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Dear editor,

Nowadays, there are more and more researches on stochastic

descriptor systems (see [1–7]). For example, Refs. [4,5] stud-

ied the exact controllability of a class of stochastic descrip-

tor systems by a strongly continuous semigroup in Hilbert

spaces. In this study, the exact controllability and approx-

imate controllability of the following stochastic descriptor

system are studied by using the GE-semigroup theory, re-

spectively:

M1du(t) = M2u(t)dt +M3v(t)dt +M4dw(t),

u(0) = u0, t > 0,

x(t) = M5u(t), (1)

where u(t) ∈ X1, v(t) ∈ X2, w(t) is the stand Wiener pro-

cess on X3, u0 ∈ X1, x(t) ∈ X4; X1,X2,X3,X4 are Hilbert

spaces; M1,M2,M3,M4 and M5 are described in the nota-

tions below. Firstly, the mild solution to (1) is studied by

the GE-semigroup theory, and the existence and uniqueness

condition is given. Secondly, the necessary and sufficient

conditions of the exact controllability and approximate con-

trollability of (1) are given by the GE-semigroup theory,

respectively. Thirdly, necessary and sufficient conditions of

the exact observability and approximate observability of (1)

are given by the GE-semigroup theory, respectively, and the

dual principle is proved to be true. At last, two examples

are given to illustrate the theoretical results.

Notations. B(X2, X1) = {A : X2 → X1, A is a bounded

linear operator}. M1 ∈ B(X1, X1), M3 ∈ B(X2,X1),

M4 ∈ B(X3,X1), M5 ∈ B(X1, X4), M2 : D(M2) ⊆

X1 → X1 is a closed linear operator; (Ω, F, Ft, P ) de-

notes a complete probability space with a filtration Ft

satisfying the usual condition; all processes defined on

(Ω, F, Ft, P ) are Ft-adapted; w(t) is defined on (Ω, F, Ft, P );

E denotes the mathematical expectation; 〈·, ·〉X1
de-

notes the inner product in X1, ‖ · ‖X1
denotes the

norm in X1 according to 〈·, ·〉X1
in X1; L2(Ft, P,X1) =

{u ∈ X1 : u is defined on (Ω, F, Ft, P ), E(‖u‖2X1
) <

+∞}; L2([0, T ], Ft,X1) = {u(t) ∈ L2(Ft, P,X1) : t ∈

[0, T ]}; L2([0, T ],Ω,X1) = {u(t) ∈ L2([0, T ], Ft,X1) :

‖u‖L2([0,T ],Ω,X1)
= (

∫ T
0 E(‖u(t)‖2X1

)dt)1/2 < +∞}.

Mild solution. In the following, the mild solution of sys-

tem (1) is studied by the GE-semigroup theory.

Definition 1 ([8, 9]). Let V (t) : X1 → X1, t > 0 be a

family of bounded linear operators. If

V (t+ s) = V (t)M1V (s), t, s > 0, (2)

then we say that {V (t) : t > 0} is a GE-semigroup induced

by M1.

If

lim
t→0+

‖V (t)u − V (0)u‖X1
= 0 (3)

for arbitrary u ∈ X1, then we say that V (t) is strongly con-

tinuous on X1.

Lemma 1 ([8]). Let V (t) be strongly continuous. Then

there exist C > 1 and α > 0 such that

‖V (t)‖B(X1 ,X1) 6 Ceαt, t > 0. (4)

In this case, V (t) is called to be exponentially bounded.

Definition 2 ([9]). If V (t) is a strongly continuous GE-

semigroup induced by M1 and

M2u = lim
h→0+

M1V (h)M1 −M1V (0)M1

h
u, (5)

for every u ∈ P1, where P1 = {u : u ∈ D(M2) ⊆

X1, V (0)M1u = u, ∃ limh→0+
M1V (h)M1−M1V (0)M1

h
u},

then we say that M2 is a generator of V (t).

Definition 3. Let M2 be the generator of V (t). If

v(t) ∈ L2([0, T ],Ω,X2) and u0 ∈ L2(F0, P, P1), then we

say that

u(t, u0) = V (t)M1u0 +

∫ t

0
V (t − τ)M3v(τ)dτ

+

∫ t

0
V (t − τ)M4dw(τ) (6)

is a mild solution to system (1) on [0, T ].

