan and c

psel
pcan , respectively. Furthermore, c

pg
pcan and c

psel
pcan can

be calculated as follows:

∆φ(pg , pcan) = φ
pg
pcur − φ

pcan
pcur ,

∆θ(pg , pcan) = θ
pg
pcur − θ

pcan
pcur ,

c
pg
pcan = ∆φ(pg , pcan) + ∆θ(pg , pcan),

(B2)

∆φ(psel, pcan) = φ
psel
pcur − φ

pcan
pcur ,

∆θ(psel, pcan) = θ
psel
pcur − θ

pcan
pcur ,

c
psel
pcan = ∆φ(psel, pcan) + ∆θ(psel, pcan),

(B3)

A* is a heuristic path planning algorithm based on graph searching, which is widely used in UAV’s path planning

missions. By evaluating the reachable nodes in the OpenList using an objective function, heuristic search extends the path

towards the node with the highest score, and an optimal path can be found by iteratively repeating the node evaluation

and heuristic search. A* objective function F (n) usually consists of a cost function C(pcur, n) and an heuristic function

H(n, pg) as follows:

F (n) = C(pcur, n) +H(n, pg), (B4)

where n is the node being evaluated, C(pcur, n) is calculated in the same way as the cost function in 3DVFH+, and H(n, pg)

is obtained by calculating the Euclidean distance between n and pg as follows:

H(n, pg) = ‖n− pg‖2. (B5)
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Figure B1 The schematic diagram of local path planner combining VFH+ and A*. From (b) to (e), there are the

difference of elevation and azimuth in goal cost, the difference of elevation and azimuth in smoothness cost, respectively.

(f) and (g) show the calculation of heuristic function value. Here, the side and top views of a 3D trajectory are projected

on the frame o− yz and o− xy, while the obstacles are omitting.

The construction of A* search tree is shown in Figure B1. Denote the current evaluating node by γi, the local planner

evaluates all valid candidate nodes relative to γi based on objective function F (n). A number of the top-ranked low-cost

nodes {n1, · · · , nj} are pushed into OpenList and γi is pushed into CloseList for search tree updating. Then, the optimal

node n∗ with the smallest objective function value F (n∗) is selected as γi+1 for next search step. Path searching starts at

γi+1 iteratively until the number of the node in CloseList reaches threshold η or the target position is contained by the

evaluated path pg ∈ ρk. Finally, the locally optimal path ρk can be obtained by back-tracing from γi to γ1. The pseudo

code of the local path planner is described as Algorithm B1.

Appendix C Experimentation

The details of Softwere-In-The-Loop (SITL) experiments in a virtual environment and experiments on a robotic platform

are illustrated in this Appendix Appendix C.

Appendix C.1 Experiments in a virtual environment

In the SITL experiments, the px4 firmware with proper parameter setting for a quadrotor aerial robot is used to achieve

close dynamics approximation. A virtual environment with a maze of vertical brick walls and a grove of trees (shown in

Fig. C1) is established using Gazebo1) and Robot Operating System (ROS).

Appendix C.1.1 Experimental Scenarios:

The UAV is initially placed at the starting point outside the woods, and then commanded to navigate through the woods

and maze by approaching a series of predefined waypoints in UAV’s local coordinate frame, and eventually comes back

to the starting position. A successful flight is expected to have no collisions with the environment. The entire flight is

fully automated using the proposed approach, and flight data including flight time, path length and number of collisions

is recorded for analysis. In search for the optimal combination of parameter settings, different combinations of heuristics

and memory settings (as in Table C1) were tested 20 times in experiments, where heuristics and memory are denoted as H

and M, L and S denote long and short respectively. In addition, the original 3DVFH+ path planner is also implemented as

1) http://gazebosim.org/
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Algorithm B1 Proposed Path planner

Input: UAV’s current position pcur, goal position pg, and local navigation histogram Ωnav at time-step

k. Maximum number η of nodes in ClostList , maximum number m of the child nodes from a node,

minimum distance ξ between two child nodes.

Output: Path ρk = {γ1, γ2, · · · , γi}.
Initialization: i = 1, γi = pcur, ρk = ∅, OpenList = ∅, CloseList = ∅.

while Num(ClostList) 6 η and pg /∈ ρk do

Sample j (j 6 m) child nodes {n1, · · · , nj} of γi based on Ωnav, which satisfies ∀ k, l ∈ [1, j] , nk ∈
Sfree, ‖nk − nl‖2 > ξ.

Calculate F (ni) = C(γ1, ni) + H(ni, pg), i ∈ [1, j] according to C = wgc
pg
pcan + wsc

psel
pcan

, and

H(n, pg) = ‖n− pg‖2.

OpenList = OpenList ∪ {n1, · · · , nj}.
ClostList = ClostList ∪ {γi}.
Find node n∗ by sorting OpenList that ∀ ni ∈ OpenList, F (n∗) 6 F (ni).

i← i+ 1, γi ← n∗.

end while

Obtain ρk by back-tracing from γi−1 to γ1 in CloseList.

the baseline algorithm for comparison, which has no heuristics or memory, thus denoted as NHNM. The basic experiment

setting and waypoint coordinates are listed in Table C2.

Figure C1 The simulated flight environment for the SITL experiments.
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Table C1 Contrast experiment setting.

Type VFH+ Memory(s) Heuristic(m)

NHNM X \ \

LHNM X \ 8

SHNM X \ 4

NHLM X 15 \

LHLM X 15 8

SHLM X 15 4

NHSM X 5 \

LHSM X 5 8

SHSM X 5 4

Table C2 Setting of planner parameter and waypoint sequence.

Parameter value

Sensor range 0.2m-10.0m

Pitch cost 30.0

Yaw cost 3.0

Heuristic weight 30.0

Safety envelope radius 0.6m

Max linear speed 2m/s

Max yaw speed 30deg/s

Waypoint[1] (30, 10, 1.5)

Waypoint[2] (40, 7, 1.5)

Waypoint[3] (47 ,4.5 ,1.5)

Waypoint[4] (38.7 ,-7.5, 1.5)

Waypoint[5] (0, 0, 1.5)

Appendix C.1.2 Results

The experimental results are presented in Fig. C2 and Tab. C3. The successful flight paths with different parameter settings

are illustrated using different colors and the waypoints are depicted as circles in Fig. C2. In Tab. C3, the flight time, path

length and success rate are provided.

From the results, we have following intuitive observations:

• the proposed path planner with memory can significantly improve the flight performance;

• the longer the memory is, the shorter the time and distance the UAV will take, and the higher the success rate will be;

• with the same memory setting, flights with longer heuristics seem better than those with shorter heuristics;

Based on the above observations, two-sample T-Test with heterogenous variations is applied to pairwise performance

comparisons of flight data to achieve quantitative analysis on the system performance with different parameter settings.

The equally good performance hypothesis is assumed for each pairwise T-Test.

T-Test between NHNM and NHLM was carried out first and the result is shown in Tab. C4. Flight time and length of the

system with NHLM exhibit the significance α of 0.000001 and 0.006044 to reject the hypothesis. Hence, we claim that, the

system with long-term memory will lead to better performance in flight time, flight length and success rate.

Provided the outcomes above, we conducted T-Tests among NHLM, SHLM and LHLM, and the results are shown in Tab. C5.

The system with LHLM completely outperforms that with NHLM, and exhibits the significance level of 0.004165 and 0.002458

to reject the hypothesis of equally good performance. Therefore, we claim that long-distance heuristics could result in better

performance.

At last, considering the limited computational resource onboard the UAV, we would like to evaluate the necessity of

long-term memory. A T-Test between LHSM and LHLM was performed, and the results are provided in Tab. C6. From

the compelling T-Test outcomes, it is clear that although it is computationally expensive to have long-term memory, the

performance of the system with LHLM is superior in all three different flight data.
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Figure C2 Successful flight demonstration of the local planer with different parameter setting as shown in Table. C1.

To facilitate the representation of obstacle information in the environment, we merge point cloud into a global map based

on Octomap. The global map is only used for flight environment visualization, not for autonomous navigation of UAV.

Table C3 Experimental results of UAV flight based on different memory duration and heuristic distance conditions.

Type Time(s) Length(m) Success rate(%)

NHNM 144.5 159.5 20

SHNM 141.7 158.4 20

LHNM 140.3 156.7 25

NHSM 93.6 142.4 80

SHSM 89.9 138.8 85

LHSM 86.2 130.0 85

NHLM 82.1 138.5 90

SHLM 79.9 133.7 95

LHLM 75.3 128.2 95
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Table C4 T-Test results of UAV flight data with NHNM and NHLM.

Type NHNM NHLM α

Time(s) 144.5 82.1 0.000001

Length(m) 138.5 133.7 0.006044

Success rate(%) 20 90 N/A

Table C5 Pairwise T-Test results of UAV flight data with NHLM, SHLM and LHLM.

Type NHLM SHLM α NHLM LHLM α SHLM LHLM α

Time(s) 82.1 79.9 0.000047 82.1 75.3 0 79.9 75.3 0.004165

Length(m) 138.5 133.7 0.000494 138.5 128.2 0 133.7 128.2 0.002458

Success rate(%) 90 95 N/A 90 95 N/A 95 95 N/A

Table C6 T-Test results of UAV flight data with LHLM and LHSM.