From Definitions 2 and 3, we can get the following propo-

sition.
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Proposition 1. Let M2 be the generator of V (t). If v(t) ∈

L2([0, T ],Ω,X2), u0 ∈ L2(F0, P, P1); M3v(t), M4dw(t) ∈

M1(L2([0, T ],Ω, P1)), then system (1) has a unique mild so-

lution, which is given by (6).

Controllability. Here we consider controllability of sys-

tem (1). Suppose Proposition 1 holds. In order to obtain

the necessary and sufficient condition of the controllability

of system (1), we introduce the following operators. NT
0 :

L2([0, T ],Ω,X2) → L2(FT , P, P1), OT
c : L2(FT , P, P1) →

L2(FT , P, P1) are defined as

NT
0 v =

∫ T

0
V (T − t)M3v(t)dt, (7)

OT
c y =

∫ T

0
V (T − t)M3M

∗

3 V
∗(T − t)E(y|Ft)dt, (8)

respectively. Obviously NT
0 ∈ B(L2([0, T ],Ω,X2), L2(FT ,

P, P1)), OT
c ∈ B(L2(FT , P, P1), L2(FT , P, P1)), NT∗

0 :

L2(FT , P, P1) → L2([0, T ],Ω,X2) is defined by NT∗

0 y =

M∗

3 V
∗(T −τ)E(y|Fτ ), and OT

c = NT
0 NT∗

0 , where NT∗

0 de-

notes the adjoint operator of NT
0 .

Definition 4. If for all u0 ∈ L2(F0, P, P1), uT ∈

L2(FT , P, P1), there exists v(t) ∈ L2([0, T ],Ω,X2) such that

the mild solution u(t, u0) to system (1) satisfies u(T, u0) =

uT , then we say that system (1) is exactly controllable on

[0, T ].

Theorem 1. The necessary and sufficient condition for

system (1) to be exactly controllable on [0, T ] is ranNT
0 =

L2(FT , P, P1).

For the proof of Theorem 1, see Appendix A.

Theorem 2. The necessary and sufficient condition for

system (1) to be exactly controllable on [0, T ] is that one of

the following conditions is true:

(a) 〈OT
c y, y〉L2(FT ,P,P1)

> β‖y‖2
L2(FT ,P,P1)

for some

β > 0 and all y ∈ L2(FT , P, P1).

(b) limγ→0+

‖(γI + OT
c )−1 − (OT

c )−1‖B(L2(FT ,P,P1),L2(FT ,P,P1))
= 0.

(c) limγ→0+

‖γ(γI +OT
c )−1‖B(L2(FT ,P,P1),L2(FT ,P,P1))

= 0.

(d) kerNT∗

0 = {0} and ranNT∗

0 is closed.

For the proof of Theorem 2, see Appendix B. For other

results of exact controllability, see Appendix C.

Definition 5. If for any state uT ∈ L2(FT , P, P1), any

initial state u0 ∈ L2(F0, P, P1), and any ǫ > 0, there exists

v ∈ L2([0, T ],Ω,X2) such that the mild solution u(t, u0) to

system (1) satisfies

‖u(T, u0)− uT ‖L2(FT ,P,P1)
< ǫ,

we say that system (1) is approximately controllable on

[0, T ].

According to Definition 5, we have that the necessary

and sufficient condition for system (1) to be approximately

controllable on [0, T ] is

ranNT
0 = L2(FT , P, P1). (9)

Theorem 3. The necessary and sufficient condition for

system (1) to be approximately controllable on [0, T ] is

kerNT∗

0 = {0}. (10)

For the proof of Theorem 3, see Appendix D.

Theorem 4. The necessary and sufficient condition for

system (1) to be approximately controllable on [0, T ] is that

one of the following conditions is true:

(a) 〈OT
c y, y〉L2(FT ,P,P1)

> 0 for all y ∈ L2(FT , P,

P1), y 6= 0.

(b) limγ→0+ < γ(γI + OT
c )−1u, y >L2(FT ,P,P1)

= 0 for

all u, y ∈ L2(FT , P, P1).

(c) limγ→0+ ‖γ(γI + OT
c )−1y‖L2(FT ,P,P1)

= 0 for all

y ∈ L2(FT , P, P1).

For the proof of Theorem 4, see Appendix E.

Observability. The concepts of exact observability and

approxiamate observability are very important for stochas-

tic descriptor linear system (1). Here the necessary and

sufficient conditions for these two concepts are given, re-

spectively, and the dual principle is proved to be true.

For the detail of observability and examples of

system (1), see Appendix F.
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