Type LHLM LHSM α

Time(s) 75.3 86.2 0

Length(m) 128.2 130.0 0.131388

Success rate(%) 95 85 N/A

Figure C3 The indoor and outdoor experiment environments.

Appendix C.2 Experiments on a robotic platform

In this section, experiments were conducted on a multirotor aerial robot in both indoor and outdoor complex and GNSS-

denied environments to evaluate the self-localization capability and the practicality of the proposed approach in search and

rescue missions.

Appendix C.2.1 Experimental Scenarios

Indoor experiments were carried in two stages. An aggressive manual flight is performed to assess the self-localization

performance at the first stage by comparing the robot states with the ground truth data. It is expected that, the proposed

self-localization approach is capable of offering accurate measurements. Then at the second stage, the aerial robot is

commanded to navigate through the indoor environment using the proposed system. In the outdoor experiment, the UAV

takes off outside the dense woods, and flies through the woods towards a predefined position in UAV’s local coordinate

frame. No collision with obstacles is expected for both indoor and outdoor navigation experiments.

Appendix C.2.2 Results

Experimental results are illustrated in Fig. C4, Fig. C5 and Fig. C7. Screenshots of local navigation map in the indoor and

outdoor experimental environment are shown in Fig. C5 and Fig. C7. The complete flight trajectories are shown in Fig.

C6 and Fig. C6 respectively, the real-time path planned by navigation algorithm is shown as the red line, while the actual

flight trajectory is shown as the blue line.
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The result of the proposed self-localization system is compared with ground truth as shown in Fig. C4(a), where the

mean self-localization error of x-axis, y-axis and yaw angle are less than 2%. The desired and estimated states during the

indoor navigation flight are depicted in Fig. C4(b), where the red curves denote the desired positions and yaw angles and

the blue curves denote the estimated states during flight. During the entire flight, the mean self-localization error is 0.25m,

and the minimum distance from the obstacle is 0.4m. Both experimental results demonstrate that the proposed system is

capable of offering accurate and robust state estimation in various motion conditions.
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Figure C4 C4(a) Position and yaw angle of UAV’s state estimation and Opti-Track. C4(b) Plots of desired and estimated

position and yaw angle of UAV in the indoor navigation experiment.
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Figure C5 Screenshots of the local navigation map corresponding to the indoor experimental environment, where the

different colors represent the chronological order of incoming point cloud. Flight trajectory is colored by blue.

Figure C6 Flight trajectory and planner results of indoor self-localization and navigation experiment.

Figure C7 Screenshots of the local navigation map corresponding to the outdoor experimental environment.
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In the outdoor experiment, the planned path and flight trajectory of the outdoor navigation are shown in Fig. C8, the

total length of which is approx. 170m, including a 120m long path through a dense woods. During the experimental flight,

there was no collision between the UAV and the environment. Authors believe that, experimental results have provided

convincing evidence that the proposed approach is capable to facilitate the multirotor aerial robot’s navigation system

achieving safe flight in complex and GNSS-denied environments.

Figure C8 Planned path and flight trajectory of an outdoor navigation experiment in a dense woods.

Appendix C.3 Discussion

From the results and analysis of the experiments in a virtual environment, the navigation histogram with long-term memory

is beneficial to the path planner to calculate a relatively optimal result, which represents a larger area of environment than

short-term. Meanwhile, given the same memory for the navigation histogram, the heuristic function with long-distance can

make better use of the navigation histogram to calculate a locally optimal path than the short-distance. It is clear that the

planned path will approach closely to the globally optimal path as both memory and heuristics becoming longer. However,

it is worth noting that both storing more memory and increasing the distance of heuristic function are computational

expensive. Since reaching the destination safely is more important in navigation, the navigation histogram with memory

has higher priority than that of the heuristic function. Therefore, limited computational resources should first be allocated

to the construction of navigation histogram with memory.

In the experiment on the robotic platform, the path smoothness weight needs adjustments to adapt with different

curvatures of environments, which may help the UAV to find better directions to fly through. Nevertheless, the elevation

weight of the path planner should also be tuned carefully to avoid collision with over-the-head obstacles and acquire sufficient

visual features for VIO computation.

Considering the limited computational resource onboard the UAV, all algorithms and softwares are carefully tuned and

optimized. CPU usage of each module during the outdoor navigation experiment is provided in Table C7. It can be observed

that there is still spare CPU computational power left to secure computer system stability.

Table C7 CPU usage during flight test.

Module CPU usage(%)

Sensor drivers 7

Fusion odometry 22

Back-end optimization 10

Path planning 10

Local mapping 15

Controller 6

Communication 15
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